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Abstract: The pathological process of prion diseases implicates that the normal physiological cel-
lular prion protein (PrPC) converts into misfolded abnormal scrapie prion (PrPSc) through post-
translational modifications that increase β-sheet conformation. We recently demonstrated that
HuPrP(90–231) thermal unfolding is partially irreversible and characterized by an intermediate state
(β-PrPI), which has been revealed to be involved in the initial stages of PrPC fibrillation, with a
seeding activity comparable to that of human infectious prions. In this study, we report the thermal
unfolding characterization, in cell-mimicking conditions, of the truncated (HuPrP(90–231)) and
full-length (HuPrP(23–231)) human prion protein by means of CD and NMR spectroscopy, revealing
that HuPrP(90–231) thermal unfolding is characterized by two successive transitions, as in buffer
solution. The amyloidogenic propensity of HuPrP(90–231) under crowded conditions has also been
investigated. Our findings show that although the prion intermediate, structurally very similar
to β-PrPI, forms at a lower temperature compared to when it is dissolved in buffer solution, in
cell-mimicking conditions, the formation of prion fibrils requires a longer incubation time, outlining
how molecular crowding influences both the equilibrium states of PrP and its kinetic pathways of
folding and aggregation.

Keywords: prion protein; thermal unfolding; molecular crowding; Ficoll; amyloid fibrils

1. Introduction

Prion diseases, also known as transmissible spongiform encephalopathies (TSEs),
are rare incurable neurological diseases with an unusual disease etiology that affect both
humans and animals [1,2]. TSEs include the Creutzfeldt-Jakob disease (CJD), Gerstmann–
Sträussler–Scheinker syndrome (GSS), fatal familial insomnia (FFI) and Kuru in humans,
scrapie in goats and sheep, bovine spongiform encephalopathy (BSE) or ‘mad cow dis-
ease’ in cattle, transmissible mink encephalopathy (TME) in minks, feline spongiform en-
cephalopathy (FSE) in camels and cats, and chronic wasting disease (CWD) in cervids [3–7].
The pathological process of this disease implicates that the normal physiological cellular
prion protein (PrPC) converts into a misfolded abnormal scrapie prion (PrPSc) through
post-translational modifications that lead to an increased β-sheet conformation [8]. This
conversion leads to the accumulation of amyloid fibrils in the brain, causing neurodegen-
eration [9]. The human prion protein (HuPrP) gene is encoded by the PRNP gene, which
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is highly conserved among species, and its complete open reading frame is invariably
located within a single exon [8,10,11]. In humans, prion diseases are classified into three
categories: sporadic, genetic, and acquired. The majority of cases reported in humans are
sporadic [12]. Although the origin of sporadic Creutzfeldt-Jakob disease (sCJD) is still
unclear, it has been suggested that a somatic PRNP mutation or the spontaneous conversion
of PrPC to PrPSc could be the reason [12]. Genetic prion diseases are classified based on
clinical symptoms and neuropathological attributes and consist of genetic CJD (gCJD), fatal
familial insomnia (FFI), and Gerstmann-Sträussler-Scheinker (GSS) disease. The mutations
in PRNP are autosomal dominant, highly penetrant, and consist of missense mutations,
insertions, and deletions, usually provoking disease after 55 years [13]. Acquired prion
diseases have been transmitted between individuals (kuru and iatrogenic CJD) and, in rare
cases, from cattle to humans (a variant of Creutzfeldt-Jakob disease (vCJD)) [14,15].

PrPC is a cell surface glycoprotein found in the central nervous system (CNS) [8].
Recent studies suggest that PrPC is involved in various cellular processes, such as neuronal
growth [16], cell signaling [17,18], role against stress [19,20], cell adhesion [21], synapse
formation, sleep patterns, and metal ion homeostasis [22]. The exact function of PrPC is still
unknown. Human prion protein encodes 253 amino acid residues in its mature form; the
first 22 residues are cleaved after translation, and the last 23 residues are cleaved prior to
translation. In general, HuPrP comprised of 209 residues (23–231). The protein is attached
to the outer surface of cellular membranes by a glycosylphosphatidylinositol anchor at
its C terminus [23]. Nuclear magnetic resonance (NMR) studies revealed that PrPC has
an intrinsically disordered N-terminal region (23–126) and structured C-terminal region
(127–231) [24–26]. The structured C-terminal region is primarily α-helical, with three helices
(α1, α2, and α3) and a short antiparallel β-sheet (β1–β2) [27,28]. The bulk of the globular
domain is formed by the helices α2 and α3, which are covalently bridged by a disulfide
bond between Cys179 and Cys214, to which the β-sheet and α1 are anchored [29]. The
intrinsically disordered N-terminal region (residues 23–126) contains two charged clusters
(CC1, residues 24–30, and CC2, residues 101–110), the octarepeat region (OR, residues
59–90), the non-octarepeat region (non-OR, residues 91–110) and a hydrophobic domain
(HD) (residues 111–126). Folding intermediates have been detected in kinetic studies of
HuPrP at pH 5.5, as well as of pathogenic variants of ovine PrP, but not in similar studies
conducted on mouse PrP at pH 7.0 [30–32]. We recently demonstrated that HuPrP(90–231)
thermal unfolding is partially irreversible and characterized by an intermediate state (β-
PrPI) [33], whose detailed structural description of HuPrP conformation equilibria has been
obtained at pH = 5.5 [33]. In this study, the N-terminal domain has been shown to play a key
role in the thermodynamic stability of the protein since its absence induces a more complex
thermal unfolding, particularly at pH 5.5 [33]. Furthermore, we have also demonstrated
that the native state of HuPrP(90–231) at room temperature is in conformational equilibrium
with a low-populated state that presents structural similarity to β-PrPI. Importantly, β-PrPI
has been revealed to be involved in the initial stages of PrPC fibrillation, having a seeding
activity comparable to human infectious prions.

Among the factors that can affect the conformational equilibria of the prion protein,
high concentrations of macromolecules characterizing the cellular environment may play
a vital role in modulating the folding mechanism of the prion protein, favoring or disfa-
voring the formation of stable misfolded intermediate states [34]. As an example, a recent
study showed the effect of different organic solvents (acetone, acetonitrile, ethanol, and
tetrahydrofuran) on the SDS-induced aggregation of lysozyme. In particular, the presence
of acetone impeded SDS-induced lysozyme aggregation into amyloid fibrils from dena-
tured protein in a concentration-dependent manner [35]. Based on these considerations,
here, we report the thermal unfolding characterization, in cell-mimicking conditions, of
the truncated (HuPrP(90–231)) and full-length (HuPrP(23–231)) human prion protein by
CD and NMR spectroscopy. Yet, we also investigated the amyloidogenic propensity of
HuPrP(90–231) under crowded conditions. Our findings revealed that although the β-PrPI
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forms at a lower temperature compared to when it is dissolved in a buffer solution, the
formation of prion fibrils requires a longer incubation time.

2. Results
2.1. CD Spectroscopy

CD spectroscopy has been initially utilized to investigate, at low resolution, the thermal
unfolding of HuPrP(90–231) in the presence of Ficoll-70 at the concentration of 150 g/L.
The spectra of HuPrP(90–231) and HuPrP(23–231) in the presence of Ficoll-70 at 25 ◦C and
at pH = 5.5 and at pH = 6.8 are shown in Figure 1A and 1B, respectively. Overall, CD data
clearly indicate that the presence of the crowders does not alter the secondary structure of
both HuPrP(90–231) and HuPrP(23–231).
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Figure 1. (A) Far-UV CD spectra of HuPrP(23–231) and HuPrP(90–231) at pH 5.5. Experiments were 
carried out in presence of Ficoll-70 (150 g/L) at 25 °C (Blue: Ficoll-70, yellow: HuPrP(23–231), orange: 
HuPrP(90–231)). (B) Far-UV CD spectra of HuPrP(23–231) and HuPrP(90–231) at pH 6.8. 
Experiments were carried out in in presence of Ficoll-70 (150 g/L) at 25 °C (Blue: Ficoll-70 curve, 
orange: HuPrP(90–231), yellow: HuPrP(23–231)). 

Figure 1. (A) Far-UV CD spectra of HuPrP(23–231) and HuPrP(90–231) at pH 5.5. Experiments
were carried out in presence of Ficoll-70 (150 g/L) at 25 ◦C (Blue: Ficoll-70, yellow: HuPrP(23–231),
orange: HuPrP(90–231)). (B) Far-UV CD spectra of HuPrP(23–231) and HuPrP(90–231) at pH 6.8.
Experiments were carried out in in presence of Ficoll-70 (150 g/L) at 25 ◦C (Blue: Ficoll-70 curve,
orange: HuPrP(90–231), yellow: HuPrP(23–231)).

After that, we performed CD thermal unfolding experiments on HuPrP(23–231) and
HuPrP(90–231) (Figure 2A–D) upon the addition of Ficoll-70 at neutral and mildly acidic
pH. Full-length HuPrP(23–231) exhibits a two-state cooperative thermal unfolding with
a midpoint transition temperature (Tm) of 59 ± 3 ◦C at pH 5.5 and 53 ± 4 ◦C at pH 6.8,
respectively (Table 1). At pH 5.5, the truncated HuPrP(90–231) exhibits a more complex
thermal unfolding curve that results in two successive transitions, the first with a Tm of
41 ± 2 ◦C and the second with a Tm of 54 ± 2 ◦C (Table 1). At pH 6.8, HuPrP(90–231)



Int. J. Mol. Sci. 2024, 25, 9916 4 of 15

unfolding shows two closer transitions, the first at 50 ± 2 ◦C and the second at 66 ± 2 ◦C.
Interestingly, the comparison of the Tms estimated for HuPrP(23–231) and HuPrP(90–231)
in cell-mimicking conditions indicates that, as previously reported in dilute buffer solution,
the N-terminal domain plays an important role in the thermodynamic stability of the
HuPrP protein. Its absence induces a three-state thermal unfolding process, forming a
stable intermediate state, particularly at pH 5.5.
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Figure 2. CD thermal unfolding of HuPrP proteins in the presence of Ficoll-70. Thermal melt plots are
a function of temperature. Measurements were performed at pH 5.5 and 6.8 at different temperatures
ranging from 5 ◦C to 90 ◦C. Data were fitted according to two- and three-state models. HuPrP(90–231)
at pH 5.5 (A), HuPrP(23–231) at pH 5.5 (B), HuPrP(90–231) at pH 6.8 (C), and HuPrP(23–231) at pH
6.8 (D).

Table 1. Thermal stability of prion protein samples in the presence of Ficoll-70 at different pH
values estimated via CD. Midpoint transition temperatures (Tm) (◦C) of truncated HuPrP(90–231)
and HuPrP(23–231) unfolding processes in the presence of the macromolecular crowding agent
experiments at pH values 5.5 and pH 6.8 and compared with CD data acquired in dilute buffer
conditions, indicated by “*” [33].

Protein Condition Tm1 (◦C) Tm2 (◦C)

HuPrP(90–231)
Ficoll-70 pH 5.5 41 ± 2 54 ± 2

Buffer solution pH 5.5 55 ± 1 * 72 ± 1 *

HuPrP(23–231)
Ficoll-70 pH 5.5 - 59 ± 3

Buffer solution pH 5.5 - 69 ± 3 *

HuPrP(90–231)
Ficoll-70 pH 6.8 50 ± 2 66 ± 2

Buffer solution pH 6.8 59 ± 3 * 68 ± 2 *

HuPrP(23–231)
Ficoll-70 pH 6.8 - 53 ± 4

Buffer solution pH 6.8 - 59 ± 1 *
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Nevertheless, the molecular crowding significantly reduces the Tms of the truncated
HuPrP(90–231) and full-length HuPrP(23–231) at both pHs (see Table 1).

2.2. NMR Structural Investigation of HuPrP(90–231) in the Presence of Ficoll-70

In order to explore the crowding effects on the overall structural architecture of
truncated HuPrP, we performed a high-resolution NMR structural characterization of
HuPrP(90–231) at 25 ◦C in the presence of 150 and 50 g/L of Ficoll-70. At both polymer
concentrations, in the 1H-15N HSQC of HuPrP(90–231), there is a good dispersion of
resonances in both proton and nitrogen dimensions, indicating that the presence of the
crowding agent does not destabilize the native form of the protein.

Figure 3 reports the two-dimensional 1H-15N HSQC HuPrP(90–231) spectrum, ac-
quired either at 150 and 50 g/L Ficoll-70 concentrations, superimposed to the 1H-15N HSQC
HuPrP(90–231) spectrum recorded in dilute buffer solution. The chemical shift correlation
plots (Figure 4A–C) also show that only small changes in the 15N and 1H chemical shifts are
observed in the three different conditions, indicating that the three-dimensional organiza-
tion of HuPrP(90–231) observed in solution is conserved in both cell-mimicking conditions.
These findings were further confirmed by the evaluation of Cα chemical shifts that are sen-
sitive probes for secondary structure. As reported in Figure 4D, the comparison of solution
Cα of HuPrP(90–231) with the values observed in the presence of the polymer confirms
that HuPrP(90–231) secondary structure is not significantly affected by the presence of a
crowded environment.
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Figure 3. 1H-15N HSQC spectra for HuPrP(90–231). Overlay of 1H-15N HSQC spectra of
HuPrP(90–231) acquired in dilute buffer (red), in the presence of 150 g/L of Ficoll-70 (green), and in
the presence of 50 g/L (blue) of Ficoll-70 acquired on 600 MHz spectrometer at 25 ◦C and pH 5.5.
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disappear at around 55 °C (Figure 4C). A well-preserved spectral dispersion is retained at 
50 °C (Figure 5B), indicating the presence of a partially folded structure at this temperature. 

Figure 4. Chemical shift correlation plots in the different conditions (A) The 1HN chemical shift
correlation plot of HuPrP(90–231) in two different concentrations of Ficoll-70 (50 g/L against 150 g/L).
(B) The 1HN chemical shift correlation plot of HuPrP(90–231) in solution against Ficoll-70 150 g/L.
(C) The 15N chemical shift correlation plot of HuPrP(90–231) in solution against Ficoll-70 150 g/L.
(D) The 13Cα chemical shift correlation plot of HuPrP(90–231) in solution against Ficoll-70 150 g/L.

2.3. NMR Thermal Unfolding Characterization

To investigate, at atomic resolution, the complex folding mechanism of HuPrP(90–231)
shown by the CD analysis, we carried out an NMR characterization of HuPrP(90–231)
thermal unfolding dissolved in a Ficoll-70 concentration of 150 g/L at pH 5.5, by acquiring
a series of two-dimensional 1H-15N HSQCs between 5 ◦C and 80 ◦C at intervals of 5 ◦C
and at 2 ◦C intervals in the range 55–75 ◦C (Figure 5). Most residues started to disappear
at around 55 ◦C (Figure 4C). A well-preserved spectral dispersion is retained at 50 ◦C
(Figure 5B), indicating the presence of a partially folded structure at this temperature.

We estimated the midpoint temperatures (Tms) of the first thermal transition for most
atoms by evaluating 1HN chemical shift variations as a function of temperature. Tms
resulting from this analysis have been mapped onto the HuPrP(90–231) NMR structure
(Figure 6A), revealing that all the analyzed atoms experience a structural transition with a
proper Tms within the 20–68 ◦C range. Nicely reconciling with the CD data, Tms mapping
shows a clear distributional behavior of the structural transition centered at 39 ◦C.
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Figure 5. NMR thermal unfolding. (A–D) 1H-15N HSQCs were used to monitor the thermal unfolding
of HuPrP(90–231) in the presence of 150 g/L Ficoll-70 acquired at pH 5.5 on a 600 MHz spectrometer
equipped with a cryoprobe.

Interestingly, a similar analysis has also been carried out on the truncated HuPrP(90–231)
dissolved in 50 g/L Ficoll-70, giving very similar results (Figure 6B), showing that differ-
ences in the concentration of the crowding agent do not appear to result in different thermal
unfolding processes. In both conditions, as a matter of fact, the thermal transitions lead to
the formation of a conformational intermediate state that may have structural similarities
with the β-PrPI detected in the solution. To fully address this latter point, we compared
1H and 15N chemical shifts measured at 50 ◦C for the truncated HuPrP(90–231) dissolved
either in 150 g/L and 50 g/L Ficoll-70 concentrations with the shifts reported for β-PrPI
identified in buffer solution at 61 ◦C (Figure 7A–D).

The correlation plots show that the intermediate forming at 50 ◦C, either at the lower
or higher Ficoll-70 concentrations, have very similar 1H and 15N chemical shifts and are,
therefore, structurally comparable.
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Figure 6. “Atom-by-atom” unfolding behavior of HuPrP(90–231). Ribbon drawing representation of
the HuPrP(90–231) in both Ficoll-70 concentrations: (A) 150 g/L, (B) 50 g/L. NMR structure showing
the thermal stability estimated from the 1HN chemical shift variations mapped on their corresponding
atoms. The color displayed for each atom corresponds to the Tm. Balls with similar colors have
similar Tms. The insets show the distribution of melting temperature.

2.4. ThT Fibrillation Experiments

To evaluate the amyloidogenic propensity of the truncated HuPrP(90–231), we per-
formed in vitro fibrillation experiments using ThT fluorescent dye (Figure 8). The two sam-
ples, dissolved in 150 g/L and 50 g/L Ficoll-70 solutions, were incubated at 50 ◦C at pH 5.5,
and aggregations were performed by subjecting the samples to several cycles of incubation
and shaking. Fibril growth was monitored using ThT in real-time. Our results show that
the aggregation of HuPrP(90–231) is significantly faster in 50 g/L Ficoll-70 concentrations,
though slower than in dilute buffer solution. Particularly, fibrillation is observed in three
out of eight wells after 50 h, whereas at a concentration of 150 g/L, fibrillation occurs in two
out of eight wells but with a much lower absorbance signal. Furthermore, no fibrillation is
observed at room temperature, as it happens in buffer solution. Overall, NMR and ThT
data demonstrate that the concentration of the molecular crowding plays a crucial role in
modulating the kinetic of the HuPrP(90–231) aggregation reaction by which the formation
of amyloid aggregates is driven by a misfolded state having structural similarity with
β-PrPI.
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Figure 8. Role of the β-PrPI intermediate state in amyloid fibril formation and in prion protein
conversion in different environments. (A) Average ThT fluorescence intensity was plotted
against time (T = 50 ◦C) for HuPrP(90–231): in dilute solution (light blue dotted line), Ficoll-70



Int. J. Mol. Sci. 2024, 25, 9916 10 of 15

50 g/L concentration (dark blue line), Ficoll-70 at 150 g/L (red line). Insert reports the control experi-
ment containing ThT + Ficoll-70 150 g/L. (B) Aggregation of the reaction substrate: HuPrP(90–231)
with a longer lag-phase and subsequent self-assembly. Insert reports the control experiment contain-
ing ThT + Ficoll-70 50 g/L.

3. Discussion

Since the first structural characterizations of PrPC have been published [36], a signif-
icant number of computational and experimental studies have been performed to shed
light on the first stages of protein misfolding leading to the PrPC-PrPSc transition [37–40].
In most experimental studies, non-native conditions induced by lowering pH or adding
chemical denaturants have been exploited to investigate partially unfolded forms of native
or pathogenically mutated PrPC in fibril formation [31,41].

Thus, the study of the conformational equilibria and unfolding/folding processes
of PrPC under different conditions represents a critical point to investigate the molecular
basis of the PrPC to PrPSc transition. In this context, molecular crowding, reproducing the
high concentration of macromolecules within the physiological cellular environment, is
known to affect thermodynamics and kinetics of biochemical processes [42,43]. Recently,
via nuclear magnetic resonance (NMR) methodologies, we investigated at the atomic level
the mechanism of human HuPrP(90–231) thermal unfolding in dilute buffer conditions,
characterizing the conformational equilibrium between its native structure and a β-enriched
intermediate state, named β-PrPI [33].

In this study, we analyzed the structure and the thermal stability of HuPrP in so-
lutions containing 50 g/L and 150 g/L of Ficoll-70 to mimic the crowded physiological
cellular environment.

Thermal unfolding analysis of human PrPC has been performed at different pHs
on the full-length human HuPrP(23–231) and the truncated HuPrP(90–231) to identify
conformational equilibria characterizing PrPC unfolding processes in these new conditions.

Our characterization was initially performed by CD analysis of the two constructs
in Ficoll-70 (protein concentration 30 µM, Ficoll-70 150 g/L), showing that the pres-
ence of the crowders did not significantly alter the overall structure of the prion protein
(Figures 3 and 4). Next, a thermal unfolding analysis of human PrPC has been performed
to identify the conformational equilibria characterizing PrPC unfolding processes. The CD
analysis shows that, similarly to what was observed in dilute buffer solution, the presence
of the N-terminal tail, constituted by residue 23–89, influences the mechanism of human
PrPC thermal unfolding.

In the presence of the molecular crowding agent, HuPrP(23–231) is not characterized
by a thermal-induced intermediate and shows thermodynamic properties completely
different from those observed for HuPrP(90–231).

As a matter of fact, full-length HuPrP(23–231) thermally unfolds following a coop-
erative two-state mechanism at pH = 6.8 and pH = 5.5, even though with different Tms
(52 ± 4 ◦C and 59 ± 3, respectively). On the other hand, HuPrP(90–231) thermal unfolding
has a more complex behavior, characterized by two successive transitions. In particular, at
pH 6.8, the midpoint temperatures (Tms) of the two transitions are 50 ± 2 ◦C and 66 ± 2 ◦C,
while at pH 5.5, they separate at 41 ± 2 ◦C and 54 ± 2 ◦C.

Overall, the presence of the crowding agents appears to destabilize the protein thermally.
The thermal destabilization of HuPrP(90–231) in Ficoll-70, as evidenced by CD data,

indicates that the protein is more prone to partial thermal unfolding under these conditions,
which could be an initial step toward misfolding and aggregation.

Thus, our analysis has successively focused on HuPrP(90–231) at pH 5.5. The 1H-15N
HSQC acquired at room temperature and at increasing temperatures (protein concentration
30 µM, Ficoll-70 150 g/L) has substantially confirmed the CD results. The 1H-15N HSQC
at 25 ◦C shows that all resonances experience only minor chemical shift differences with
respect to the same spectrum recorded in dilute buffer conditions. The 1H-15N HSQC
for HuPrP(90–231) at pH 5.5 recorded at 50 ◦C indicates the presence of an intermediate
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conformation. Overall, the backbone proton Tms (centered at 39 ◦C) derived by NMR
analysis well corresponds to the first thermally induced unfolding transition described by
our CD results, leading to the partial unfolding of the globular domain. The same NMR
experiments have been conducted at a different Ficoll-70 concentration to explore the effect
of Ficoll-70 concentration on the protein conformational equilibria. NMR experiments
conducted at pH 5.5 with Ficoll-70 at a concentration of 50 g/L showed results similar to
those at 150 g/L, as demonstrated by correlation plots. In thermal denaturation experiments,
the melting temperature was found to be 45.5 ◦C, indicating that the decrease of Ficoll-70
concentration positively affects the stability of the protein.

The correlation plots between the chemical shifts of the resonances at 50 ◦C in Ficoll-70
at 150 g/L and at 50 g/L and 61 ◦C in dilute buffer solution indicate that the intermediate
formed at high temperature is similar in the three different conditions. In buffer solution
at 61 ◦C, the most significant chemical shift perturbations affect nuclei involved in all the
secondary structure elements. A β-structure extension is observed that is coupled with a
loss of helical content of the three native helices, particularly within the contact surfaces
of α2 and α3, which include a disulfide bridge, defining the intermediate state β-PrPI
involved in the initial stage of PrPC fibrillation. Therefore, given the structural similarities
between β-PrPI and the intermediate states detected for HuPrP(90–231) in the presence of
Ficoll-70, we investigated the amyloidogenic properties of the misfolded states observed
within cell-mimicking physiological conditions.

Therefore, we performed ThT experiments at pH 5.5 in two different conditions: 50 g/L
and 150 g/L of Ficoll-70. At 50 ◦C, we observe faster fibril formation at 50 g/L of Ficoll70
with respect to 150 g/L of Ficoll-70.

This observation can be attributed to several factors related to molecular crowding
and its effects on protein folding and aggregation kinetics.

Molecular crowding generally favors the compact, native state of proteins by excluding
the volume available for unfolding [44]. However, at intermediate crowding levels (50 g/L),
although with a slower kinetic with respect to the dilute buffer solution, there may be
sufficient space for partially unfolded intermediates to form and interact, promoting fibril
formation. At higher concentrations of Ficoll-70 (150 g/L), the higher viscosity and reduced
free volume significantly impede the diffusion of prion monomers and oligomers, slowing
down the rate at which they can form fibrils.

The initial phase of fibril formation involves the aggregation of partially unfolded
prion proteins. At lower Ficoll-70 concentrations (50 g/L), the crowding effect may allow
interactions between these misfolded conformational states. On the other hand, higher
concentrations of Ficoll-70 (150 g/L) significantly slow down this elongation phase due to
steric hindrance and slower diffusion rates.

Nonetheless, at higher concentrations, non-amyloid aggregates that do not contribute
to ThT-detectable fibrils could also form [45].

4. Materials and Methods
4.1. Materials

The HuPrP(23–231) and HuPrP(90–231) were expressed and purified as previously
reported [33].

Ficoll PM70 (average molecular mass 70 KDa) powder was purchased from Sigma–
Aldrich and stored at room temperature. Sodium acetate buffer (pH 5.5) and sodium
phosphate buffer (pH 6.8) were prepared and stored at 4 ◦C. Pre-weighed amounts of Ficoll
PM70 powder were dissolved in sodium acetate buffer (pH 5.5) and sodium phosphate
buffer (pH 7.0) at room temperature with gentle stirring.

4.2. CD Spectroscopy

CD samples contained HuPrP(23–231) or HuPrP(90–231) in 300 µL of 20 mM sodium
acetate at pH 5.5 or sodium phosphate buffer at pH 6.8 with the same ionic strengths. The
Ficoll-70 concentration in each sample was 150 g/L, while the protein concentration was
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30 µM. The thermal denaturation of prion protein samples was assessed using a JASCO
J-815 CD spectropolarimeter equipped with Peltier temperature control. CD spectra were
recorded at 5 ◦C intervals from 5 to 35 ◦C and at 3 ◦C intervals from 35 to 90 ◦C. After
that, all samples were cooled to 25 ◦C for a final set of spectra measurements. All data
were collected in triplicate with a bandwidth of 1 nm and a scanning speed of 50 nm/min
and were normalized against reference spectra to eliminate the background contribution
of the buffer and of the crowding agent. The data were analyzed using a two- and three-
state folding model. The errors reported are derived from the fitting procedures. Control
experiments were conducted with the Ficoll-70 (150 g/L) solution to evaluate the behavior
of the blank solutions upon temperature increase.

4.3. NMR Experiments

NMR experiments were conducted at 25 ◦C using a Bruker AVIII HD 600 MHz
spectrometer equipped with a triple resonance Prodigy N2 cryoprobe featuring a z-axis
pulse field gradient. NMR samples for the chemical shift assignment of 15N-13C labeled
HuPrP(23–231) and 15N-13C labeled HuPrP(90–231) proteins were prepared at a concentra-
tion of 80 µM in a solvent mixture of 90% H2O/10% D2O, and 150 and 50 g/L Ficoll-70
dissolved in sodium acetate buffer at pH 5.5. Two-dimensional 1H-15N HSQC and 1H-
13C HSQC spectra were acquired for both HuPrP(23–231) and HuPrP(90–231). Backbone
resonances Cα, N, HN, and Hα of HuPrP(90–231) were assigned by analyzing standard
triple resonance experiments [46], including 3D HNCA, 3D CBCA(CO)NH, and 3D HNHA,
using the deposited chemical shifts under the BMRB accession codes 4402, 18426, and
17780. The chemical shift assignment of HuPrP(90–231) protein at different temperatures
was performed by tracking peak trajectories over the temperature range. Spectra were
processed using NMRpipe [47] and analyzed with SPARKY [48] and CARA [49]. The 1H,
13C, and 15N chemical shifts were indirectly calibrated using external DSS references.

The quality of the NMR samples was checked over time. In all investigated conditions,
the quality of the samples and of the corresponding NMR spectra allow us to exclude the
presence of protein liquid-liquid phase separation systems [50,51].

4.4. NMR Chemical Shifts and Thermal Analysis
1H-15N and 1H-13C HSQC NMR thermal experiments for HuPrP(90–231) were col-

lected every 5 ◦C from 5 ◦C to 55 ◦C and every 3 ◦C from 55 ◦C to 90 ◦C. All NMR spectra
used for the thermal unfolding characterization were indirectly referenced using external
DSS references. 2D 1H-15N HSQC experiments were acquired with 32 scans per t1 incre-
ment, a spectral width of 1459.43 Hz along t1 and 7211.54 Hz along t2, 2048 × 256 complex
points in t2 and t1, respectively, and a 1.0 s relaxation delay. Spectra were apodized with a
square cosine window function and zero-filled to a matrix size of 4096 x 4096 before the
Fourier transform and baseline correction. 1H chemical shifts at different temperatures
were externally referenced to DSS, while 15N and 13C shifts were indirectly calibrated to
DSS. Individual fits of HN, Cα, and Hα chemical shifts as a function of temperature were
performed with two-state transitions. The Pearson correlation was used to estimate the
correlation between the 1HN and 15N chemical shifts observed for HuPrP(90–231) in the
presence of Ficoll-70 (150 g/L and 50 g/L) with those measured in an acetate buffer solution
(pH 5.5). The CHIMERA 1.18 software was utilized to evaluate and visualize the data [52].

4.5. Aggregation Assay

Human truncated recombinant PrP protein (HuPrP(90–231)) was filtered through
a 100 kDa Nanosep centrifugal device (Pall Corporation, New York, NY, USA). For the
aggregation assay, we have prepared three reaction mixes containing different concentra-
tions of Ficoll-70: (1) 0 g/L, (2) 50 g/L, and (3) 150 g/L. Each reaction mix (100 µL final
volume) was composed of 10 mM PBS (pH 7.4), acetate buffer solution (pH 5.5), 150 mM
NaCl, 0.135 mg/mL HuPrP(90–231), 1 mM EDTA, 0.002% SDS, 10 µM thioflavin T (ThT),
and Ficoll-70 at the appropriate concentration (0, 50 or 150 g/L). Eight replicates for each
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condition were analyzed in a black 96-well optical flat bottom plate (Thermo Scientific,
Waltham, MA, USA). The plate was sealed with a sealing film (Thermo Scientific) and
inserted into a FLUOstar OMEGA microplate reader (BMG Labtech, Ortenberg, Germany).
The plate was subjected to alternating cycles of shaking (1 min at 600 rpm, double orbital)
and incubation (1 min at 50 ◦C). The mean fluorescence values (expressed as arbitrary units,
AU) of the aggregating replicates were plotted in a graph against time.

5. Conclusions

In this study, we report the thermal unfolding characterization, in cell-mimicking
conditions, of the truncated (HuPrP(90–231)) and full-length (HuPrP(23–231)) human prion
protein by means of CD and NMR spectroscopy.

On the one hand, our results show that prion proteins appear to be thermally destabi-
lized in the crowded environment generated by exploiting Ficoll-70. Particularly, significant
concentrations of HuPrP(90–231) intermediate are already formed at the temperature of the
human body, 37 ◦C, indicating that the increase of molecular crowding at physiological tem-
perature stabilizes the prion intermediate shown to be involved in prion fibrillation [53]. On
the other hand, ThT analysis indicates that the presence of the crowding agent slows down
the formation of amyloid fibers, outlining how crowding influences both the equilibrium
states of PrP and its kinetic pathways of folding and aggregation.

These findings suggest that the different degrees of macromolecular crowding within
the intracellular environment could influence the kinetics of prion protein misfolding and
aggregation differently. Less crowded cellular regions may promote a faster process of
fibril formation, while more crowded ones may slow it down.

Our findings highlight the intricate balance between protein stability, molecular inter-
actions, and molecular crowding effects, providing a further piece in the complex puzzle of
prion disease mechanisms.
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