Effect of Freeze–Thawing Treatment on Platelet-Rich Plasma Purified with Different Kits
Abstract
:1. Introduction
2. Results
2.1. Changes in Platelet Activation and Humoral Factor Concentration through Freeze–Thawing of PRPs
2.2. Effect of Freeze–Thawing of PRPs on Osteoarthritis
2.3. Effect of Freeze–Thawing on the Indirect Effects of PRP on Osteoarthritis
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. PRP Purification
4.3. Hematologic Analysis of PRPs
4.4. Cell Isolation and Culture of Chondrocyte and Synovial Cells
4.5. Isolation and Culture of Monocyte-Derived Macrophage and M1 Macrophages
4.6. Analysis of Humoral Factors
4.7. Flow Cytometry
4.8. Gene Expression Analysis
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012, 64, 1697–1707. [Google Scholar] [CrossRef] [PubMed]
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Ab-delalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [PubMed]
- McAlindon, T.E.; Bannuru, R.R.; Sullivan, M.C.; Arden, N.K.; Berenbaum, F.; Bierma-Zeinstra, S.M.; Hawker, G.A.; Henrotin, Y.; Hunter, D.J.; Kawaguchi, H.; et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr. Cartil. 2014, 22, 363–388. [Google Scholar] [CrossRef] [PubMed]
- Reale, D.; Feltri, P.; Franceschini, M.; de Girolamo, L.; Laver, L.; Magalon, J.; Sanchez, M.; Tischer, T.; Filardo, G. Biological intra-articular augmentation for osteotomy in knee osteoarthritis: Strategies and results. Knee Surgery Sports Traumatol. Arthrosc. 2023, 31, 4327–4346. [Google Scholar] [CrossRef] [PubMed]
- Mussano, F.; Genova, T.; Munaron, L.; Petrillo, S.; Erovigni, F.; Carossa, S. Cytokine, chemokine, and growth factor profile of platelet-rich plasma. Platelets 2016, 27, 467–471. [Google Scholar] [CrossRef]
- Dejnek, M.; Witkowski, J.; Moreira, H.; Płaczkowska, S.; Morasiewicz, P.; Reichert, P.; Królikowska, A. Content of blood cell components, inflammatory cytokines and growth factors in autologous platelet-rich plasma obtained by various methods. World J. Orthop. 2022, 13, 587–602. [Google Scholar] [CrossRef]
- Oudelaar, B.W.; Peerbooms, J.C.; Huis in ‘t Veld, R.; Vochteloo, A.J.H. Concentrations of blood components in commercial platelet-rich plasma separation systems: A review of the literature. Am. J. Sports Med. 2019, 47, 479–487. [Google Scholar] [CrossRef]
- Everts, P.A.; Mahoney, C.B.; Hoffmann, J.J.; Schönberger, J.P.; Box, H.A.; van Zundert, A.; Knape, J.T. Platelet-rich plasma preparation using three devices: Implications for platelet activation and platelet growth factor release. Growth Factors 2006, 24, 165–171. [Google Scholar] [CrossRef]
- Gawaz, M.; Vogel, S. Platelets in tissue repair: Control of apoptosis and interactions with regenerative cells. Blood 2013, 122, 2550–2554. [Google Scholar] [CrossRef]
- El-Sharkawy, H.; Kantarci, A.; Deady, J.; Hasturk, H.; Liu, H.; Alshahat, M.; Van Dyke, T.E. Platelet-rich plasma: Growth fac-tors and pro- and anti-inflammatory properties. J. Periodontol. 2007, 78, 661–669. [Google Scholar] [CrossRef]
- Knop, E.; de Paula, L.E.; Fuller, R. Platelet-rich plasma for osteoarthritis treatment. Rev. Bras. de Reum. Engl. Ed. 2016, 56, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Everts, P.; Onishi, K.; Jayaram, P.; Lana, J.F.; Mautner, K. Platelet-rich plasma: New performance understandings and thera-peutic considerations in 2020. Int. J. Mol. Sci. 2020, 21, 7794. [Google Scholar] [CrossRef]
- Kon, E.; Engebretsen, L.; Verdonk, P.; Nehrer, S.; Filardo, G. Clinical outcomes of knee osteoarthritis treated with an autol-ogous protein solution injection: A 1-year pilot double-blinded randomized controlled trial. Am. J. Sports Med. 2018, 46, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Woodell-May, J.; Matuska, A.; Oyster, M.; Welch, Z.; O’Shaughnessey, K.; Hoeppner, J. Autologous protein solution inhibits MMP-13 production by IL-1β and TNFα-stimulated human articular chondrocytes. J. Orthop. Res. 2011, 29, 1320–1326. [Google Scholar] [CrossRef] [PubMed]
- Xin, F.; Wang, H.; Yuan, F.; Ding, Y. Platelet-rich plasma combined with alendronate reduces pain and inflammation in in-duced osteoarthritis in rats by inhibiting the nuclear factor-kappa B signaling pathway. Biomed. Res. Int. 2020, 2020, 8070295. [Google Scholar] [CrossRef] [PubMed]
- Söderström, A.C.; Nybo, M.; Nielsen, C.; Vinholt, P.J. The effect of centrifugation speed and time on pre-analytical platelet activation. Clin. Chem. Lab. Med. 2016, 54, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.I.; Bae, H.C.; Park, H.J.; Lee, M.C.; Han, H.S. Effect of storage conditions and activation on growth factor concentra-tion in platelet-rich plasma. J. Orthop. Res. 2020, 38, 777–784. [Google Scholar] [CrossRef]
- Melnikov, D.; Kirillova, K.; Zakharenko, A.; Sinelnikov, M.; Ragimov, A.; Istranov, A.; Startseva, O. Effect of Cryo-Processing on Platelet-Rich Autoplasma Preparations. Sovrem. Teh. v Med. 2020, 12, 54–61. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, C.; Zeng, C.; Wang, Z.; Wang, H.; Lu, J.; Liu, X.; Shao, Y.; Zhao, C.; Pan, J.; et al. Synovial macrophage M1 polarisation exacerbates experimental osteoarthritis partially through R-spondin-2. Ann. Rheum. Dis. 2018, 77, 1524–1534. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, Q. Macrophage polarization in osteoarthritis progression: A promising therapeutic target. Front. Cell Dev. Biol. 2023, 11, 1269724. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, M.; Zhao, J.; Zheng, M.; Yang, H. Imbalance of M1/M2 macrophages is linked to severity level of knee osteo-arthritis. Exp. Ther. Med. 2018, 16, 5009–5014. [Google Scholar] [CrossRef]
- Yao, Q.; Wu, X.; Tao, C.; Gong, W.; Chen, M.; Qu, M.; Zhong, Y.; He, T.; Chen, S.; Xiao, G. Osteoarthritis: Pathogenic signal-ing pathways and therapeutic targets. Sig. Transduct. Target. Ther. 2023, 8, 56. [Google Scholar] [CrossRef]
- O’Donnell, C.; Migliore, E.; Grandi, F.C.; Koltsov, J.; Lingampalli, N.; Cisar, C.; Indelli, P.F.; Sebastiano, V.; Robinson, W.H.; Bhutani, N.; et al. Platelet-rich plasma (PRP) from older males with knee osteoarthritis depresses chondrocyte metabo-lism and upregulates inflammation. J. Orthop. Res. 2019, 37, 1760–1770. [Google Scholar] [CrossRef] [PubMed]
- Rikkers, M.; Dijkstra, K.; Terhaard, B.F.; Admiraal, J.; Levato, R.; Malda, J. Platelet-rich plasma does not inhibit inflamma-tion or promote regeneration in human osteoarthritic chondrocytes in vitro despite increased proliferation. Cartilage 2021, 13, 991S–1003S. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Yanada, S.; Morikawa, H.; Okada, T.; Watanabe, M.; Takeuchi, S. Effect of platelet-rich plasma on autologous chon-drocyte implantation for chondral defects: Results using an in vivo rabbit model. Orthop. J. Sports Med. 2022, 10, 23259671221079349. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.H.; Kim, W.; Park, K.U.; Roh, Y.H. Comparison of the Cellular Composition and Cytokine-Release Kinetics of Various Platelet-Rich Plasma Preparations. Am. J. Sports Med. 2015, 43, 3062–3070. [Google Scholar] [CrossRef]
- Wasai, S.; Sato, M.; Maehara, M.; Toyoda, E.; Uchiyama, R.; Takahashi, T.; Okada, E.; Iwasaki, Y.; Suzuki, S.; Watanabe, M. Characteristics of autologous protein solution and leucocyte-poor platelet-rich plasma for the treatment of osteoarthritis of the knee. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Ehrenfest, D.M.D.; Pinto, N.R.; Pereda, A.; Jiménez, P.; Corso, M.D.; Kang, B.S.; Nally, M.; Lanata, N.; Wang, H.L.; Quirynen, M. The impact of the centrifuge characteristics and centrifugation protocols on the cells, growth factors, and fibrin architec-ture of a leukocyte- and platelet-rich fibrin (L-PRF) clot and membrane. Platelets 2018, 29, 171–184. [Google Scholar] [CrossRef]
- Durante, C.; Agostini, F.; Abbruzzese, L.; Toffola, R.T.; Zanolin, S.; Suine, C.; Mazzucato, M. Growth factor release from platelet concentrates: Analytic quantification and characterization for clinical applications. Vox Sang. 2013, 105, 129–136. [Google Scholar] [CrossRef]
- Roffi, A.; Filardo, G.; Assirelli, E.; Cavallo, C.; Cenacchi, A.; Facchini, A.; Grigolo, B.; Kon, E.; Mariani, E.; Pratelli, L.; et al. Does platelet-rich plasma freeze-thawing influence growth factor release and their effects on chondrocytes and synovio-cytes? Biomed. Res. Int. 2014, 2014, 692913. [Google Scholar]
- Herr, W.; Ranieri, E.; Olson, W.; Zarour, H.; Gesualdo, L.; Storkus, W.J. Mature dendritic cells pulsed with freeze–thaw cell lysates define an effective in vitro vaccine designed to elicit EBV-specific CD4+ and CD8+ T lymphocyte responses. Blood 2000, 96, 1857–1864. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, M.; Kawahara, Y.; Okubo, C.; Yamakawa, T.; Nakamura, M.; Tabata, T.; Nishi, Y.; Narita, M.; Ohta, A.; Saito, H.; et al. Multi-omics approach reveals posttran-scriptionally regulated genes are essential for human pluripotent stem cells. iScience 2022, 25, 104289. [Google Scholar] [CrossRef] [PubMed]
- Buccitelli, C.; Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 2020, 21, 630–644. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Aristizábal, A.; Gandhi, R.; Mahomed, N.N.; Marshall, K.W.; Viswanathan, S. Synovial fluid monocyte/macrophage subsets and their correlation to patient-reported outcomes in osteoarthritic patients: A cohort study. Arthritis Res. Ther. 2019, 21, 1–10. [Google Scholar] [CrossRef]
- Mantovani, A.; Biswas, S.K.; Galdiero, M.R.; Sica, A.; Locati, M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 2012, 229, 176–185. [Google Scholar] [CrossRef]
- Chen, S.; Saeed, A.F.; Liu, Q.; Jiang, Q.; Xu, H.; Xiao, G.G.; Rao, L.; Duo, Y. Macrophages in immunoregulation and therapeutics. Signal Transduct. Target. Ther. 2023, 8, 1–35. [Google Scholar] [CrossRef]
- Uchiyama, R.; Toyoda, E.; Maehara, M.; Wasai, S.; Omura, H.; Watanabe, M.; Sato, M. Effect of platelet-rich plasma on M1/M2 macrophage polarization. Int. J. Mol. Sci. 2021, 22, 2336. [Google Scholar] [CrossRef]
- Maehara, M.; Sato, M.; Toyoda, E.; Takahashi, T.; Okada, E.; Kotoku, T.; Watanabe, M. Characterization of polydac-tyly-derived chondrocyte sheets versus adult chondrocyte sheets for articular cartilage repair. Inflamm. Regener. 2017, 37, 22. [Google Scholar] [CrossRef]
- Hatakeyama, A.; Uchida, S.; Utsunomiya, H.; Tsukamoto, M.; Nakashima, H.; Nakamura, E.; Pascual-Garrido, C.; Sekiya, I.; Sakai, A. Isolation and Characterization of Synovial Mesenchymal Stem Cell Derived from Hip Joints: A Comparative Analysis with a Matched Control Knee Group. Stem Cells Int. 2017, 2017, 1–13. [Google Scholar] [CrossRef]
- Vogel, D.Y.S.; Glim, J.E.; Stavenuiter, A.W.D.; Breur, M.; Heijnen, P.; Amor, S.; Dijkstra, C.D.; Beelen, R.H. Human macro-phage polarization in vitro: Maturation and activation methods compared. Immunobiology 2014, 219, 695–703. [Google Scholar] [CrossRef]
- Bertani, F.R.; Mozetic, P.; Fioramonti, M.; Iuliani, M.; Ribelli, G.; Pantano, F.; Santini, D.; Tonini, G.; Trombetta, M.; Businaro, L.; et al. Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis. Sci. Rep. 2017, 7, 8965. [Google Scholar] [CrossRef] [PubMed]
Whole Blood | LPPRP | APS | |
---|---|---|---|
Leukocytes (×102/μL) | 50.5 ± 15.67 | 2.2 ± 1.12 b | 429.6 ± 158.06 a,b |
Erythrocytes (×104/μL) | 431.9 ± 38.67 | 2.3 ± 3.61 a,b | 262.5 ± 158.00 a,b |
Platelets (×102/μL) | 19.3 ± 3.24 | 74.8 ± 37.69 a | 54.8 ± 27.25 |
LPPRP | fLPPRP | p-Value | APS | fAPS | p-Value | ||
---|---|---|---|---|---|---|---|
IL6 | 4.3 ± 1.0 | 3.6 ± 0.7 | 0.317 | IL6 | 5.2 ± 1.3 | 3.8 ± 0.7 | 0.090 |
IL8 | 59.0 ± 22.5 | 46.5 ± 13.8 | 0.370 | IL8 | 77.5 ± 32.1 | 69.2 ± 20.7 | 0.684 |
IFNγ | 1011.8 ± 278.5 | 2924.8 ± 845.0 | 0.108 | IFNγ | 1063.5 ± 600.5 | 835.6 ± 118.7 | 0.850 |
TNFα | 5.5 ± 3.3 | 1852.8 ± 572.1 | 0.185 | TNFα | 38.5 ± 32.1 | 651.2 ± 588.0 | 0.379 |
IL4 | 311.7 ± 192.0 | 1604.7 ± 1141.6 | 0.341 | IL4 | 267.8 ± 72.9 | 10,824.0 ± 6942.2 | 0.490 |
IL10 | 526.6 ± 300.3 | 842.2 ± 345.2 | 0.555 | IL10 | 11,037.5 ± 6589.2 | 11,395.5 ± 6687.5 | 0.302 |
IL13 | 1421.9 ± 988.9 | 24,266.2 ± 4800.3 | 0.018 | IL13 | 109.0 ± 46.1 | 24,021.8 ± 5978.2 | 0.016 |
IL1RA | 1848.6 ± 585.7 | 16,183.6 ± 4945.6 | 0.037 | IL1RA | 15,871.4 ± 8013.7 | 25,208.3 ± 6046.5 | 0.463 |
TNF-R1 | 1905.6 ± 98.6 | 1132.7 ± 64.8 | 0.000 | TNF-R1 | 2473.5 ± 325.7 | 4410.2 ± 462.9 | 0.013 |
TNF-R2 | 97.4 ± 23.6 | 70.7 ± 10.6 | 0.115 | TNF-R2 | 173.4 ± 30.8 | 168.5 ± 14.9 | 0.880 |
bFGF | 143.0 ± 24.2 | 456.8 ± 45.1 | 0.001 | bFGF | 182.4 ± 41.6 | 213.9 ± 80.1 | 0.686 |
EGF | 22.3 ± 5.4 | 55.4 ± 7.7 | 0.004 | EGF | 19.0 ± 2.5 | 90.7 ± 19.3 | 0.010 |
HGF | 79.6 ± 31.2 | 65.4 ± 23.3 | 0.197 | HGF | 189.7 ± 33.6 | 186.3 ± 25.7 | 0.903 |
PDGF-BB | 398.2 ± 96.3 | 1451.8 ± 412.1 | 0.005 | PDGF-BB | 528.2 ± 175.3 | 1530.3 ± 518.6 | 0.270 |
PDGF-AA | 657.0 ± 123.9 | 1468.5 ± 281.9 | 0.021 | PDGF-AA | 1000.0 ± 162.1 | 1413.1 ± 308.9 | 0.088 |
TGFβ | 1089.5 ± 216.2 | 343.7 ± 54.4 | 0.012 | TGFβ | 387.0 ± 283.8 | 199.3 ± 55.0 | 0.565 |
VEGF | 11.6 ± 2.8 | 15.8 ± 2.2 | 0.040 | VEGF | 14.9 ± 2.9 | 23.8 ± 3.6 | 0.058 |
GZMB | 598.5 ± 142.6 | 495.8 ± 112.2 | 0.102 | GZMB | 721.9 ± 125.6 | 952.1 ± 155.6 | 0.201 |
IP10 | 1652.6 ± 825.0 | 2701.0 ± 1179.6 | 0.175 | IP10 | 933.1 ± 451.1 | 1223.3 ± 532.1 | 0.671 |
MIG | 455.2 ± 398.0 | 5159.0 ± 4801.9 | 0.474 | MIG | 641.6 ± 518.3 | 22,979.1 ± 7020.9 | 0.045 |
GMCSF | 1774.9 ± 1340.2 | 5681.3 ± 4205.4 | 0.731 | GMCSF | 299.0 ± 75.2 | 22,982.8 ± 7017.2 | 0.049 |
MCSF | 69.0 ± 51.0 | 682.7 ± 430.4 | 0.374 | MCSF | 131.6 ± 83.7 | 15,701.4 ± 8274.3 | 0.148 |
Fas | 121.3 ± 5.3 | 122.4 ± 7.4 | 0.852 | Fas | 189.0 ± 28.7 | 203.2 ± 15.0 | 0.747 |
FasL | 19.8 ± 3.3 | 19.1 ± 1.8 | 0.830 | FasL | 27.4 ± 4.0 | 23.2 ± 3.2 | 0.284 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uchiyama, R.; Omura, H.; Maehara, M.; Toyoda, E.; Tamaki, M.; Ogawa, M.; Tanaka, T.; Watanabe, M.; Sato, M. Effect of Freeze–Thawing Treatment on Platelet-Rich Plasma Purified with Different Kits. Int. J. Mol. Sci. 2024, 25, 9981. https://doi.org/10.3390/ijms25189981
Uchiyama R, Omura H, Maehara M, Toyoda E, Tamaki M, Ogawa M, Tanaka T, Watanabe M, Sato M. Effect of Freeze–Thawing Treatment on Platelet-Rich Plasma Purified with Different Kits. International Journal of Molecular Sciences. 2024; 25(18):9981. https://doi.org/10.3390/ijms25189981
Chicago/Turabian StyleUchiyama, Ryoka, Haruka Omura, Miki Maehara, Eriko Toyoda, Miyu Tamaki, Makoto Ogawa, Tatsumi Tanaka, Masahiko Watanabe, and Masato Sato. 2024. "Effect of Freeze–Thawing Treatment on Platelet-Rich Plasma Purified with Different Kits" International Journal of Molecular Sciences 25, no. 18: 9981. https://doi.org/10.3390/ijms25189981
APA StyleUchiyama, R., Omura, H., Maehara, M., Toyoda, E., Tamaki, M., Ogawa, M., Tanaka, T., Watanabe, M., & Sato, M. (2024). Effect of Freeze–Thawing Treatment on Platelet-Rich Plasma Purified with Different Kits. International Journal of Molecular Sciences, 25(18), 9981. https://doi.org/10.3390/ijms25189981