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At present, nanomaterials are used in a wide range of applications in all spheres of
civil needs, including energy, medicine, and industry [1,2]. Moreover, they are considered
one of the most promising classes of materials for the next generation of technological
development [3–5]. The interest in the possibilities of nanoparticles and nanodevices allows
for deeper study of the physical properties of these new materials and provides a starting
point for the development of a huge number of practically important areas, from synthetic
biology, drug delivery platforms [6–10], and brain–computer interfaces [11–15] to nanoelec-
tronics [16–18], nanophotonics [19–23], and quantum communications technologies [24,25].

This Special Issue focuses on recent research in various fields of applied nanoscience,
including materials science, chemistry, molecular and cell biology, and biotechnology.
Special attention is paid to the state-of-the-art methods for synthesizing and characterizing ad-
vanced materials, nanoparticles, and biological objects, as well as their emerging applications.

This Special Issue starts with a comprehensive review article by da Silva et al. [26],
considering the full spectrum of the use of microparticles in pharmaceutics. Microparticles
are any particles with a size of 1–1000 µm (Figure 1). They are widely used as drug delivery
systems because they offer superior therapeutic and diagnostic performance compared to
conventional modes of drug delivery. This review focuses on the contemporary in vivo
and in vitro applications of different active pharmaceutical ingredients microencapsulated
in polymeric or lipid matrices, discussing the potential applicability of microparticulate
systems in the pharmaceutical field.
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At present, nanomaterials are used in a wide range of applications in all spheres of 
civil needs, including energy, medicine, and industry [1,2]. Moreover, they are considered 
one of the most promising classes of materials for the next generation of technological 
development [3–5]. The interest in the possibilities of nanoparticles and nanodevices al-
lows for deeper study of the physical properties of these new materials and provides a 
starting point for the development of a huge number of practically important areas, from 
synthetic biology, drug delivery platforms [6–10], and brain–computer interfaces [11–15] 
to nanoelectronics [16–18], nanophotonics [19–23], and quantum communications tech-
nologies [24,25]. 

This Special Issue focuses on recent research in various fields of applied nanoscience, 
including materials science, chemistry, molecular and cell biology, and biotechnology. 
Special attention is paid to the state-of-the-art methods for synthesizing and characteriz-
ing advanced materials, nanoparticles, and biological objects, as well as their emerging 
applications. 

This Special Issue starts with a comprehensive review article by da Silva et al. [26], 
considering the full spectrum of the use of microparticles in pharmaceutics. Microparticles 
are any particles with a size of 1–1000 µm (Figure 1). They are widely used as drug deliv-
ery systems because they offer superior therapeutic and diagnostic performance com-
pared to conventional modes of drug delivery. This review focuses on the contemporary 
in vivo and in vitro applications of different active pharmaceutical ingredients microen-
capsulated in polymeric or lipid matrices, discussing the potential applicability of micro-
particulate systems in the pharmaceutical field. 

 
Figure 1. Types of microparticles: (A) microsphere with entrapped active pharmaceutical ingredient 
(API); (B) microsphere with adsorbed API; (C) microcapsule with entrapped API; (D) microcapsule 
with adsorbed API; (E) multinucleated microcapsule; (F) hollow microparticle; (G) hollow micro-
particle with several layers; (H) microparticle containing microcapsules; (I) microparticle contain-
ing multinucleated microcapsules; (J) multilayer microparticles; and (K) microparticles with irreg-
ular shapes [26]. 
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Figure 1. Types of microparticles: (A) microsphere with entrapped active pharmaceutical ingredient
(API); (B) microsphere with adsorbed API; (C) microcapsule with entrapped API; (D) microcapsule
with adsorbed API; (E) multinucleated microcapsule; (F) hollow microparticle; (G) hollow micropar-
ticle with several layers; (H) microparticle containing microcapsules; (I) microparticle containing
multinucleated microcapsules; (J) multilayer microparticles; and (K) microparticles with irregular
shapes [26].

This general review is followed by a more narrowly focused work by Urbano-Gámez
et al. [27], addressing important questions concerning cancer therapy with nanoparticles.
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The application of metal-based nanoparticles in cancer therapy and diagnostics (theranos-
tics) [28,29] has been a hot research topic since the early days of nanotechnology and has
become even more relevant in recent years [30,31]. In this review, a critical analysis of key
challenges that must be addressed for the successful targeting of either tumor tissue or
cancer cells within the tumor tissue is carried out (Figure 2).
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Kah Sem et al. [32] work in an adjacent field, dealing with the use of nanoparticles to 
combat animal diseases. Their review is based on studies on vibriosis, one of the most 
common diseases in marine aquaculture, affecting many species of economically signifi-
cant aquatic organisms around the world [33,34]. The use of graphene oxide and nano-
particles in the treatment of vibriosis is explored in this article. 

Tsilo et al. [35] study a slightly different area: the use of nanoparticles in wastewater 
treatment, another urgent problem [36]. Their study utilized Fe nanoparticles that were 
synthesized using a bioflocculant to eliminate different kinds of pollutants and dyes 
found in wastewater and solutions. 

Zhao et al. [37] study the chemical applications of mesoporous nanomaterials. In their 
study, ionic magnetic mesoporous nanomaterials with high absorptivity for ethanol 
amines and cyanide were successfully synthesized. The potential of these materials in the 
verification of chemical weapons and the destruction of toxic chemicals was shown. 

Finally, in an original work by Lepekhina et al. [38], a new approach to assessing cell 
viability based on two-photon microscopy is described. The study of cell viability is in-
cluded in the list of mandatory studies when creating new materials for implants intended 
to replace hard tissues [39,40]. In this way, the biocompatibility of implants with the hu-
man body is assessed. Scientists from Tomsk State University have developed a method 
that allows for the real-time determination of the state of the cells as an indicator of im-
plant survival. The fluorescence lifetime imaging microscopy (FLIM) results obtained in 
this work can be used as additional information for scientists who are interested in man-
ufacturing osteoimplants. This new approach will make it possible to create materials 
with high biocompatibility for reconstructive surgery and, accordingly, improve the qual-
ity of life of patients. 
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Figure 2. Tumor targeting (passive or active) and tumor cell targeting [27].

Kah Sem et al. [32] work in an adjacent field, dealing with the use of nanoparticles
to combat animal diseases. Their review is based on studies on vibriosis, one of the most
common diseases in marine aquaculture, affecting many species of economically significant
aquatic organisms around the world [33,34]. The use of graphene oxide and nanoparticles
in the treatment of vibriosis is explored in this article.

Tsilo et al. [35] study a slightly different area: the use of nanoparticles in wastewater
treatment, another urgent problem [36]. Their study utilized Fe nanoparticles that were
synthesized using a bioflocculant to eliminate different kinds of pollutants and dyes found
in wastewater and solutions.

Zhao et al. [37] study the chemical applications of mesoporous nanomaterials. In
their study, ionic magnetic mesoporous nanomaterials with high absorptivity for ethanol
amines and cyanide were successfully synthesized. The potential of these materials in the
verification of chemical weapons and the destruction of toxic chemicals was shown.

Finally, in an original work by Lepekhina et al. [38], a new approach to assessing
cell viability based on two-photon microscopy is described. The study of cell viability
is included in the list of mandatory studies when creating new materials for implants
intended to replace hard tissues [39,40]. In this way, the biocompatibility of implants with
the human body is assessed. Scientists from Tomsk State University have developed a
method that allows for the real-time determination of the state of the cells as an indicator
of implant survival. The fluorescence lifetime imaging microscopy (FLIM) results obtained
in this work can be used as additional information for scientists who are interested in
manufacturing osteoimplants. This new approach will make it possible to create materials
with high biocompatibility for reconstructive surgery and, accordingly, improve the quality
of life of patients.
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