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Abstract: Programmed cell death (PCD) is a form of cell death distinct from accidental cell death
(ACD) and is also referred to as regulated cell death (RCD). Typically, PCD signaling events are
precisely regulated by various biomolecules in both spatial and temporal contexts to promote neuronal
development, establish neural architecture, and shape the central nervous system (CNS), although
the role of PCD extends beyond the CNS. Abnormalities in PCD signaling cascades contribute
to the irreversible loss of neuronal cells and function, leading to the onset and progression of
neurodegenerative diseases. In this review, we summarize the molecular processes and features of
different modalities of PCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis,
and other novel forms of PCD, and their effects on the pathogenesis of neurodegenerative diseases,
such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic
lateral sclerosis (ALS), spinal muscular atrophy (SMA), multiple sclerosis (MS), traumatic brain
injury (TBI), and stroke. Additionally, we examine the key factors involved in these PCD signaling
pathways and discuss the potential for their development as therapeutic targets and strategies.
Therefore, therapeutic strategies targeting the inhibition or facilitation of PCD signaling pathways
offer a promising approach for clinical applications in treating neurodegenerative diseases.

Keywords: programmed cell death; neurodegenerative diseases (NDDs); apoptosis

1. Introduction

The Nomenclature of Cell Death Committee has established guidelines dividing cell
death into two distinct categories: accidental cell death (ACD) and programmed cell death
(PCD) [1]. ACD is an uncontrolled cellular process that occurs in response to accidental
injury stimuli, such as necrosis [2]. PCD is essential for maintaining physiological home-
ostasis in mammals by clearing damaged cells, facilitating tissue renewal, and supporting
organismal development, all of which are strictly regulated by intracellular signaling
cascades [3]. The hallmark ultrastructural features of cells undergoing PCD, including
cytoplasmic shrinkage, nuclear condensation, and chromatin fragmentation, were first
observed in 1972, leading to the definition of this form of PCD as apoptosis. These features
are evident in various tissues under both physiological and certain pathological condi-
tions [4]. In the past five decades, novel forms of PCD and their corresponding signaling
cascades have been identified, including necroptosis, pyroptosis, ferroptosis, cuproptosis,
mitochondrial permeability transition (MPT)-driven necrosis, autophagy-dependent cell
death (ADCD), lysosome-dependent cell death (LDCD), parthanatos, alkaliptosis, oxeipto-
sis, NET-release-induced necrotic cell death (NETosis), entotic cell death (ENTosis), and
disulfidptosis [5–7].
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The etiology of neurodegenerative diseases (NDDs) is multifactorial and is associated
with abnormalities in various intracellular processes, such as autophagy, mitochondrial
biogenesis, homeostasis of the endoplasmic reticulum (ER), and epigenetic modifications [8].
The most well-known NDDs include Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy
(SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. As the global
population continues to grow and age, NDDs have become one of the foremost medical
and social concerns worldwide. According to clinical data, the number of people suffering
from Parkinson’s disease (PD) tripled between 1996 and 2016 [9]. The prevalence of AD in
China among those aged over 60 was 1.37%, and more than 50 million people are affected
by AD worldwide [10]. The incidence of HD, ALS, SMA, MS, TBI, and stroke has also been
increasing annually worldwide [11–15]. Notably, stroke remains the second-leading cause
of death worldwide, with the estimated global cost of stroke being approximately 0.66% of
global GDP [16].

The central nervous system (CNS) comprises the brain and spinal cord. Under normal
conditions, PCD signaling cascades are tightly regulated at temporal and spatial levels
to establish neural architecture in the CNS [17]. During normal neural embryonic and
postnatal development, apoptosis controls the survival of embryonic stem cells that have
the appropriate size and shape and have made proper connections with their axons and
neurites [18]. In addition, regulators of apoptosis play a crucial role in cell survival during
developmental neurogenesis, such as the anti-apoptotic Bcl-2 family members myeloid
cell leukemia-1 (MCL-1) and Bcl-2-related gene long isoform (Bcl-XL) [19–21]. However,
aberrant neuronal cell death is a hallmark of the pathology associated with NDDs, and
different PCD pathways interact in the progression of these diseases [22]. In recent years,
numerous clinical trials have focused on PCD pathways to develop therapeutic strategies
for the treatment of NDDs, achieving inspiring progress.

In this review, we provide a comprehensive overview of the signaling pathways
involved in various PCD subroutines. Subsequently, we elucidate the similarities and
differences among these pathways. We further discuss the role of different PCD pathways
in the pathogenesis and progression of NDDs. Finally, we discuss existing and potential
therapeutic strategies focusing on the central regulators of various PCD pathways for the
treatment of NDDs.

2. Forms of Programmed Cell Death
2.1. Apoptosis

There are two distinct pathways that trigger apoptosis: the intrinsic and extrinsic
pathways. The intrinsic pathway, also called mitochondrial or Bcl-2-regulated apopto-
sis, is characterized by non-receptor-mediated initiation and mitochondrial dependence
in response to intracellular stress, such as DNA damage, ER stress, hypoxia, extremely
high concentrations of cytosolic calcium, microtubular alteration, and growth factor de-
privation [23]. After the generation of intracellular stimuli, the expression of BH3 (bcl-2
homolog3r)-only proteins, including BIM, PUMA, BID, BMF, BAD, HRK, BIK, and NOXA,
is upregulated. These BH3-only proteins then bind to anti-apoptotic proteins, such as
Bcl-2, Bcl-XL, and Mcl-1, to liberate and activate pro-apoptotic proteins, such as BAX,
BAK, and BOK [24–26]. Subsequently, pro-apoptotic proteins undergo oligomerization,
causing the dissipation of mitochondrial membrane potential. This leads to the disrup-
tion of mitochondrial outer membrane permeability (MOMP) and the formation of the
mitochondrial permeability transition pore (MPT), allowing apoptogenic factors such as
cytochrome-c and small mitochondria-derived activator of caspase (Smac) to be released
into the cytosol [27–29]. Of note, cytochrome-c binds to the apoptosis protease activating
factor-1 (Apaf-1) and induces the formation of the apoptosome, which recruits procaspase-9
for its cleavage and activation. Next, activated caspase-9 cleaves and activates its down-
stream effectors, including caspase-3, caspase-6, and caspase-7 [30]. The presence of Smac
in the cytosol prevents the activation of inhibitor of apoptosis proteins (IAPs) through direct
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binding, thereby allowing for the initiation of caspase-dependent pathways [31]. These
apoptogenic factors aim to induce the activation of caspase-dependent cascades, resulting
in the cleavage of hundreds of proteins and ultimately apoptosis. Similarly, ER stress
triggered by an imbalance in calcium homeostasis can induce the expression of caspase-12,
which is localized in the ER membrane, and then recruits caspase-7 to the ER membrane
to initiate apoptosis [32–34]. In addition, apoptosis-inducing factors (AIFs) can induce
apoptosis independently of caspase signals [35]. After the cleavage of calcium-dependent
proteases, especially calpain, AIFs are translocated from the inner membrane of mitochon-
dria to the nucleus by nuclear localization signals (NLSs), leading to genome instability
and chromatin fragmentation [36].

The extrinsic pathway, also known as death receptor apoptosis, is induced by the inter-
action between extracellular ligands and death receptors anchored in the cell membrane [37].
The extracellular ligands consist mainly of the tumor necrosis factor (TNF) superfamily, Fas
ligand (FasL), and TNF-related apoptosis-inducing ligand (TRAIL), which bind to death
receptors, such as TNF receptor (TNFR)-1, TNFR-2, Fas, TRAILR1, and TRAILR2 [38]. Upon
the binding of ligands and death receptors, the death receptors undergo oligomerization
and conformational changes to expose their death domain (DD) for the recruitment of
TNF receptor-associated death domain (TRADD) and Fas-associated death domain (FADD)
adaptor proteins, leading to the formation of an intracellular death-inducing signaling com-
plex (DISC) for Fas-FasL and TRAIL-TRAILR, as well as complex II for TNF-TNFR [39,40].
Next, DISC and complex II mediate the cleavage and activation of procaspase-8, initiating
the cleavage of caspase-3 and caspase-7 to induce apoptotic signaling pathways and the
proteolytic degradation of a variety of intracellular proteins [37,39,41]. In some specific
situations, apoptosis cannot be activated by the extrinsic pathways. Therefore, it is neces-
sary for cleaved caspase-8 to interact with BH3-interacting domain death agonist (BID) and
then cleave BID to form activated tBID. tBID subsequently directly activates pro-apoptotic
multi-domain proteins to induce MOMP and mitochondrial apoptosis [17,37,40]. The
mechanisms of apoptotic pathways are depicted in Figure 1.

2.2. Necroptosis

Necroptosis can be regarded as a regulated form of necrosis, first introduced in
2005 [42]. Canonical necroptosis is an alternative to apoptosis because its activation re-
lies on the engagement of apoptotic extracellular ligands and their corresponding death
receptors when the activation of caspase-8 is inhibited by pharmacological agents or vi-
ral inhibitors [43,44]. After the binding of ligands and receptors, such as TNF-TNFR,
FAS-FASL, and TRAIL-TRAILR, DD recruits receptor-interacting serine/threonine protein
kinase 1 (RIPK1) through homotypic binding, and then RIPK1 undergoes autophosphory-
lation [45]. Phosphorylated RIPK1 binds and phosphorylates RIPK3 through shared RIP
(receptor-interacting protein) homology interaction motifs (RHIMs) [46–48]. Subsequently,
mixed-lineage kinase like (MLKL) is phosphorylated by the RIPK1-RIPK3 complex and
then undergoes oligomerization to form a high-molecular-weight complex, termed the
necrosome, in the cytosol [49,50]. Next, the necrosome translocates to the plasma mem-
brane, causing rupture of the plasma membrane, cell swelling, the release of cytokines
and chemokines, as well as potassium efflux, leading to inflammation and immune re-
sponses [51]. Similarly, tumor-cell-derived amyloid precursor protein (APP) can activate the
RIPK1-RIPK3-MLKL axis-induced necroptosis through binding to death receptor 6 (DR6) in
endothelial cells, which enhances the extravasation of circulating tumor cells (CTCs) [52,53].
In addition, viral RNA and DNA or RNA leaked from damaged mitochondria can also
induce necroptosis by activating RHIM-containing Z-dsDNA/dsRNA-binding protein
(ZBP1), which subsequently results in the activation of the RIPK3-MLKL axis [54,55]. Mean-
while, necroptosis can also be triggered by the recognition of toll-like receptor 3 (TLR3)
and TLR4 to double-stranded RNA (dsRNA) from viruses and lipopolysaccharide (LPS)
from bacteria, respectively [56,57]. Upon binding, TLR3 and TLR4 are capable of activating
TIR-domain-containing adapter-inducing interferon-β (TRIF) containing RHIM, ensuing
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the activation of the RIPK3-MLKL axis [43]. Additionally, proinflammatory factors such
as interferons (IFNs) can trigger RIPK1-RIPK3-MLKL axis-mediated necroptosis or ZBP1-
RIPK3-MLKL axis-mediated necroptosis in the absence of RIPK1 via sensing IFN receptors
(IFNRs), suggesting that necroptosis is essential for the induction of inflammation [58].
Figure 1 depicts the activation of various necroptotic pathways.
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tailed description of this content. Abbreviations: AIFs, apoptosis-inducing factors; Apaf-1, apoptosis 
protease activating factor-1; APP, amyloid precursor protein; ASC, apoptosis-associated speck-like 
protein containing a CARD; BH3-only proteins, Bcl-2 homology 3 domain only proteins; BID, BH3-
interacting-domain death agonist; CARD, caspase recruitment domain; CTCs, circulating tumor 
cells; Cyt-c, cytochrome-c; DISC, death inducing signaling complex; DR6, death receptor 6; dsDNA, 
double-stranded DNA; ER, endoplasmic reticulum; FADD, Fas-associated death domain; GSDM, 
gasdermin; IAPs, inhibitors of apoptosis proteins; IFNARs, interferon alpha receptors; IFNs, inter-
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mixed-lineage kinase-like; NK, natural killer; NLR, nucleotide-binding oligomerization domain-like 
receptor; NLRP3, NLR family pyrin domain containing 3; NLS, nuclear localization signal; PD-1, 
programmed death 1; PD-L1, programmed cell death-ligand 1; PRRs, pattern recognition receptors; 
PtpB, protein tyrosine phosphatase B; RHIM, RIP (receptor-interacting protein) homology interac-
tion motifs; RIPK1, serine/threonine protein kinase 1; RIPK3, serine/threonine protein kinase 3; 
Smac, small mitochondria-derived activator of caspase; SpeB, streptococcal pyrogenic exotoxin B; 
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Figure 1. The execution mechanisms of apoptosis, necroptosis, and pyroptosis are described in
detail. (a) Both the intrinsic and extrinsic pathways of apoptosis are illustrated, highlighting the key
signaling molecules and processes involved; (b) the assembly and function of various necroptosome
structures are depicted, emphasizing the key proteins and their roles; (c) the pathways of pyroptosis
execution are presented, detailing the stimuli and their effects on cellular components. The red
line in the image signifies obstruction or limited functionality. Please refer to the original text for
a detailed description of this content. Abbreviations: AIFs, apoptosis-inducing factors; Apaf-1,
apoptosis protease activating factor-1; APP, amyloid precursor protein; ASC, apoptosis-associated
speck-like protein containing a CARD; BH3-only proteins, Bcl-2 homology 3 domain only proteins;
BID, BH3-interacting-domain death agonist; CARD, caspase recruitment domain; CTCs, circulating
tumor cells; Cyt-c, cytochrome-c; DISC, death inducing signaling complex; DR6, death receptor 6;
dsDNA, double-stranded DNA; ER, endoplasmic reticulum; FADD, Fas-associated death domain;
GSDM, gasdermin; IAPs, inhibitors of apoptosis proteins; IFNARs, interferon alpha receptors; IFNs,
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interferons; IL-18, interleukin-18; IL-1β, interleukin-1β; K, potassium; LPS, lipopolysaccharide;
MLKL, mixed-lineage kinase-like; NK, natural killer; NLR, nucleotide-binding oligomerization
domain-like receptor; NLRP3, NLR family pyrin domain containing 3; NLS, nuclear localization
signal; PD-1, programmed death 1; PD-L1, programmed cell death-ligand 1; PRRs, pattern recog-
nition receptors; PtpB, protein tyrosine phosphatase B; RHIM, RIP (receptor-interacting protein)
homology interaction motifs; RIPK1, serine/threonine protein kinase 1; RIPK3, serine/threonine pro-
tein kinase 3; Smac, small mitochondria-derived activator of caspase; SpeB, streptococcal pyrogenic
exotoxin B; TAK1, TGF-β-activated kinase 1; T-BID, truncated BID; TLR3, toll-like receptor 3; TLR4,
toll-like receptor 4; TRADD, TNF receptor-associated death domain; TRIF, TIR-domain-containing
adapter-inducing interferon-β; YopJ, yersinia outer protein J; ZBP1, Z-DNA/RNA-binding protein;
Z-dsDNA/RNA, Z-form double-stranded DNA/RNA.

2.3. Pyroptosis

Pyroptosis, a proinflammatory form of programmed cell death first discovered in
1989, is triggered by a variety of inflammasomes and is executed by the caspase and
gasdermin (GSDM) families [59]. Pyroptotic signaling cascades include the canonical,
non-canonical, caspase-3-induced, caspase-8-induced, and granzyme (GZM)-mediated
pathways [60]. The purpose of the canonical pathway is to respond to pathogen invasion
and facilitate the development of adaptive immune responses [60]. Upon the activation
of pattern recognition receptors (PRRs) by pathogenic exposures, such as bacteria and
viruses, PRRs recruit pro-caspase-1 and apoptosis-associated speck-like protein containing
a caspase recruitment domain (CARD) (ASC) to assemble the inflammasome. After that,
pro-caspase-1 undergoes self-cleavage to form activated caspase-1, leading to the cleavage
of GSDMD and the release of its cytotoxic N-terminal P30 fragment containing the pore
formation domain (PFD) as well as the synthesis of IL-18 and IL-1β [61]. Finally, the
N-terminus inserts into the plasma membrane and oligomerizes to form pores with inner
diameters of approximately 12–14 nm in the plasma membrane, leading to the expulsion of
proinflammatory factors, chromatin degradation, and cell swelling [62]. The non-canonical
pathway is triggered by the infection of Gram-negative bacteria [63]. In mice, caspase-11, or
in humans, caspase-4 and caspase-5, can be activated by bacterial LPS through CARD, after
which they proteolytically hydrolyze GSDMD to release the N-terminus containing PFD.
The N-terminus finally undergoes oligomerization to translocate to the plasma membrane
and cause plasma membrane perforation [64]. Significantly, activated caspase-11, caspase-4,
and caspase-5 can also be packaged into the NLRP3 inflammasome to induce pyroptosis
through cleaving GSDMD and causing the efflux of potassium ions (K+) [65–67]. In addition,
activated caspase-11 can also cause pyroptosis through activating the Pannexin-1-ATP-P2X7
channel and the efflux of potassium ions (K+) [68]. Caspase-4, caspase-5, and caspase-11
participate in the maturation and secretion of IL-18 and IL-1β rather than their synthesis [69].
The protein phosphatase PtpB from Mycobacterium tuberculosis can dephosphorylate
phosphatidylinositol-4-monophosphate and phosphatidylinositol-(4,5)-bisphosphate to
disrupt the localization of the N-terminus of GSDMD in the cell membrane, suggesting a
novel mechanism for the regulation of pyroptosis [70].

The caspase-3-induced pyroptotic pathway has crosstalk with mitochondrial apop-
tosis. The leakage of cytochrome c triggered by cytotoxic chemotherapy is involved in
the formation of the apoptosome, thereby cleaving pro-caspase-3 to cleave GSDME for
the release of its N-terminus containing PFD. Subsequently, the N-terminus of GSDME
undergoes oligomerization and re-localizes to the cell membrane, thus converting intrinsic
apoptosis to pyroptosis or secondary necrosis [71]. Simultaneously, the caspase-8-induced
pyroptotic pathway can be executed by the extrinsic apoptotic pathway. After the formation
of complex II, caspase-8 is activated to cleave GSDMC, releasing its N-terminus containing
PFD. The resulting GSDMC-N fragment translocates to the plasma membrane, converting
extrinsic apoptosis to pyroptosis [72]. In addition, PD-L1 can also convert apoptosis to
pyroptosis by cleaving GSDMC in cancer cells under hypoxic conditions [73]. During the
infection of yersiniosis, the Yersinia effector protein YopJ is able to facilitate the activation
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of caspase-8 and inhibit the activation of TGF-β-activated kinase 1 (TAK1), leading to
the cleavage of GSDMD and the release of its N-terminus containing PFD, causing pore
formation in the cell membrane and pyroptosis [74,75]. Additionally, the cysteine protease
SpeB of Streptococcus can directly drive the proteolytic cleavage of GSDMA to release
the N-terminus containing PFD, resulting in pore formation in the plasma membrane and
pyroptosis [76]. Moreover, granzyme A from cytotoxic lymphocytes and granzyme B from
natural killer (NK) cells can cleave GSDMB and GSDME, respectively, contributing to the
release of their N-terminus and the activation of pyroptosis [77,78]. Meanwhile, GSDMB
can be divided into six isoforms due to alternative splicing, and only GSDMB isoform
3 and isoform 4 are capable of recognizing granzyme A to induce pyroptosis because
isoform 3 and isoform 4 have a belt motif, raising questions regarding the discovery of
GSDMB alternative splicing mechanisms among various diseases [79]. Figure 1 offers a
comprehensive overview of the process of pyroptosis.

2.4. Ferroptosis

The term ferroptosis was first coined in 2012. As the name indicates, ferroptosis refers
to a form of iron-dependent programmed cell death caused by iron overload in cells [80].
Specifically, iron is an essential trace element that maintains intracellular homeostasis, being
involved in the transportation of oxygen, ATP generation, and DNA biosynthesis [81,82].
Under normal conditions, the membrane-bound protein transferrin receptor 1 (TFR1),
which contains two ferric iron molecules, recognizes extracellular transferrin (TF) carrying
ferric iron and imports iron into cells by triggering clathrin-dependent endocytosis of the
entire holo-complex. The ferric iron is then transported into endosomes for reduction to
ferrous iron by the STEAP (six-transmembrane epithelial antigen of the prostate) family
of metalloreductases [83]. Subsequently, ferrous iron is released from the endosome into
the cytosol via natural resistance-associated macrophage protein 2 (NRAMP2), and TFR1
is re-localized to the cell surface to uptake additional TF [84]. Ferritin, an iron-storage
protein, can dynamically modulate the oxidation of intracellular ferrous iron to its ferric
state, which is used in intracellular enzymatic reactions or stored for later use. Meanwhile,
iron-saturated ferritin is degraded by nuclear receptor coactivator 4 (NCOA4)-mediated
autophagy, termed ferritinophagy, to release its iron content [83,85]. Correspondingly, fer-
roportin is the only known iron exporter in mammalian cells, preventing the accumulation
of excessive iron in the cell [86–88].

However, dysregulation of iron metabolism can cause an overload of ferrous iron in
cells, inducing excessive generation of reactive oxygen species (ROS) through the Fenton
reaction or oxidation of iron-binding enzymes. This results in the generation of fatal lipid
peroxidation products, such as PL-hydroperoxide (PLOOH), malonaldehyde (MDA), and
4-hydroxynonenal (4-HNE) [88,89]. Lipid peroxidation is the final executor that induces
cell damage and ferroptosis. In addition, the imbalance between the formation of oxidants
and antioxidants triggers an abnormal redox system, which also contributes to the accumu-
lation of lipid peroxides and ferroptosis. To be more specific, cells have evolved multiple
antioxidant signaling cascades to protect themselves from ferroptosis, such as the cystine–
glutamate antiporter (system Xc−) comprising two subunits, SLC3A2 (solute carrier family
3 member 2) and SLC7A11 (solute carrier family 7 member 11), the glutathione peroxi-
dase 4 (GPX4) pathway, the ferroptosis suppressor protein 1-coenzyme Q10 (FSP1-CoQ10)
pathway, the dihydroorotate dehydrogenase (DHODH)-CoQ10 pathway, and the GTP
cyclohydrolase 1 (GCH1)-tetrahydrobiopterin (BH4) pathway [90–93]. The final products
of the above pathways are glutathione (GSH), CoQ10H2, and BH4, which have ferroptotic
protective effects because they are able to decrease the level of oxidative stress [94]. Con-
versely, dysregulation of the above pathways contributes to the initiation of ferroptosis.
Recently, research identified that cyclic GMP-AMP synthase (cGAS) anchored to the outer
mitochondrial membrane can associate with dynamin-related protein 1 (DRP1) to facilitate
its oligomerization, leading to decreased levels of mitochondrial ROS and avoidance of
ferroptosis [95]. Similarly, sex hormone receptors, such as the estrogen receptor (ER) and
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androgen receptor (AR), can upregulate the expression of phospholipid-modifying enzyme
membrane-associated O-acetyl transferase genes (MBOAT1 and MBOAT2), which can
reshape the cellular phospholipid profile to protect cells from ferroptosis [96]. Additionally,
excessive activation of ferritinophagy and digestion of lipid droplets by autophagy, termed
lipophagy, can contribute to lipid peroxidation and ferroptosis via intracellular iron over-
load and excessive production of free fatty acids, respectively [97–99]. In addition, novel
clues indicate that selective autophagy, clockphagy, and chaperone-mediated autophagy
can modulate the expression of modulators in the redox system to manipulate the process
of ferroptosis [100,101]. Ferroptosis is regulated by various molecules. We summarize
numerous crucial molecules involved in the modulation of cellular iron homeostasis and
ferroptosis in Table 1 and describe the mechanisms of ferroptosis in Figure 2. In general,
discovering novel effectors and mechanisms participating in the modulation of ferroptosis,
or protective patterns of ferroptosis independent of the aforementioned mechanisms, can
help us gain insight into the etiology of various diseases.

Table 1. Key regulators involved in the iron metabolism and ferroptosis.

Modulators Functions Refs.

hepcidin degrading the ferroportin via ubiquitination [102]
IRP1/2 promoting the expression of TFR1 [103]
PCBP1 delivering ferrous iron to ferritin [104]

SLC25A37/8 promoting the absorption of iron [105]
HO1 catalyzing the synthesis of ferrous iron [106]

SLC40A1 assisting the export of iron [107]
SLC39A14 assisting the import of iron [108]
SLC25A28 regulating the generation of ROS [109]

SFXN1 regulating the generation of ROS [110]
PROM2 regulating the storage of iron in ferritin [111]
PHKG2 modulating the oxidative reactions [112]
HMOX1 participating in the synthesis of ferrous iron [113]
SLC11A2 assisting the absorption of iron [87]

CP converting ferrous iron to ferric iron [114]
CISD1/2 participating in the absorption of iron [115,116]

DMT1 controlling the absorption of iron [117]
FBXL5 degrading the IRP1 via ubiquitination [118]
HSF1 regulating the iron metabolism-related genes [119]

HSPA5 binding to GPX4 to prevent its degradation [120]
NRF2 inducing the expression of antioxidant genes [121]
CISD1 alleviating the accumulation of lipid [122]
ALOXs facilitating the lipoxygenase [123]
PEBP1 enhancing the lipid death pathway via 15-LO [124]
NOXs facilitating the generation of ROS [125]

DPP4/CD26 causing the lipid peroxidation [126,127]
VDAC2/3 activating ferroptotic agonist erastin [128]

MUC1 activating GPX4 [129]
GCLC accelerating the synthesis of GSH [130]
GLS2 increasing the ROS production via αKG [131]
CARS inhibiting the generation of GSH [132]

CHAC1 promoting oxidative reactions [133]
LSH promoting SLC7A11 transcription [134]

FADS2 desaturating the free fatty acids [135]
ACSL3 upregulating the lipid droplet biogenesis [136]
ACSL4 shaping cellular composition [137]

LPCAT3 upregulating polyunsaturated free fatty acid [138]
PHGDH upregulating the expression of PHGDH [139]

G6PD preventing oxidative reactions via inhibiting POR [140]
ME1 facilitating the generation of GSH [141]

PHKG2 regulating lipoxygenase enzyme ALOX5 [142]
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Table 1. Cont.

Modulators Functions Refs.

HMGCR increasing GPX4 and CoQ10 biosynthesis [143]
SQLE preventing oxidative via squalene [144]
NRF2 regulating the antioxidant-related genes expression [145]
P53 modulating GPX4 pathway and ROS production [146]

HIF-1α improving the expression of SLC7A11 via PMAN [147]
BACH1 enhancing iron metabolisom-related gene expression [148]
STAT3 enhancing the expression of GPX4 and SLC7A11 [149]
ATF3 restraining the activity of system Xc− [150]
ATF4 facilitating the expression of SLC7A11 [151]

CHOP facilitating the expression of CHAC1 [152]
YAP/TAZ inducing the expression of SLC7A11 [153]

Abbreviation: IRP1/IRP2, iron regulatory protein 1/2; PCBP1, poly(rC)-binding protein 1; SLC25A37/SLC25A38,
mitoferrin 1/2; HMOX1, heme oxygenase 1; SLC40A1, solute carrier family 40 member 1; SLC39A14, solute carrier
family 39 member 14; SLC25A28, mitoferrin 2; SFXN1, sideroflexin 1; PROM2, prominin 2; PHKG2, phosphorylase
b kinase γ-catalytic chain, liver/testis isoform; SLC11A2, natural resistance-associated macrophage protein
2; CP, ceruloplasmin; CISD1/CISD2, CDGSH iron–sulfur domain-containing protein 1/2; ACO1, cytoplasmic
aconitate hydratase; DMT1, divalent metal transporter 1; FBXL5, F-box and leucine-rich repeat protein 5; HSF1,
heat shock factor 1; HSPA5, heat shock 70-kDa protein 5; NRF2, nuclear factor erythroid 2-related factor 2;
ALOXs, arachidonic acid lipoxygenases; PEBP1, phosphatidylethanolamine (PE)-binding protein 1; NOXs,
NADPH oxidases; DPP4/CD26, dipeptidyl peptidase-4; VDAC2/3, voltage-dependent anion channel 2/3;
MUC1, mucin 1; GCLC, glutamate-cysteine ligase catalytic subunit; GLS2, glutaminase 2; CARS, cysteinyl-tRNA
synthetase; CHAC1, cation transport regulator-like protein 1; LSH, lymphoid-specific helicase; SCD, stearoyl-CoA
desaturase; FADS2, fatty acid desaturase 2; ACSL3/4, acyl-CoA synthetase long-chain family member 3/4;
LPCAT3, lysophosphatidylcholine acyltransferase 3; PHGDH, phosphoglycerate dehydrogenase; G6PD, glucose
6-phosphate dehydrogenase; ME1, malic enzyme 1; αKG, α-ketoglutarate; POR, cytochrome P450 oxidoreductase;
ALOX5, arachidonate 5-lipoxygenase; HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase; SQLE, squalene
epoxidase; HIF-1α, hypoxia-inducible factor 1α; BACH1, BTB domain and CNC homolog 1; STAT3, signal
transducer and activator of transcription 3; ATF3/4, activating transcription factor 3/4; CHOP, C/EBP homologous
protein; YAP/TAZ, Yes-associated protein/Transcriptional coactivator with PDZ-binding motif.
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iron-dependent programmed cell death resulting from intracellular iron overload. The figure depicts
the lipid peroxidation induced by dysregulated iron metabolism and the subsequent execution of
ferroptosis; (b) abnormal copper metabolism and accumulation can lead to protein toxicity, mito-
chondrial damage, and cuproptosis. For details, refer to the corresponding section of this article.
Abbreviations: Cu, copper; DSF, disulfiram; ES, elesclomol; FDX1, ferredoxin 1; Fe, iron; NCOA4,
nuclear receptor coactivator 4; NRAMP2 (also known as SLC11A2), natural resistance-associated
macrophage protein 2; ROS, reactive oxygen species; S, sulfur; SLC25A3, solute carrier family 25
member 3; STEAP, six-transmembrane epithelial antigen of prostate; TCA, tricarboxylic acid cycle;
TF, transferrin; TFR1, transferrin receptor 1.

2.5. Cuproptosis

Cuproptosis was first identified in 2022 as a novel form of programmed cell death
caused by abnormalities in systemic copper metabolism [154]. Specifically, copper ions
are essential micronutrients present in all living mammals, especially in humans. They act
as co-factors for enzymes, regulating the activity of various key metabolic enzymes and a
broad range of physiological processes, such as mitochondrial oxidative phosphorylation
(OXPHOS), tyrosine metabolism, neurotransmitter metabolism, redox reactions, extracellu-
lar matrix remodeling, and cell proliferation [7]. Meanwhile, the concentration of copper
ions must be tightly regulated to ensure normal biochemical processes. Regarding systemic
copper metabolism, the uptake of copper ions is mainly mediated by copper transporter
1 (CTR1, also called solute carrier family 31 member 1, SLC31A1) located on the apical
side of the enterocytes in the small intestine. Subsequently, copper ions are translocated to
the other side of enterocytes via copper chaperone antioxidant 1 (ATOX1) for release into
the bloodstream through ATPase copper transporting alpha (ATP7A) and ATPase copper
transporting beta (ATP7B) [155]. In the blood, copper ions prefer to bind with soluble
chaperones, such as ceruloplasmin (CP), serum albumin (SA), transcuprein, histidines,
and macroglobulins, rather than remaining free, and are subsequently transported to the
liver by the portal system [7,155]. Upon absorption by the liver, copper ions bind with
metallothionein 1/2 (MT1/2) and other thiol-rich proteins in a pH-dependent manner
via their cysteine residues for storage or later use [156]. Simultaneously, ATPase copper
transporting beta (ATP7B) in hepatocytes pumps copper ions back into the blood or bile,
targeting specific tissues and organs or preventing the excessive accumulation of copper
ions in the liver, respectively [157,158]. Upon reaching target tissues and organs, copper
ions are internalized into the cytosol of target cells by SLC31A1 and then transported to the
trans-Golgi network (TGN) or nucleus by chaperone antioxidant-1 (ATOX1) to facilitate
the synthesis of cuproenzymes, including lysyl oxidase, tyrosinase, and ceruloplasmin, or
to regulate gene expression related to cell proliferation [7]. In addition, copper ions can
also be transported into mitochondria through the Cu chaperone for the superoxide dis-
mutase (CCS)-superoxide dismutase 1 (SOD1) axis or cytochrome oxidase 17 (COX17) for
detoxification of ROS and oxidative phosphorylation [7,157,159]. Additionally, intracellular
ATP7A and ATP7B are responsible for exporting copper ions to prevent their accumulation
in cells [7].

Nevertheless, abnormal systemic or intracellular copper metabolism, especially dys-
function of modulators, can cause the accumulation of extracellular divalent copper ions
(Cu2+). Cu2+ can form a complex by binding with Elesclomol (ES) or Disulfiram (DSF)
to internalize into the cytosol [154,160]. The cytosolic Cu2+ enters mitochondria and un-
dergoes reduction from Cu2+ to the toxic monovalent copper ion (Cu+) via catalysis by
ionophore ferredoxin 1 (FDX1) [154]. Significantly, Cu2+ is transported from the inner mem-
brane of mitochondria into the mitochondrial matrix via solute carrier family 25 member 3
(SLC25A3), but the mechanism of how Cu2+ crosses from the outer membrane to the inner
membrane of mitochondria remains unclear [161]. Cu+ can attach to fatty acylated proteins
of the tricarboxylic acid (TCA) cycle, further inducing the aggregation of lipoylated pro-
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teins and depletion of iron-sulfur (Fe-S) proteins, resulting in protein toxicity, intracellular
stress, mitochondrial shrinkage, membrane rupture, and, ultimately, cuproptosis [154,162].
Systemic and intracellular copper metabolisms, as well as cuproptosis, are described in
Figure 2.

2.6. Other Forms of PCD

Mitochondrial permeability transition (MPT) was first described in 1976. MPT-driven
necrosis is characterized as a unique form of programmed cell death (PCD), manifesting
necrotic morphology, initiated by specific perturbations of the intracellular microenvi-
ronment such as severe oxidative stress and cytosolic calcium ion (Ca2+) overload [163].
MPT-driven necrosis relies on the activation of cyclophilin D (CYPD) and the formation
of a supramolecular complex termed the permeability transition pore complex (PTPC) in
the intermembrane space (IMS), leading to an abrupt loss of impermeability of the inner
mitochondrial membrane (IMM) to small solutes and a rapid dissipation of mitochondrial
potential [164,165]. The abnormality of mitochondria causes cell swelling, rupture of cell
membranes, and eventual cell death [165]. However, the detailed mechanisms of MPT-
driven necrosis need further investigation. Particularly, several factors, such as BAX, BAK,
BID, dynamin 1-like (DRP1), and p53, can regulate MPT-driven necrosis by manipulating
the activation of CYPD and PTPC formation, indicating crosstalk among intrinsic apoptosis,
mitophagy, the cell cycle, and MPT-driven necrosis [1].

Autophagy is an evolutionarily conserved, intracellular, self-protective mechanism
that maintains energy balance in response to nutrient stress in cells. The activation of
autophagy can also degrade misfolded or aggregated proteins, damaged organelles, and
invading pathogens, thereby maintaining intracellular homeostasis [166,167]. Generally,
autophagy-dependent cell death (ADCD), first observed in 2006, is a distinct form of pro-
grammed cell death (PCD) that occurs due to the abnormal stimulation of autophagy in
specific developmental or pathophysiological contexts and relies on the autophagic ma-
chinery or its components [168,169]. ADCD can be triggered by three distinct mechanisms:
excessive ER-phagy, excessive mitophagy, and autosis [170]. The endoplasmic reticulum
(ER) is the largest organelle in eukaryotic cells, responsible for the folding and trafficking
of proteins that enter the secretory pathway by assembling a complex cell quality-control
network [171]. Stress conditions, such as the unfolded protein response (UPR), lack of
nutrients or oxygen, and pharmacologic stimuli, can induce ER-phagy by interacting with
a series of ER-phagy receptors to remove damaged ER by delivering ER fragments to lyso-
somes [170,172]. However, the continuous degradation of ER fragments by ER-phagy can
cause the excessive formation of autophagosomes, eventually leading to cell death [173,174].
Mitophagy is a conserved intracellular process that ensures mitochondrial quality and
quantity control [175]. Mitophagy is initiated by specific mitochondrial outer membrane
receptors interacting with proteins on the mitochondrial surface, leading to the formation
of autophagosomes surrounding mitochondria to degrade damaged or depolarized mito-
chondria [176]. Nevertheless, excessive mitophagy results in an abnormal mitochondrial
membrane potential and cell death [177]. Autosis was first observed by treating HeLa
cells with the autophagy-specific activator BECN1-derived peptide (Tat-Beclin 1) [178]. Tat-
Beclin 1 can directly cause the perturbation of sodium (Na+) and potassium (K+)-adenosine
triphosphatase (ATPase) circulation, ultimately resulting in changes in autophagic flux and
cell death [179]. Additionally, the process of autosis manifests in a time-dependent manner.
During the early phase of autosis, the number of autophagosomes increases significantly
while focal nuclear concavities occur. Subsequently, focal ballooning of the perinuclear
space (PNS) and the disappearance of subcellular organelles appear in the later phase [180].
Additionally, autophagy is associated with numerous forms of PCD, such as apoptosis,
necroptosis, ferroptosis, and cuproptosis [170,181].
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Lysosomes are dynamic, single-membrane, and heterogeneous organelles that contain
a wide variety of hydrolytic enzymes for the digestion of toxic intracellular components and
damaged organelles, as well as for the termination of signal transduction [182]. Lysosome-
dependent cell death (LDCD), first coined in 2000, is a form of programmed cell death
(PCD) initiated by lysosomal membrane permeabilization (LMP), leading to the leakage of
lysosomal contents into the cytosol, such as proteolytic enzymes of the cathepsin family
and iron [5,183]. Subsequently, these leaked contents engage with apoptotic effectors, such
as the p53 effector DNA damage-regulated autophagy modulator 1 (DRAM1), leading to
mitochondrial outer membrane permeabilization (MOMP) and the activation of caspase-
dependent signaling, eventually causing cell death [5].

Parthanatos, a poly(ADP-ribose) polymerase 1 (PARP1)-dependent form of programmed
cell death (PCD), was first described in 2008 [184]. The accumulation of cytotoxic stimuli,
such as oxidative stress, hypoxia, hypoglycemia, and inflammatory conditions, can cause
PARP1 hyperactivation, resulting in the depletion of nicotinamide adenine dinucleotide
(NAD+) and adenosine triphosphate (ATP), as well as the aggregation of polymers and
poly(ADP-ribosyl)ated proteins at mitochondria, ultimately causing cell death due to mi-
tochondrial membrane dissipation and mitochondrial outer membrane permeabilization
(MOMP) [185].

Alkaliptosis, first unveiled in 2018, is caused by intracellular alkalinization, which
involves the suppression of the NF-κB (nuclear factor κB)-carbonic anhydrase 9 (CA9)
pathway and the ATP6V0D1-STAT3 pathway [186,187]. This dysregulation of intracellular
pH results in cell death.

Oxeiptosis, first termed in 2018, is an oxygen radical-induced form of programmed
cell death (PCD) initiated by the hyperactivation of the KEAP1-PGAM5-AIFM1 signaling
cascade [188].

Disulfidptosis is a novel form of programmed cell death (PCD), defined in 2023,
initiated by glucose starvation in cells with high SLC7A11 expression [189]. High uptake of
cystine, coupled with a shortage of nicotinamide adenine dinucleotide phosphate (NADPH)
supply, results in NADPH depletion, aberrant disulfide binding to actin cytoskeleton
proteins, actin network collapse, and subsequent cell death [189].

NETs are extracellular net-like DNA–protein structures released by cells in response to
various cellular stresses, including pathogen infections or injuries. They can also be formed
by other leukocyte types, such as mast cells, eosinophils, and basophils, as well as epithelial
cells and cancer cells [5]. The term NETosis was first coined in 2004 and was observed in
neutrophils upon exposure to phorbol myristate acetate or interleukin 8 (IL-8), describing
the process of NET generation [190]. At the molecular level, NETosis is a dynamic process
involving multiple signaling pathways, such as NADPH oxidase-mediated ROS production,
protein kinase C (PKC) isoform-initiated signaling cascades, autophagy, the release and
translocation of granular enzymes, and the trafficking of N-GSDMD from the cytosol
to the nucleus. This leads to various abnormal biological processes, including histone
citrullination, chromatin decondensation, the destruction of the nuclear envelope, the
release of chromatin fibers, and the formation of pores in the plasma membrane [191–195].

ENTosis, first introduced in 2007, is characterized by one cell inserting itself into a
neighboring cell, a process termed the cell-in-cell (CIC) pattern, ultimately causing the death
of the invading cell [196]. Glucose starvation, matrix deadhesion, and mitotic stress can
induce ENTosis through cell adhesion and cytoskeletal rearrangement pathways [196–200].
Although the underlying mechanisms of ENTosis are not well understood, adhesion pro-
teins such as cadherin 1 (E-cadherin), catenin alpha 1 (CTNNA1), and microtubules play a
central role in the formation of adherent junctions between cells, leading to the generation
of CIC structures and cell death [5]. The aforementioned forms of PCD are described in
Figures 3 and 4.
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cell death induced by DNA damage, resulting in the overactivation of PARP1; (e) alkaliptosis is a 
form of cell death induced by intracellular alkalinization caused by JTC-801, an opioid receptor-like 
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Figure 3. An overview of the mechanisms of various other forms of PCD. (a) MPT-driven necrosis
is mediated by the activation of CYPD and the formation of PTPC, leading to a loss of selective
permeability of the inner mitochondrial membrane, resulting in cell swelling and membrane rupture;
(b) oxeiptosis is a form of cell death induced by oxygen radicals and mediated by the hyperactiva-
tion of the KEAP1-PGAM5-AIFM1 signaling cascade; (c) LDCD is a form of cell death caused by
changes in lysosomal membrane permeability, resulting in the leakage of lysosomal contents and
subsequent alterations in mitochondrial outer membrane permeability; (d) parthanatos is a form of
cell death induced by DNA damage, resulting in the overactivation of PARP1; (e) alkaliptosis is a
form of cell death induced by intracellular alkalinization caused by JTC-801, an opioid receptor-like 1
(ORL1) receptor selective antagonist [5]; (f) in cells with high SLC7A11 expression, increased cystine
uptake leads to NADPH depletion, abnormal disulfide bond formation, cytoskeletal collapse, and
disulfidptosis; (g) aberrant autophagy leads to excessive ER-phagy, excessive mitophagy, and ADCD.
For details, refer to the corresponding section of this article. The red line in the image signifies
obstruction or limited functionality. Please refer to the original text for a detailed description of this
content. Abbreviations: ADCD, autophagy-dependent cell death; AIFM1, apoptosis-inducing factor
mitochondria-associated 1; ATP, adenosine triphosphate; ATP6V0D1, ATPase H+ transporting V0
subunit d1; ATPase, adenosine triphosphatase; CA9, carbonic anhydrase 9; CYPD, cyclophilin D;
Cyt-c, cytochrome c; DRAM1, DNA damage-regulated autophagy modulator 1; DRP1, dynamin-
related protein 1; ER, endoplasmic reticulum; Fe, iron; IMS, intermembrane space; K, potassium;
KEAP1, kelch-like ECH-associated protein 1; LDCD, lysosome-dependent cell death; LMP, lysosomal
membrane permeabilization; Mito, mitochondria; MOMP, mitochondrial outer membrane perme-
abilization; MPT, mitochondrial permeability transition; Na, sodium; NADH, nicotinamide adenine
dinucleotide; NADPH, nicotinamide adenine dinucleotide phosphate; NF-κB, nuclear factor κB;
PARP1, poly(ADP-ribose) polymerase 1; PGAM, phosphoglycerate mutase; PGAM5, PGAM family
member 5; pH, potential of hydrogen; reticulophagy, selective autophagy of the endoplasmic retic-
ulum; PINK1, PTEN-induced kinase 1; PTPC, permeability transition pore complex; ROS, reactive
oxygen species; S, sulfur; SLC7A11, solute carrier family 7 member 11; STAT3, signal transducer and
activator of transcription 3; UPR, unfolded protein response.
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ing cells through adhesion proteins. For details, refer to the corresponding section of this article. 
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Figure 4. The pathways of NETosis and Entosis are depicted. (a) Cellular stress responses induce
autophagy, granzyme release and translocation, chromatin decondensation, and cell membrane
pore formation, leading to the release of web-like DNA–protein structures and resulting in NE-
Tosis; (b) cells undergo entosis, an intracellular cell death process, by inserting themselves into
neighboring cells through adhesion proteins. For details, refer to the corresponding section of
this article. Abbreviations: Ca, calcium; CTNNA1, catenin alpha 1; ENTosis, entotic cell death;
ERK, extracellular signal-regulated kinase; GSDM, gasdermin; GSDMD-N,Gasdermin D N-terminal;
LC3, microtubule-associated protein 1 light chain 3; LPS, lipopolysaccharide; MEK, MAP kinase
kinase; MPO, myeloperoxidase; mtDNA, mitochondrial DNA; mtROS, mitochondrial reactive oxygen
species; NADPH, nicotinamide adenine dinucleotide phosphate; NE, neutrophil elastase; NETosis,
neutrophil extracellular trap cell death; NETs, neutrophil extracellular traps; PAD4, peptidylarginine
deiminase 4; PKC, protein kinase C; RAF, RAF proto-oncogene serine/threonine-protein kinase; TLR,
toll-like receptor.

2.7. Characteristics of Different PCD Subroutines

Various PCD subroutines cause the disintegration of cells through distinct signaling
cascades, resulting in differing morphological changes and immunological consequences.
PCD can be classified into immunogenic cell death (ICD), also known as lytic forms
of cell death, and tolerogenic cell death (TCD), also known as non-lytic forms of cell
death [201,202]. ICD induces the activation of the immune system, whereas TCD does
not provoke any inflammatory or immune reactions. ICD elicits acute or chronic inflam-
matory responses by releasing DAMPs from dead or dying cells into extracellular spaces.
These DAMPs are subsequently recognized by pattern recognition receptors (PRRs) or
other receptor systems expressed by neighboring macrophages and other bystander cells,
triggering the release of proinflammatory cytokines [203]. Additionally, DAMPs play a
fundamental role in regulating the balance between ICD and TCD [5]. ICD not only pro-
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motes tissue regeneration and organ development but also contributes to the progression
of inflammation in numerous human diseases, especially neurodegenerative disorders.
Therefore, agents that inhibit PCD may be critical components of future clinical therapeutic
strategies. We summarize the immune and morphological hallmark features and major
inhibitors of various PCD modalities in Table 2.

Table 2. Hallmark features of aforementioned PCD modalities.

Forms Immune Features Morphological Features Major
Inhibitors Refs.

Apoptosis TCD

Apoptotic bodies formation;
Nuclear condensation;

Plasma membrane blebbing;
Cell shrinkage.

Z-VAD-FMK;
Q-VD-OPh;

Z-VAD (OH)-FMK.

[4]
[17]

Necroptosis ICD

Cell swelling and oncosis
Rupture of plasma membrane;

Swelling of organelles
Chromatin condensation.

Nec-1;
GSK872;

NSA;
HS-1371.

[46]
[49]

Pyroptosis ICD

Lack of cell swelling;
Rupture of plasma membrane;

Cell bubbling;
Chromatin condensation.

Ac-YVAD-cmk;
VX765;

Ac-FLTD-CMK.

[67]
[204]

Ferroptosis ICD

Smaller mitochondria;
Rupture of mitochondrial membrane;

Decreased mitochondrial cristae;
Normal nucleus.

Deferiprone;
Ferrostatin-1;

Alogliptin;
Selenium;

CoQ10;
Vildagliptin;
Vitamin E.

[80]
[86]
[205]

Cuproptosis ICD

mitochondrial condensation;
Rupture of plasma membrane;

ER damage;
Chromatin condensation.

NSC689534
EMeramide

Penicillamine
AT-VI

[7]
[154]

MPT-driven
necrosis ICD

Plasma membrane rupture;
Swelling of organelles;

Lack of inter-nucleosomal DNA
fragmentation;

Depletion of ATP.

SfA [5]

ADCD ICD Autophagic vacuolization. Chloroquline;
Spactin-1. [168]

LDCD ICD Rupture of lysosome and plasma
membrane.

NAC;
CA-074Me [1]

Parthanatos ICD
Chromatin condensation;

Large DNA fragmentation;
Loss of cell swelling.

BYK204165;
AG-14361;
Iniparib.

[184]
[185]

Oxeiptosis TCD Apoptosis-like morphology. NAC. [188]

Alkaliptosis ICD Necrosis-like morphology.
NAC;

CAY10657;
SC514.

[5]

Disulfidptosis ICD

Cell shrinkage;
Nuclear condensation;

Formation of aberrant disulfide bonds
between actin cytoskeleton proteins;

Chromatin condensation.

GLUT inhibitor [6]
[189]
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Table 2. Cont.

Forms Immune Features Morphological Features Major
Inhibitors Refs.

NETosis TCD or ICD
Rupture of plasma membrane and

nuclear membrane;
Release of chromatin fragments.

lactoferrin;
DNase;

Cl-amidine.

[190]
[206]

ENTosis TCD or ICD Formation of cell-in-cell structure. C3-toxin;
γ-27632 [196]

Abbreviations: MPT, mitochondrial permeability transition; ADCD, autophagy-dependent cell death; LDCD,
lysosome-dependent cell death; NETosis, neutrophil extracellular trap cell death; ENTosis, entotic cell death;
ICD, immunogenic cell death; TCD, tolerogenic cell death; ER, endoplasmic reticulum; AT-VI, ammonium
tetrathiomolybdate (VI); Nec-1, necrostatin-1; GLUT inhibitor, glucose transporter 1 inhibitor; NSA, necrosulfon-
amide; SfA, sanglifehrin A.

3. PCD in NDDs
3.1. PCD in AD

Alzheimer’s disease (AD), first described by Alois Alzheimer in 1906, is the primary
cause of dementia. It has now become one of the most expensive, lethal, and burden-
some diseases, with huge implications for individuals and society [207]. The onset of
AD is relatively insidious, characterized by substantial progressive cognitive impairment
and memory loss associated with age, impacting daily life functionality [208]. Amyloid
precursor protein (APP) is widely present in the endoplasmic reticulum (ER) of neurons
and glial cells, mediating neurotransmitter release, cell-to-cell adhesion, and neuronal
signaling [209]. The cleavage of APP by α-secretase and γ-secretase produces non-toxic,
soluble, and neuroprotective APPα peptides, whereas APP cleaved by β-secretase and
γ-secretase produces neurotoxic amyloid β (Aβ) oligomers [210]. The aggregation of Aβ

oligomers between nerve cells causes the formation of Aβ plaques, leading to neuronal cell
death, particularly in the hippocampus [17]. Meanwhile, type 2 microtubule-associated
protein (Tau) is expressed in neurons, astrocytes, and oligodendrocytes and is responsible
for stabilizing microtubule structures by directly binding to them [211]. However, hy-
perphosphorylation of Tau due to abnormal post-translational modifications leads to the
dissociation of microtubules and the aggregation of neurotoxic Tau proteins [212]. Aβ

deposition and Tau aggregation facilitate the generation of neurofibrillary tangles (NFTs) in
the cortex, leading to the progression of AD [213]. Generally, the formation of Aβ plaques,
Tau aggregation, and NFT formation in neuronal cells are primary features of AD.

The effectors and signaling cascades of programmed cell death (PCD) play an essential
role in the onset and progression of Alzheimer’s disease (AD). Specifically, the formation
of the neurotoxic Aβ peptide can also be mediated by caspase-3 instead of β-secretase and
γ-secretase, and members of the caspase superfamily can be activated by Aβ [214]. During
NFT formation, anti-apoptotic factor expression is restrained, while proapoptotic protein
levels are elevated via p53-dependent transcriptional upregulation [214,215]. Extracellular
Aβ deposition can be recognized by apoptotic death receptors, leading to the activation of
extrinsic apoptotic pathways [216]. Intracellular Aβ can insert into the mitochondrial outer
membrane, leading to the formation of the mitochondrial permeability transition (MPT) and
subsequent leakage of cytochrome c, causing mitochondrial apoptosis in neurons [192]. Aβ

in the endoplasmic reticulum (ER) can also cause ER stress and initiate caspase-12/caspase-7-
induced apoptosis in neurons [217]. Additionally, MAPK, JNK, BDNF-TrkB-CREB, JAK-STAT,
PI3K-Akt-mTOR, and GSK-3β pathways are involved in the formation and aggregation of
Aβ, as well as the hyperphosphorylation and aggregation of Tau through interactions with
apoptotic signaling pathways [214]. Concurrently, the necroptotic RIPK1-RIPK3 complex
facilitates the formation of Aβ structures, aiding in the translocation of Aβ to the cell surface
and its aggregation [218]. Aβ plaques can stimulate microglia to secrete inflammatory factors,
including TNF-α, thereby inducing the pyroptosis of neurons [219]. Hyperphosphorylated
Tau can simultaneously activate necroptosis and the NF-κB pathway, contributing to the
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formation of NFTs and cytokine storm in microglia [220]. Similarly, Aβ and hyperphospho-
rylated Tau mediate the activation of the NLPR3-caspase 1-GSDMD axis and the release of
caspase-1, IL-1β, and IL-8, leading to the activation of pyroptosis and formation of NFTs,
ultimately causing chronic inflammation in microglia [221–223]. Notably, the effectors of
ferroptotic antioxidant signaling cascades exhibit decreased expression in the neurons of
AD patients, suggesting that ferroptosis may be a significant mechanism in AD [224]. Iron
overload in the brain can exacerbate the production and accumulation of Aβ by enhancing
the activity of β-secretase [225]. Moreover, Aβ can bind to ferrous iron and subsequently
initiate lipid peroxidation and ferroptosis via the Fenton reaction [225]. Additionally, ferric
iron can directly bind to Tau, causing its hyperphosphorylation and accumulation, along with
increased expression of HO1 [226,227]. Comparatively, abnormal accumulation or deficiency
of copper ions due to dysregulation of copper metabolism can also be observed in specific
areas of the brain in AD patients [224]. A molar ratio of Cu2+ to Aβ oligomers of 0.25:1
can facilitate Aβ plaque formation [228] and can also be associated with the Tau R1 peptide
to regulate Tau aggregation, while the Tau R2 peptide can reduce Cu2+ to Cu+ to induce
cuproptosis [7]. Cu2+ can also trigger the NF-κB signaling pathway, increasing the release of
inflammatory factors in microglia and impairing the brain’s ability to remove Aβ peptides
by reducing the expression of lipoprotein receptor-related protein 1 (LRP1) [229,230]. Aβ

oligomers in the mitochondria can activate CYPD by directly binding, causing mitochondrial
perturbation and potentially activating MPT-driven necrosis in the neurons of the temporal
cortex and hippocampus [231,232]. The accumulation of autophagosomes and lysosomes,
along with higher expression of autophagy-related genes associated with increased levels of
Aβ, has been observed in hippocampal CA1 pyramidal neurons and other neurons, eventu-
ally leading to cell death [233,234]. Aβ peptides in the hippocampus and microglia can also
induce nitric oxide (NO) production, triggering DNA damage and PARP1 activation, poten-
tially resulting in Parthanatos, neuroinflammation, and alterations in hippocampal synaptic
integrity [235,236]. During the progression of AD, circulating neutrophils in the peripheral
blood can be recruited to the vessel walls of the CNS via the LFA-1 β2 integrin–ICAM-1
complex released from cerebral endothelial cells. Subsequently, β2 integrins are activated,
causing neutrophil arrest and the formation of NETs, resulting in damage to the blood–brain
barrier, which is positively associated with Aβ depositions [237]. Figure 5 illustrates various
PCD modalities in AD.

3.2. PCD in PD

Parkinson’s disease (PD), first described by James Parkinson in 1817, is a complex,
progressive, and multisystem neurodegenerative disease with a range of causes and clinical
presentations, elicited by the combined effects of environmental and genetic factors [238].
Clinical syndromes of PD include pathological motor features, such as a slowly progressive
asymmetric resting tremor, cogwheel rigidity, and bradykinesia, as well as non-motor features,
including anosmia, constipation, depression, sleep behavior disorder, autonomic dysfunction,
pain, cognitive decline, and psychiatric symptoms [239]. α-synuclein (αSyn), consisting of
amphipathic alpha-helical repeats, is an abundant neuronal protein enriched at synapses
and mediating neurotransmission [240]. Pathologically, αSyn can undergo conformational
changes capable of aggregation due to mutations in its encoding gene Alpha-synuclein
(SNCA). Aggregated αSyn proteins then act as a major component of Lewy bodies and
Lewy neurites, which are typical hallmarks of PD [241]. Significantly, Lewy bodies contain
hundreds of other proteins and dysmorphic organelles, including lysosomes and mitochon-
dria, packaged by abundant lipid membranes [242]. Additionally, the loss of dopamine
neurotransmission due to the death of dopaminergic neurons projecting from the substantia
nigra pars compacta to the caudate-putamen in the striatum is another leading cause of
PD [241]. Furthermore, mutations in genes responsible for maintaining mitochondrial quality
in neuronal cells, such as parkin RBR E3 ubiquitin protein ligase (PRKN), leucine-rich repeat
kinase 2 (LRRK2), PTEN-induced kinase 1 (PINK1), and Parkinsonism-associated deglycase
(PARK7), are associated with inherited PD [243].
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(a) Various forms of programmed cell death play roles in the pathogenesis and progression of AD,
including their effects on Tau protein hyperphosphorylation, Aβ plaque formation, and neuronal cell
death; (b) in PD, various forms of PCD induce dopaminergic neuronal loss and death by promoting
αSyn aggregation, leading to mitochondrial dysfunction and neuroinflammation. (c) In HD, mHTT
induces mitochondrial dysfunction and neuroinflammation by promoting the expression of pro-
apoptotic factors and activating necroptosis and ferroptosis. Additionally, the aggregation of mHTT
proteins is associated with impaired autophagy, further exacerbating neuronal damage. For details, re-
fer to the corresponding section of this article. The red line in the image signifies obstruction or limited
functionality. Please refer to the original text for a detailed description of this content. Abbreviations:
AD, Alzheimer’s disease; Akt, protein kinase B; APP, amyloid precursor protein; Aβ, amyloid β; BAX,
Bcl-2 associated x-protein; Bcl-2, B-cell lymphoma-2; BDNF, brain-derived neurotrophic factor; BIM,
Bcl-2 interacting mediator of cell death; CGA, cytosine-guanine-adenine triplet; CREB, cAMP-response
element binding protein; Cu, cuprum; CYPD, cyclophilin D; Cyt-c, cytochrome-c; ER, endoplasmic
reticulum; Fe, ferrum; GPX4, glutathione peroxidase 4; GSDMD, gasdermin-D; GSK-3β, glycogen
synthase kinase 3β; HD, Huntington’s disease; ICAM-1, intercellular adhesion molecule-1; IL-18,
interleukin-18; IL-1β, interleukin-1β; JAK, janus kinase; JNK, c-Jun N-terminal kinase; LFA-1, lympho-
cyte function-associated antigen 1; LRP1, low-density lipoprotein receptor-related protein 1; LRRK2,
leucine-rich repeat kinase 2; MAPK, mitogen-activated protein kinase; mHTT, mutant huntingtin;
MLKL, mixed lineage kinase domain-like protein; MOMP, mitochondrial outer membrane permeabi-
lization; MPT, mitochondrial permeability transition; mTOR, mammalian target of rapamycin; NET,
neutrophil extracellular traps; NFTs, neurofibrillary tangles; NF-κB, nuclear factor κB; NLRP3, NLR
family pyrin domain containing 3; NLR, nucleotide-binding oligomerization domain-like receptor;
NO, nitric oxide; PARK7, parkinsonism associated deglycase; PARP1, poly(ADP-ribose) polymerase
1; PCD, programmed cell death; PD, Parkinson’s disease; PI3K, phosphoinositide 3-kinase; PINK1,
PTEN induced kinase 1; polyQ, polyglutamine; PRKN, parkin RBR E3 ubiquitin protein ligase; RIPK1,
receptor-interacting serine/threonine-protein kinase 1; RIPK3, receptor-interacting serine/threonine-
protein kinase 3; ROS, reactive oxygen species; SNCA, alpha-synuclein; αSyn, α-synuclein; STAT,
signal transducer and activator of transcription; Tau, microtubule-associated protein Tau; TNF-α,
tumor necrosis factor-α; TrkB, tropomyosin receptor kinase B.
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In Parkinson’s disease (PD), intrinsic apoptosis is the predominant driver of dopamin-
ergic neuronal death. Numerous pieces of evidence suggest that mutated PRKN, LRRK2,
PINK1, and PARK7 localize in the outer mitochondrial membrane of Lewy body-positive
neurons and can cause the disruption of mitochondrial outer membrane permeability
(MOMP) and the formation of mitochondrial permeability transition (MPT), ensuing leak-
age of cytochrome c and activation of intrinsic apoptosis [243,244]. Additionally, obser-
vations of brain tissue from PD patients illustrate the abnormally increased expression of
caspase 3 and BAX, along with reductions in Bcl-2 superfamily protein levels, which are
associated with the upregulation of p53 [245–247]. The aggregation of αSyn in dopaminer-
gic neurons can disrupt mitochondrial homeostasis, making dopaminergic neurons prone
to apoptosis [248]. Meanwhile, microglial neuroinflammation in PD is induced by the
formation of αSyn-derived NLRP3 inflammasomes and pyroptosis in dopaminergic neu-
rons [249]. Mutated LRRK2 can also induce the activation of gasdermin D (GSDMD) to
facilitate the release of reactive oxygen species (ROS) and necroptosis [250]. In the post-
mortem substantia nigra of individuals with PD, the expression of receptor-interacting
protein kinase 1 (RIPK1), RIPK3, and mixed-lineage kinase domain-like protein (MLKL)
is elevated, and mutated LRRK2 proteins are positively associated with the activation of
MLKL and necroptosis [251,252]. Notably, the induction of ferroptosis is highly synchro-
nized with the progression of PD. Ferric iron and αSyn coexist in the Lewy bodies of PD
patients, and ferric iron is essential for the aggregation of αSyn [253,254]. Iron accumula-
tion in the brain can activate microglia to release proinflammatory cytokines and cause
oxidative stress, leading to the ferroptosis of dopaminergic neurons [255]. Comparatively,
the N-terminal of αSyn contains a copper-binding site, and abnormally increased or de-
creased copper concentrations are associated with the progression of PD [7,256]. Moreover,
an independent study illustrated that the ablation of cyclophilin D (CYPD) in PD-linked
αSyn mutant transgenic mice delayed disease onset and extended lifespan, suggesting
that CYPD may induce MPT-driven necrosis to regulate PD development [257]. The acti-
vation of autophagy and dysregulation of lysosomes in dopaminergic neurons can also
be observed in PD patients [258,259]. The activation of poly (ADP-ribose) polymerase 1
(PARP1) can increase the neurotoxicity of αSyn by changing its conformation, inducing
parthanatos [260]. The different PCD modalities in PD are comprehensively described in
Figure 5.

3.3. PCD in HD

Huntington’s disease (HD), first described by George Huntington in 1872, is an au-
tosomal dominantly inherited neurodegenerative disorder characterized by progressive
motor, behavioral, and cognitive decline with high mortality [261]. The huntingtin (HTT)
protein is present in spindle poles and microtubules, regulating cell division, ciliogene-
sis, endocytosis, transcription, vesicular transport, and autophagy [262]. The pathology
of HD is monogenic and characterized by the production of mutant HTT proteins with
an abnormally long polyglutamine repeat due to CAG trinucleotide repeat expansion in
the HTT gene on chromosome 4, which eventually results in the aggregation of mutant
huntingtin (mHTT) proteins in neurons and glial cells, particularly GABAergic and motor
neurons [262]. As HD progresses, significant neuronal death can be observed in cortical,
thalamic, and hypothalamic areas and even the entire brain, along with atrophy of the basal
ganglia [263].

mHTT proteins can significantly facilitate the expression of pro-apoptotic factors,
such as BIM and BAX, and apoptosis, while loss of BIM can decrease the amounts of
mHTT proteins and neuronal cell death, indicating that pro-apoptotic factors potentially
participate in the generation of mHTT proteins [264–266]. Additionally, cleaved caspase-3
can cleave mHTT proteins to produce more neurotoxic fragments that translocate into
the nucleus and subsequently interact with different transcription factors, such as p53,
eventually causing mitochondrial disruption, while wild-type (WT) HTT protein can pre-
vent caspase-3 activation [267–269]. Meanwhile, mHTT proteins can cause mitochondrial
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dysfunction and the subsequent release of cytochrome c [270,271]. Moreover, a study
confirms that mHTT proteins have the potential to activate receptor-interacting protein
kinase 1 (RIPK1) and necroptosis in specific neurons, leading to neuroinflammation and
the progression of HD [272]. Interestingly, the levels of caspase-1 and NLRP3 are intensely
elevated in striatal spiny projection neurons and in parvalbumin interneurons, deterio-
rating the symptoms of HD [273]. Increased levels of toxic iron in the brain contribute to
the HD process due to increased levels of reactive oxygen species (ROS) and depletion
of glutathione peroxidase 4 (GPX4) in spinal motor neurons, showing the significant role
of ferroptosis in HD progression [274,275]. Similarly, the abnormal elevation of copper
concentrations in the brain contributes to the onset and progression of HD, and the wild-
type (WT) HTT protein has two potential copper-binding residues [276]. Additionally, a
similar scenario can be seen in HD, where the accumulation of mHTT is associated with
attenuated autophagy [277]. Various PCD modalities in AD, PD, and HD are described
in Figure 5. As shown in Figure 5, various PCD modalities are described in the context
of HD.

3.4. PCD in ALS, SMA and MS

Amyotrophic lateral sclerosis (ALS), first described by Jean Martin Charcot in 1869,
is a fatal neuromuscular disease characterized by progressive muscle weakness and at-
rophy due to the loss of both upper motor neurons (UMNs) and lower motor neurons
(LMNs). This leads to patients experiencing dysphagia, dysarthria, and limb weakness,
eventually dying from respiratory complications [278]. ALS can be classified into two
types: familial ALS, which constitutes 10 to 15% of cases and is inherited, and sporadic
ALS, which constitutes the remaining (approximately 85%) of cases [12]. Pathologically,
ALS-associated genetic signatures vary in frequency, but the most common mutations
occur in four genes: chromosome 9 open reading frame 72 (C9ORF72), TAR DNA-binding
protein (TARDBP), superoxide dismutase 1 (SOD1), and fused in sarcoma/translocated
in liposarcoma (FUS). These mutations can impair various intracellular functions and
form protein aggregations, which accelerate UMN and LMN loss and contribute to the
onset and progression of most ALS cases [279]. Spinal muscular atrophy (SMA), first
identified by William R. Kennedy in 1966, is an autosomal recessive, progressive, and
lethal neuromuscular disorder characterized by the degeneration of alpha motor neurons
in the spinal cord [280].

Spinal muscular atrophy (SMA) can be clinically classified into four grades of severity
(SMA I, SMA II, SMA III, and SMA IV) according to age of onset and motor function
achieved [281]. Clinical hallmarks of SMA include muscular dystrophy, fasciculations, al-
tered reflexes, joint contractures, dysphagia, dysarthria, and respiratory complications [282].
Survival motor neuron (SMN) protein is involved in the biogenesis of small nuclear RNA
(snRNA) and ribonucleoproteins (snRNPs), which act as major components of the pre-
mRNA splicing machinery [283]. More than 95% of SMA cases exhibit a homozygous
deletion or point mutation in exon 7 of the SMN1 gene, leading to the loss of SMN pro-
duction [284]. Additionally, SMN2, a paralogous copy of SMN1, has a single-nucleotide
difference in exon 7 compared with SMN1, resulting in the alternative splicing of exon 7 in
transcripts and the expression of only 5–10% of full-length functional SMN protein [285].
The copy number of SMN2 is inversely proportional to the age of onset and severity of
SMA [286].

Multiple sclerosis (MS) is an immunological disease and a neurodegenerative con-
dition that causes chronic inflammation and acute inflammatory lesions in the central
nervous system (CNS), eventually resulting in tissue damage and disability [287]. MS
often occurs in young populations, and the clinical manifestations of MS patients are
highly variable, including optic neuritis, weakness or changes in sensation in the body,
dizziness, memory or cognitive impairment, dysregulation of bladder control, and de-
pression or anxiety [288]. MS can be divided into three representative types according to
the onset of recurring clinical symptoms followed by total or partial recovery: relapsing–
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remitting MS (RRMS), primary progressive MS (PPMS), and secondary progressive MS
(SPMS). These types are influenced by factors, such as low uptake of vitamin D, low
levels of sunlight exposure, Epstein-Barr virus (EBV) infection, and genetic predisposi-
tion [288]. The two pathologic hallmarks of MS are axonal degeneration and neuronal
cell death, which are induced by oxidative stress and mitochondrial dysfunction in active
MS lesions [289,290].

Research has discovered that the expression of pro-apoptotic factors and the caspase
superfamily is significantly elevated in the motor neurons of ALS and SMA patients,
along with abnormally low levels of anti-apoptotic factors [291–293]. Meanwhile, apop-
tosis is widely induced in astrocytes, microglia, oligodendrocytes, and neurons in MS
lesions, contributing to the progression of MS [294]. Specifically, mutant SOD1 can
bind to the Bcl-2 anti-apoptotic factor, suppressing its activity [295]. Mutations in a
highly conserved region of TARDBP can cause the formation of mutant forms of TAR
DNA-binding protein 43 (TDP-43), which can induce neural apoptosis [296]. Loss of
SMN contributes to the activation of p53 and JNK signaling pathways, subsequently
inducing apoptosis [297,298]. Additionally, the expression of RIPK1 and RIPK3, as well
as the formation of necrosomes, is enhanced in pathological tissues of SOD1 (G93A) ALS
transgenic mice [299,300]. A similar scenario is observed in the neuronal cells of cortical
lesions in the human MS brain [301]. Furthermore, an independent study identified that
the knockout (KO) of RIPK3 can significantly increase the survival and motor function
of SMN deletion mice [302].

The elevated formation of inflammasomes, expression of IL-1β and IL-18, and exces-
sive cleavage of GSDMD have been reported in amyotrophic lateral sclerosis (ALS) and
multiple sclerosis (MS) cases, indicating a crucial role for pyroptosis in the neuroinflamma-
tion and development of ALS [67,303,304]. Studies have also suggested that dysregulation
of iron and copper homeostasis, as well as excessive reactive oxygen species (ROS) produc-
tion, can be observed in the brains of ALS and MS patients, which may induce ferroptosis
and cuproptosis, leading to neuronal damage [17,305–308]. Furthermore, several stud-
ies have revealed that cyclophilin D (CYPD) and mitochondrial permeability transition
(MPT)-driven necrosis may contribute to the pathogenesis of ALS and MS. For example,
mutant SOD1 can interact with CYPD to cause CYPD hyperactivation, thereby inducing
the formation of mitochondrial permeability transition pore (mPTP) [309]. The activation
of CYPD and formation of mPTP can also be observed in the axonal damage occurring
during MS, which weakens the resistance to reactive oxygen and nitrogen species, thereby
mediating axonal damage [310]. In addition, FUS can be recruited by PARP-1, activated
by DNA damage, to stimulate the synthesis of long poly (ADP-ribose) (PAR) chains,
indicating a role for parthanatos in ALS [311]. C9ORF72 deficiency or mutations in the
brains of ALS patients may exacerbate the accumulation of DNA damage and PARP1
overactivation, leading to the activation of parthanatos [312]. Excessive PARP1 hyperacti-
vation and parthanatos can also be detected in oligodendrocytes, astrocytes, and microglia
or macrophages in the active areas of brain lesions in MS patients [313]. The abnormal
accumulation of autophagosomes in the neuronal cells of ALS, SMA, and MS patients has
been reported. The hallmark of autophagy-dependent cell death (ADCD) is the excessive
formation of autophagosomes, revealing that ADCD is another form of neuronal death
in the context of ALS [314–316]. The activation of neutrophils and the subsequent forma-
tion of neutrophil extracellular traps (NETosis) are elevated during the occurrence and
progression of ALS and MS [317–319]. We describe various PCD modalities in ALS, SMA,
and MS in Figure 6.
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the involvement of PCD pathways in the pathogenesis of ALS, SMA, and MS, highlighting both
the factors that contribute to disease progression and those that are beneficial for disease control.
Additionally, it describes the common pathways through which PCD exerts its effects across these
diseases. For more details, refer to the corresponding section of this article. Abbreviations: ADCD,
autophagy-dependent cell death; ALS, amyotrophic lateral sclerosis; Bcl-2, B-cell lymphoma-2;
C9ORF72, chromosome 9 open reading frame 72; Cu, cuprum; CYPD, cyclophilin D; Fe, ferrum;
FUS, fused in sarcoma/translocated in liposarcoma; GSDMD, gasdermin-D; IL-18, interleukin-18;
IL-1β, interleukin-1β; JNK, c-Jun N-terminal kinase; KO, knockout; MPT, mitochondrial permeability
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extracellular traps; NETosis, neutrophil extracellular trap cell death; PARP1, poly(ADP-ribose) poly-
merase 1; PCD, programmed cell death; RIPK1, receptor-interacting serine/threonine-protein kinase
1; RIPK3, receptor-interacting serine/threonine-protein kinase 3; ROS, reactive oxygen species; SMA,
spinal muscular atrophy; SMN, survival motor neuron; SOD1, superoxide dismutase 1; TARDBP,
TAR DNA-binding protein; TDP-43, TAR DNA-binding protein 43.

3.5. PCD in TBI and Stroke

Traumatic brain injury (TBI) refers to a physical injury caused by an external me-
chanical force, which induces transitory or permanent damage to brain tissues [320]. The
pathophysiology of TBI involves both primary and secondary injury mechanisms. Primary
injury occurs at the moment of impact, causing immediate damage to brain tissue or brain
structures. Secondary injury mechanisms involve a neurodegenerative process manifesting
from hours to days following the initial trauma, inducing chronic inflammation and neuron
loss [320]. The secondary mechanism exacerbates the initial damage caused by the primary
injury, and clinical presentations of secondary TBI include a combination of cognitive, emo-
tional, and behavioral changes [321]. Stroke is a chronic neurodegenerative disease caused
by insufficient blood supply to the brain. It can be divided into two major types: ischemic
stroke, caused by occlusion of carotid and vertebral arteries, and hemorrhagic stroke,
caused by subarachnoid or intraparenchymal hemorrhage [322,323]. Notably, ischemic
strokes account for the majority of all stroke cases [324]. Common clinical symptoms of
stroke include sudden weakness or numbness on one side of the body, aphasia, dysphasia,
dizziness, and severe headache [325]. The primary pathophysiology of stroke involves the
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damage and death of brain cells due to the interruption of blood flow to the brain, which
restrains the oxygen and nutrients reaching brain cells [326].

Generally, programmed cell death (PCD) plays an important role in the later stages of
traumatic brain injury (TBI) and stroke progression, impacting the recovery of brain tissue
and neurological function. Specifically, the formation of apoptotic bodies can be observed
in post-ischemic stroke neurons, and apoptosis in neurons of the ischemic penumbra may
be recoverable [327,328]. Additionally, neurons alter the glucose metabolism pathway from
aerobic oxidation to anaerobic oxidation to deal with glucose starvation during stroke,
leading to a lower production of ATP [329]. This change can impair Na+/Ca2+ influx and
K+ efflux, causing the accumulation of intracellular Ca2+ and calpain activation, which
leads to the cleavage of the anti-apoptotic protein Bcl-2 and intrinsic apoptosis [330]. Im-
portantly, glucose starvation initiates disulfidoptosis, and research has discovered that
disulfidoptosis-related genes (DRGs) are significantly associated with stroke in immune
cells from peripheral blood samples of stroke patients [331,332]. Moreover, DNA damage-
associated activation of the p53 signaling pathway and large amounts of ROS generation
also contribute to the activation of intrinsic apoptosis during stroke progression [333].
Additionally, in the early stages of ischemic stroke, the activation of immune cells, such
as microglia, can release TNFα and FasL, engaging death receptors to initiate extrinsic
apoptosis [334,335]. Similarly, Ca2+ overload, DNA damage, excessive ROS generation,
and activation of immune cells can also be observed in the CNS of TBI patients, activating
intrinsic and extrinsic apoptosis of neuronal cells [336]. However, necroptosis may occur
even if the apoptotic signal is suppressed during stroke and TBI progression. Research has
identified that the secretion of TNF-α, TRAIL, and FasL by microglial cells can be recog-
nized by death receptors on neurons, triggering RIPK1-RIPK3-MLKL signaling cascade
activation and necrosome formation [45]. Meanwhile, microglial cells also secrete proin-
flammatory cytokines, such as IL-1β, causing caspase-1-mediated pyroptosis in neuronal
cells under TBI and stroke conditions [337,338]. Additionally, iron accumulation and lipid
peroxidation can be observed in multiple areas of the brains of TBI and stroke patients due
to the loss of antioxidant signaling cascades [333,339]. Similarly, the disruption of copper
homeostasis caused by insufficient ATP generation can also be observed in the CNS of TBI
and stroke patients, and cuproptosis-related genes regulate immune infiltration in ischemic
stroke [340–342]. Moreover, hyperactivation of PARP1 and depletion of NAD+ and ATP can
be observed in stroke and TBI mouse models, triggering parthanatos in neurons [343,344].
Meanwhile, ATP depletion in neurons of TBI and stroke mouse models can also induce the
activation of CYPD-dependent MPT-driven necrosis, while hypoxia-induced activation of
p53 can interact with CYPD to exert an anti-angiogenic effect in the brain after ischemic
stroke [345–347]. Additionally, excessive activation of the hypoxia-inducible factor 1α
(HIF-1α) signaling pathway and ER stress mTOR signaling pathways can be observed in
microglia and neurons in the brains of stroke patients, subsequently activating ADCD [323].
Similarly, excessive mitophagy and ER-phagy, as well as autosis, can also be observed in
immune cells and neurons in the brains of TBI patients [348]. LDCD of endothelial cells can
also be detected in stroke patients, potentially causing damage to the blood–brain barrier
(BBB) [15]. Additionally, the release of high-mobility group box 1 (HMGB1) by platelets
can facilitate NETosis in the acute phase of stroke, exacerbating disease progression [349].
During stroke development, NETosis generated by neutrophils exacerbates neuroinflam-
mation and impairs revascularization and vascular remodeling after stroke due to the
upregulation of peptidylarginine deiminase 4 (PAD4) [350]. NETosis also contributes to
coagulopathy and neuroinflammation after TBI through the release of HMGB1 by platelets
and the formation of neutrophil–platelet aggregates [351,352]. Various PCD modalities in
stroke and TBI are illustrated in Figure 7.
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Figure 7. The role of programmed cell death (PCD) in the progression of traumatic brain injury (TBI)
and stroke. The figure illustrates various aspects that contribute to disease progression, revealing
the role of PCD in these conditions and considerations beneficial for disease control and treatment.
Additionally, it describes the pathways through which PCD exerts its effects both individually and
collectively in TBI and stroke. For details, refer to the corresponding section of this article. The
upward and downward arrows represent an increase and decrease in content or concentration,
respectively. The circular arrow signifies that "apoptosis in neurons of the ischemic penumbra may be
recoverable." The red line in the image signifies obstruction or limited functionality. Please refer to the
original text for a detailed description of this content. Abbreviations: ADCD, autophagy-dependent
cell death; ATP, adenosine triphosphate; Bcl-2, B-cell lymphoma-2; Ca, calcium; CNS, central nervous
system; Cu, cuprum; CYPD, cyclophilin D; DRGs, dorsal root ganglions; ER, endoplasmic reticulum;
FasL, Fas ligand; Fe, ferrum; HIF-1α, hypoxia-inducible factor 1α; HMGB1, high-mobility group box 1;
IL-1β, interleukin-1β; IP, ischemic penumbra; K, kalium; LDCD, lysosome-dependent cell death; Mito,
mitochondria; MLKL, mixed lineage kinase domain-like protein; MPT, mitochondrial permeability
transition; Na, natrium; NAD, nicotinamide adenine dinucleotide; NET, neutrophil extracellular traps;
PAD4, peptidylarginine deiminase 4; PARP1, poly(ADP-ribose) polymerase 1; PCD, programmed
cell death; RIPK1, receptor-interacting serine/threonine-protein kinase 1; RIPK3, receptor-interacting
serine/threonine-protein kinase 3; ROS, reactive oxygen species; TBI, traumatic brain injury; TNF-α,
tumor necrosis factor-α; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand.

3.6. Therapeutic Strategies Targeting PCD Signaling Pathways in NDDs

Following this review, it is evident that multiple programmed cell death (PCD) path-
ways collectively play a role in neurodegenerative diseases (NDDs). The regulation of
PCD occupies a significant position in the complex pathogenesis of NDDs. As research
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continues to uncover the mechanisms underlying disease progression, our understanding
of targeting PCD to modulate NDDs has deepened. Specifically, numerous key factors
involved in PCD pathways have been identified as the most direct and promising targets
for therapeutic development. These include genes and proteins, such as the caspase family,
apoptosis-related factors, necrosome-related factors, and inflammasome-related factors,
each of which directly influences PCD processes in NDDs. Furthermore, the development of
PCD pathways in NDDs is often accompanied by various associated biological phenomena.
Strategies targeting processes such as oxidative stress, neuroinflammation, and metabolic
imbalance also hold great promise and therapeutic value for disease treatment. This review
discusses the targets and strategies for treating NDDs by focusing on PCD pathways.

As major participants in cell death pathways, the caspase family is extensively in-
volved in both apoptotic and non-apoptotic cell death processes. Inhibiting the caspase
family to interrupt PCD processes mediated by them has been demonstrated in numerous
studies to be beneficial for improving and treating symptoms of NDDs. Caspases with
short prodomains (Caspase-3, -6, and -7) are known as effectors of apoptosis, while those
with long prodomains can be further classified into initiators of apoptosis (Caspase-2, -8,
-9, and -10) and inflammatory caspases that cleave cytokines (Caspase-1, -4, -5, -11, and -
12) [353]. Caspase-2 may function as both an initiator and an effector of apoptosis [353]. The
expression level of caspase-3 is significantly higher in Alzheimer’s disease (AD) patients
compared to age-matched controls. Inhibiting caspase-3 activity can alleviate Alzheimer-
like phenotypes in transgenic mice, and pharmacological experiments in AD models have
demonstrated clinical improvements that mitigate symptoms [354–357]. Furthermore, in-
hibiting the JAK-STAT-caspase-3 axis to prevent neurodegenerative diseases has also been
reported [214,358]. Caspase-6 is another factor considered a potential diagnostic marker
and therapeutic target for Huntington’s disease (HD) patients. Enhancing the insulin-like
growth factor 1 (IGF-1) signaling pathway reduces HTT toxicity changes associated with
increased caspase-6 activation, and IGF-1 treatment has demonstrated therapeutic benefits
in HD mouse models [356,359–361]. Additionally, the co-expression of caspase-2 and Bcl-2-
interacting mediator of cell death (Bim) has been observed in neurons of AD brains [362].
Studies have shown that caspase-2 deficiency can ameliorate spine density reduction in the
J20 mouse model of AD, preventing behavioral changes in these mice [363]. In Alzheimer’s
disease and related dementias (ADRD), Tau is cleaved by caspase-2, producing ∆tau314,
which promotes Tau mislocalization and accumulation (Casp2/tau/∆tau314). Inhibiting
caspase-2 as a drug target can ameliorate synaptic dysfunction in ADRD [364]. The in-
hibitor of the apoptosis protein (IAP) family, as endogenous inhibitors of the caspase family,
suppresses cell death by directly acting on caspases or serving as targets for protein degra-
dation [353,365]. In spinal muscular atrophy (SMA), neuron-specific IAP family members
NAIP and XIAP effectively block the enzymatic activity of group II caspases (3 and 7) and
reduce the expression levels of cleaved-caspase-3, thereby protecting spinal motor neurons
(MNs) and preventing severe SMA [366,367]. In a mouse stroke model, early ischemic
activation of the apoptotic pathway in the striatum is associated with caspase-9 activation.
Treatment with the endogenous caspase-9 inhibitor XIAP-BIR3 has been shown to protect
neuroanatomy and function in the disease model [353]. As critical anti-apoptotic proteins,
Bcl-2 family proteins exhibit suppressed expression across various NDDs, profoundly influ-
encing the progression of these conditions. The practical role and physiological significance
of targeting Bcl-2 family proteins to regulate the onset and development of NDDs have
been extensively documented in numerous studies [368].

Strategies employing Bcl-2 family-mediated apoptosis to treat amyotrophic lateral
sclerosis (ALS) have been validated in ALS mouse models; the knockout of two Bcl-2
proteins, Bax and Bak, counteracts the toxic effects of mutant superoxide dismutase 1 (SOD1)
by inhibiting the activation of pro-caspase-3, thereby preventing neuronal damage [369,370].
Additionally, in HD, huntingtin (HTT) enhances the activity of caspase-8 and calpain,
leading to the cleavage of full-length Bid. In the superior cervical ganglion (SCG), mutant
HTT induces Bax-independent cell death [264,371,372].
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Inflammation and oxidative stress are pervasive in NDDs and PCD, serving both as
triggers and concomitant biological phenomena. These processes play a central role in the
pathogenesis of NDDs as critical pathophysiological features [373–376]. The caspase family,
which initiates apoptosis, is not only involved in regulating cell death but also plays a crucial
role in modulating neuroinflammation in PCD. Numerous studies have demonstrated that
inhibiting caspase-1 alleviates PD symptoms by suppressing neuroinflammation [377–380].
Research indicates that the NLRP3/caspase-1 axis and the gasdermin (GSDM) family
represent substantial interactions between neuroinflammation and the initiation of apop-
tosis [381]. Inhibiting the NLRP3/caspase-1 axis reduces amyloid-beta deposition in the
AD APP/PS1 model, and disease models in Nlrp3−/− or Casp1−/− mice also exhibit
symptom relief [381]. Additionally, the therapeutic potential of inhibiting p38 through the
suppression of the NLRP3 inflammasome pathway has been shown. p38 inhibitors such as
SB203580 and NLRP3 inhibitors like MCC950 not only prevent neurodegeneration in vivo
but also alleviate motor deficits in the α-Syn-A53T transgenic mouse model of PD [379].
Beyond these two inhibitors, Celastrol and the small-molecule kaempferol (Ka) also miti-
gate PD symptoms via the same pathway, showing similar trends in multiple sclerosis (MS)
studies [377,378,382]. The overactivation of the NLRP3 inflammasome impairs microglial
autophagy, exacerbating neurodegenerative disease mechanisms, thus supporting the ap-
plication of microglial autophagy inducers and NLRP3 inhibitors [383]. In amyotrophic
lateral sclerosis, knockdown of GSDME reduces neuroinflammation and rescues the loss
of motor neurons derived from patient-induced pluripotent stem cells (iPSCs). Deleting
GSDME in SOD1G93A ALS mice also shows effective therapeutic outcomes [377,384].

Furthermore, the regulation of oxidative stress in cell death pathways has been charac-
terized in NDDs. The post-transcriptional regulator hsa-miR-4639-5p of PARK7 reduces
PARK7 protein levels when upregulated, exacerbating oxidative stress and leading to neu-
ronal death [385]. Silencing transcription factor RE1-silencing transcription factor (REST)
and REST-dependent epigenetic remodeling have been reported to inhibit genes associated
with oxidative stress and β-amyloid toxicity, thereby preventing neuronal death, which
also plays a crucial role in other NDDs [386,387]. During acute neuronal insult events, hy-
drogen sulfide (H2S) acts as an antioxidant, anti-inflammatory, and anti-apoptotic mediator,
protecting neurons from secondary neuronal damage [388]. In traumatic brain-penetrating
injury (PTBI), a significant increase in reactive oxygen species (ROS) and reactive nitrogen
species (RNS) production and elevated oxidative stress markers are observed, ultimately
leading to cell death. Adjusting abnormal oxidative stress levels offers important insights
for disease treatment and target development [389].

Microglial cells, which serve as critical sites for ion metabolism and neuroinflamma-
tion, contain various ion channels, including potassium (K+), calcium (Ca2+), chloride
(Cl−), sodium (Na+), and proton (H+) channels. These ion channels are responsible for
the dynamic characteristics of brain immune cells and play essential roles in regulating
microglial proliferation, chemotaxis, phagocytosis, antigen recognition and presentation,
apoptosis, and inflammatory cell signaling [376]. In neurodegenerative diseases, oxidative
stress, energy metabolism disorders, and disease-related protein alterations lead to Ca2+-
dependent synaptic dysfunction, impaired plasticity, and neuronal death. Dysregulation of
the Bcl-2-Ca2+ signaling axis has been associated with the progression of AD. Targeting
Ca2+ checkpoints, such as G protein-coupled receptors, ion channels, Ca2+-binding proteins,
transcription networks, and ion exchangers, to maintain Ca2+ homeostasis may represent
novel therapeutic targets [389–391]. In addition, the dysregulation of metal metabolism,
including iron (Fe) and copper (Cu), also contributes to the regulation of NDDs and the
induction of cell death.

Therefore, we discussed the use of metal chelators related to ferroptosis and cupropto-
sis [224–228]. Studies have shown that Liproxstatin-1, a specific inhibitor of ferroptosis, can
prevent amyloid-beta (Aβ)-induced neuronal death and memory loss [392]. Deferoxamine
(DFO), an iron chelator, has demonstrated beneficial effects in clinical trials for AD patients
and improves cognitive deficits induced by iron overload in APP/PS1 transgenic mice by
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inhibiting the processing of amyloid precursor protein (APP) [393–395]. Specifically, metal–
protein attenuating compounds (MPACs) inhibit Aβ production and toxicity formation
by chelating Cu or zinc (Zn) ions, showing efficacy in multiple clinical trials by slowing
disease progression and improving cognitive function [396–399]. Additionally, Fe chelators,
such as epigallocatechin-3-gallate (EGCG), and Cu chelators, such as amentoflavone, play
significant roles in regulating neuroinflammation and the progression of NDDs [400–402].

The pathways of PCD in NDDs represent a complex process regulated by multiple
factors. Beyond targeting key elements responsible for executing functions as therapeutic
targets, it is crucial to focus on the balance and coordination of multiple pathways. The
normal function and balance of autophagy and apoptosis are vital for neuronal homeosta-
sis, and their dysfunction leads to the onset of neurodegenerative diseases. Regulation
of some autophagy and apoptosis modulators must be carried out cautiously to avoid
excessive autophagy, which can lead to cell death, or excessive inhibition of apoptosis,
which can result in the accumulation of toxic substances [403]. In AD, the c-Jun N-terminal
kinase (JNK) pathway is upregulated, leading to a reduction in anti-apoptotic protein
expression and triggering Janus kinase-signal transducer and activator of transcription
(JAK-STAT)/caspase-3 axis-mediated apoptosis. Meanwhile, the phosphoinositide 3-kinase
(PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway regulates the imbalance
between autophagy and apoptosis, and this balancing act also impacts PD, HD, frontotem-
poral dementia (FTD), and ALS [214,404,405].

Consequently, mTOR inhibitors, such as rapamycin, have shown broad prospects
in targeting PCD for the treatment of NDDs [406,407]. Moreover, the upregulation of
autophagy can extend the lifespan of HD mice by clearing aggregates containing HTT [408].
Autophagy defects and autophagosome accumulation are attributed to Beclin-1. Beclin-1
serves as a molecular platform for initiating autophagosome formation, and its interac-
tion with anti-apoptotic protein Bcl-2 or inflammasomes leads to autophagy dysfunction
and promotes the onset of PD [409,410]. Studies have revealed that the autophagy adap-
tor protein p62 (sequestosome 1, SQSTM1) mediates the degradation of survival motor
neuron (SMN) through interaction, resulting in reduced autophagosome clearance and
overactivation of mTOR complex 1 (mTORC1) signaling in spinal muscular atrophy (SMA)
neurons [411]. Lowering p62 levels significantly enhances the therapeutic effects for
SMA [411].

4. Conclusions

Since the discovery of neurodegenerative diseases (NDDs), significant progress has
been made in component identification, understanding pathogenesis, development, treat-
ment, and regulation. Current drug development and treatment strategies are based on
the exploration and understanding of these mechanisms. As the role of programmed cell
death (PCD) in the mechanistic network of NDDs has become clearer, we have gained a
deeper understanding of these diseases, creating more possibilities for mechanistic research
and clinical treatment. However, breakthroughs based on mechanistic research have been
limited, and the translation to clinical progress has encountered bottlenecks. Firstly, in
terms of mechanistic exploration, the challenges lie in the insufficient depth of overall
research, limited individual research directions and progress, and the inability to integrate
multi-spatial, multi-omics, and multi-pathway approaches to establish a comprehensive
interpretation. We still need more experimental methods to elucidate the specific roles and
dynamic changes of key factors such as the caspase family and B-cell lymphoma 2 (Bcl-2)
family in the PCD pathways of diseases and to develop targeted drugs and strategies. Sec-
ondly, in terms of clinical development, there is a lack of sufficiently realistic experimental
models. Disease models, constrained by research progress, can only replicate relatively
singular phenotypes, and there is also a lack of validation of the reliability of existing
research findings. Additionally, drug clinicalization faces challenges such as a shortage
of development ideas, severe homogenization within the same category, and limitations
on drug delivery pathways imposed by the blood–brain barrier. Given these issues, it is
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crucial to conduct comprehensive assessments of feasibility and biosafety during research
to ensure that the final clinical strategies and drugs meet contemporary pharmacokinetic
and biosafety standards.

In summary, our review first elucidates the current research on cell death mechanisms
by detailing apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and other forms
of PCD. Furthermore, we discuss the roles and processes of various PCD pathways in
regulating networks within NDDs, such as Alzheimer’s disease (AD), Parkinson’s disease
(PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular
atrophy (SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. Finally,
we briefly introduce disease treatment strategies and approaches targeting key factors in
these pathways, including inflammation, oxidative stress, and metabolic balance, thereby
establishing a common link between these complex biological processes. Through these
three aspects, we preliminarily construct the relationship network between PCD and
NDDs, which deepens our understanding of the corresponding mechanisms and identifies
potential therapeutic targets for development. Our discussion leads to the following
conclusions: (1) The regulation of NDDs by PCD involves the collaborative interaction
of multiple factors and pathways. (2) Based on the common understanding of multiple
systems, we can overcome the limitations of focusing on single research factors and drug
choices, allowing for new experimental attempts. (3) The practical significance of this
review lies in providing a reference for the development of therapeutic targets and strategies
through elucidation from different perspectives.

As a recognized challenge in human disease, the treatment of NDDs has consistently
faced significant obstacles. Based on the current research progress, we are still unable to
achieve a complete cure for these diseases, and our ability to prevent their onset remains
limited. At best, we can only slow disease progression or alleviate symptoms. Nevertheless,
we anticipate that in the near future, the development of drugs targeting PCD for the
treatment of NDDs and their clinical application will help improve the condition of patients
with neurodegenerative diseases. Despite numerous challenges, we have taken a significant
step forward in humanity’s battle against these diseases. We hope to make the greatest
possible contribution to curing these diseases within the limits of our current capabilities.
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