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Abstract: The incorporation of multi-omics data methodologies facilitates the concurrent examina-
tion of proteins, metabolites, and genes associated with inflammation, thereby leveraging multi-
dimensional biological data to achieve a comprehensive understanding of the complexities involved
in the progression of inflammation. Inspired by ensemble learning principles, we implemented
ID normalization preprocessing, categorical sampling homogenization, and pathway enrichment
across each sample matrix derived from multi-omics datasets available in the literature, directing
our focus on inflammation-related targets within lipopolysaccharide (LPS)-stimulated RAW264.7
cells towards β-alanine metabolism. Additionally, through the use of LPS-treated RAW264.7 cells,
we tentatively validated the anti-inflammatory properties of the metabolite Ureidopropionic acid,
originating from β-alanine metabolism, by evaluating cell viability, nitric oxide production levels,
and mRNA expression of inflammatory biomarkers. In conclusion, our research represents the first
instance of an integrated analysis of multi-omics datasets pertaining to LPS-stimulated RAW264.7
cells as documented in the literature, underscoring the pivotal role of β-alanine metabolism in cellular
inflammation and successfully identifying Ureidopropionic acid as a novel anti-inflammatory com-
pound. Moreover, the findings from database predictions and molecular docking studies indicated
that the inflammatory-related pathways and proteins may serve as potential mechanistic targets for
Ureidopropionic acid.

Keywords: inflammation; multi-omics datasets; RAW264.7 cells; integration analysis; β-alanine
metabolism

1. Introduction

The swift evolution of contemporary high-throughput omics measurement technolo-
gies has established clustering analysis of multi-omics data, employing predictive algo-
rithms derived from machine learning, as a significant area of interest in current systems
biology research [1]. From both statistical and biological perspectives, the amalgamation
of multi-dimensional datasets is expected to yield more advantageous results compared
to analyses performed on single-layer data. The integration of multi-omics data enables
the extraction of insights from diverse biological molecular layers, thereby presenting a
promising pathway for a systematic and holistic comprehension of complex biological
phenomena [2,3]. Common approaches for multi-omics integration include mathematical
matrix factorization, artificial intelligence-based neural network models, Bayesian statistics,
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and metric learning [1]. The intrinsic heterogeneity of multi-omics data necessitates the im-
plementation of effective preprocessing techniques, such as feature selection, filtering, and
standardization [4]. A range of bioinformatics tools and data management systems offer
substantial support for the clustering of multi-omics data, facilitating the identification of
potential core disease targets based on analytical results and the exploration of therapeutic
interventions with potential druggability.

The inflammatory response system is characterized as a complex and dynamic process
that functions across multiple molecular levels, with its regulation dependent on gene
expression, protein synthesis, and metabolite production. These elements collectively
contribute to intricate relationships within molecular biology, including the transcriptional
regulation between genes and proteins. Metabolites play dual roles as both substrates and
products in enzymatic reactions, as well as precursors for the synthesis of proteins and
RNAs. They variably modulate the activities of enzymes or transcription factors, thereby
indirectly affecting the expression of multiple target genes [5]. Consequently, a compre-
hensive investigation and understanding of the initiation and progression of inflammation
require a multilayered and multi-perspective approach, fully utilizing multi-omics technol-
ogy to provide novel insights or methodologies for elucidating inflammatory diseases.

Recent investigations into inflammatory mechanisms utilizing omics technologies
have produced significant findings. The changes in post-translational modifications (PTMs)
during macrophage inflammatory responses have been thoroughly characterized through
various omics techniques, including proteomics, phosphorylation modification, acetyla-
tion modification, and ubiquitination modification [6]. Detailed analyses have resulted
in the identification of key signaling pathways and novel drug targets by constructing a
systematic map of multi-omics data at different stages of silicosis [7]. Additionally, the
role of mitochondrial complex I in microglia has been identified as a promoter of neuroin-
flammation through the maintenance of microglial activation, as evidenced by multi-omics
approaches [8]. Nevertheless, there remains a scarcity of reports addressing the underlying
mechanisms of cellular inflammation through clustering analysis of multi-omics data across
various dimensions.

In this study, we employed an ensemble learning approach to integrate and cluster
relevant omics datasets obtained from the literature concerning LPS-stimulated RAW264.7
mouse macrophages. Time-resolved omics datasets, which consist of data collected at
various time points [9], are frequently utilized to construct novel biological networks and to
clarify the interrelationships among omics networks in response to specific biological stim-
uli [5]. Consequently, the time-dependent response sequences across different omics were
utilized as classification output conditions to generate multiple time-resolved multi-omics
correlation maps, effectively depicting the upstream and downstream interconnections
among diverse omics data. Following the enrichment and classification of these maps,
the conditional output revealed either interconnected or distinct pathways. Previously
neglected pathways and targets from our existing database were re-assessed, and their
potential associations with the inflammatory response were predicted. Ultimately, the
anti-inflammatory effects of the metabolite Ureidopropionic acid, which is derived from
β-alanine metabolism, were evaluated in vitro [10,11].

2. Results
2.1. Presentation of Multi-Omics Data from the Literature

The search terms utilized included ‘RAW264.7, LPS, transcriptomics’, ‘RAW264.7,
LPS, proteomics’, and ‘RAW264.7, LPS, metabolomics’. The literature review encompassed
publications from 1 January 2014 to 1 January 2024. The data sampling time points for
the primary histological samples were predominantly focused on 4, 6, 8, 12, and 24 h (see
Figure 1A). Each piece of literature was meticulously examined for its findings in transcrip-
tomics [12–24], proteomics [25–29], and metabolomics [30–35], organized according to their
respective sampling time points (refer to Figure 1B–D) (Supplementary Materials S1–S3).
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Figure 1. (A) Cross-integrated presentation of the data of each group under temporal resolution.
(B) Transcriptomics section of differentially expressed genes. (C) Proteomics section of differentially
expressed proteins. (D) Metabolomics section of differentially expressed metabolites.



Int. J. Mol. Sci. 2024, 25, 10252 4 of 19

2.2. Conversion of Omics-Related Differential Gene Encoding

In light of the multi-dimensional hierarchical heterogeneity exhibited by various omics
data, distinct pretreatment methodologies were employed for each type of omics informa-
tion. Utilizing databases such as NCBI, Biomart, GeneCards, and UniProt (see Figure 2A),
the data from each group were systematically screened and organized, ultimately being
normalized to the Entrez Gene ID (see Figure 2B) (Supplementary Materials S5). This nor-
malization provided a foundational dataset for the subsequent construction of algorithms
for ensemble learning.
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Figure 2. (A) Flowchart for normalized preprocessing of multi-omics data. (B) Entrez Gene ID
partial arrangement of multi-omics data based on time resolution. (C) Preliminary construction of
classification sampling model. T: Transcriptomics, P: Proteomics, M: Metabolomics. The sampling
time is represented by a subscript number.

In contrast to genes and proteins, metabolites function as both substrates and products
within enzymatic reactions. They serve as monomers for the synthesis of proteins and RNA
and possess the ability to allosterically modulate the activity of enzymes or transcription
factors, thereby indirectly influencing the expression of multiple genes. Consequently, in
this study, we identified and cataloged the upstream and downstream catalytic enzymes
associated with metabolites across all metabolic pathways as delineated in the KEGG
database (Supplementary Materials S4). Subsequently, the genes corresponding to these
catalytic enzymes were queried and integrated into the Entrez Gene ID framework.
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A preliminary classification sampling model was constructed (see Figure 2C). Based
on a temporal sequence, a total of five instances were selected, and follow-up analyses were
conducted according to these five subsets.

2.3. Temporal Pathway Enrichment Analysis of Multi-Omics Data

The multi-omics data, represented by Entrez Gene IDs at each time point, were mapped
to the DAVID database to conduct pathway enrichment analysis (Supplementary Mate-
rials S6). The top twelve pathways identified at each time point were selected for the
construction of enrichment diagrams (Figure 3A–E). A Venn intersection analysis was
performed on the enriched pathways across the various time points, revealing a total of
20 common pathways for further examination (Figure 3F) (Supplementary Materials S7).
These pathways included classical signaling pathways associated with inflammation, dis-
ease pathways, and pathways related to the crosstalk of inflammation signals.

To assess the significance of the common pathways across different time points, a time
series figure was generated (Figure 3G). Notably, the classical signaling pathways of inflam-
mation and the crosstalk pathways exhibited a time-linear oscillation phenomenon, which
aligns with the molecular mechanisms underlying the time-dependent signal dynamics
observed in the LPS-stimulated RAW264.7 cell inflammation model (Figure 3H–I). This
analysis supports the feasibility of employing an ensemble learning model to identify new
targets for multi-omics clustering. Furthermore, it highlights the unique characteristics
of this inflammatory system, characterized by rapid responses and significant dynamic
changes consistent with the molecular mechanisms predicted by the validated iterative
mathematical model.
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Figure 3. (A–E) KEGG pathway enrichment analysis diagrams at T4, T6, T8, T12, T24 (h). (F) Venn
intersection analysis result diagram. (G) Comparison of enrichment significance at different time
points under each mutual pathway. (H) Chronological chart about the expression of time-dependent
signal dynamics oscillation mechanism of classical inflammatory pathway. (I) Chronological chart of
the expression of time-dependent signal dynamics oscillation mechanism of inflammation-related
signal crosstalk pathways.

The aforementioned common pathways reflect shared injury responses and are not spe-
cific to any single condition. However, through the application of various omics techniques
for both qualitative and quantitative assessments of inflammatory indicators, these funda-
mental common damage indicators may serve as preliminary screening markers during
the inflammatory response, thereby informing subsequent mechanistic investigations.

Additionally, each time point exhibited distinct differential enrichment pathways
(Figure 3F). This raises the hypothesis that novel targets within these differential pathways
may be implicated in the regulation of inflammation-related processes.

2.4. Repositioning of Core Targets within the Multi-Omics Time-Difference Signaling Pathway and
Identification of Potential Intervention Agents

The findings from the Venn intersection analysis indicated the presence of distinct
pathways at each time point (Figure 3F). At various modeling intervals, certain inflam-
matory biomarkers and pathways elicited by the LPS-stimulated inflammatory model
exhibited specificity. In our investigation of differential pathways at each time point, we
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concentrated on the early inflammatory phase, repositioning the core targets of multi-
omics related to cellular inflammation within specific pathways and examining potential
intervention agents.

At the 4-h sampling time point (Figure 4A), the PI3K-AKT signaling pathway emerged
as a significantly enriched pathway. This pathway is recognized as a transduction mecha-
nism for signals associated with extracellular cell survival and growth [36,37]. The interplay
between the PI3K-AKT pathway and inflammation is thought to involve the regulation
of downstream NF-κB signaling through the phosphorylation of IKKα and Tpl2 [38]. Nu-
merous studies have documented interventions targeting inflammation via the PI3K-AKT
pathway [39–41].

At the 6 h sampling time point (Figure 4B), β-alanine metabolism was identified as the
most significant pathway. Consequently, our initial focus shifted to β-alanine metabolism
to investigate its potential core targets following repositioning.

In the annotation map of potential targets associated with β-alanine metabolism
(Figure 4C), the differential genes Upb1, Carns1, Abat, Gad1, Aldh3, and Cndp, which was en-
riched within the metabolic pathway, were identified as substrates and products of catalytic
enzymes. These may serve as intervention agents to modulate the inflammatory response
mechanism. Notably, Upb1 functions as a catalytic enzyme involved in the synthesis of
Ureidopropionic acid [42], while other catalytic enzymes implicated in the production of
various compounds have been reported to have associations with inflammation in con-
temporary research [43–49]. Therefore, Ureidopropionic acid was selected as a candidate
intervention agent to assess its role in the regulation of inflammation.

The SwissTargetPrediction database was utilized to predict the targets of Ureidopropi-
onic acid (Figure 4D). The results indicated that the predicted targets related to Toll-like
and IL-1 receptors constituted 6.7% of the total, suggesting that Ureidopropionic acid may
play a role in the regulation of inflammation through these receptor targets.

2.5. Validation of the Anti-Inflammatory Effects of Ureidopropionic Acid
2.5.1. Protective Effect of Ureidopropionic Acid on LPS-Stimulated RAW2674.7 Cells

In this study, RAW264.7 cells were subjected to treatment with varying concentrations
of Ureidopropionic acid to assess cytotoxicity. As illustrated in Figure 5A, the concentration
range of Ureidopropionic acid that did not adversely affect the viability of RAW264.7 cells
was identified as 0.78125 to 6.25 µmol, while concentrations ranging from 12.5 to 50 µmol
exhibited a significant impact. This finding suggests that Ureidopropionic acid does not
exert a notable inhibitory effect on the proliferation of RAW264.7 macrophages within the
aforementioned concentration range.

Informed by differential enrichment pathway analyses of Ureidopropionic acid at the
6 h mark of LPS stimulation, as reported in existing literature, this study selected a 6 h
LPS stimulation period for modeling purposes. As depicted in Figure 5B, a decrease in
cell viability was observed following 6 h of LPS stimulation (p < 0.05). Conversely, the
administration of Ureidopropionic acid at concentrations of 6.25 µmol and 0.78125 µmol
for the same duration resulted in an increase in cell viability. Consequently, these two
concentrations were chosen for further experimental investigations.

2.5.2. Ureidopropionic Acid Attenuated the Expression of IL-6 and IL-1β mRNA in
LPS-Stimulated RAW264.7 Cells

As illustrated in Figure 6A,B, treatment with Ureidopropionic acid at a concentration
of 6.25 µmol resulted in a significant reduction in the expression levels of IL-6 and IL-1β
mRNA induced by LPS (p < 0.05).
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Figure 4. (A) LPS stimulated RAW264.7 cells for 4 h to specifically enrich the signal pathway
diagram. (B) LPS stimulated RAW264.7 cells for 6 h to specifically enrich the signal pathway diagram.
(C) The annotation map of potential targets of β-alanine metabolism and the structural formula
of compound Ureidopropionic acid, starts represented differential genes enriched in the pathway.
(D) SwissTargetPrediction database predicted the target chart of Ureidopropionic acid.
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µg/mL LPS. * p < 0.05, *** p < 0.001, **** p < 0.0001.
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Figure 6. (A) The expression level of IL-6 mRNA in RAW264.7 cells treated with each group was
determined by qRT-PCR (n = 21). (B) The expression level of IL-1β mRNA in RAW264.7 cells treated
with each group was determined by qRT-PCR (n = 24). # p < 0.05. **** p < 0.0001.

2.5.3. Ureidopropionic Acid Suppresses TNF-α mRNA Expression in LPS-Stimulated
RAW264.7 Cells

As shown in Figure 7, in the 25, 12.5, 6.25, and 3.125 µmol groups, the administration of
Ureidopropionic acid decreased the expression of TNF-α mRNA stimulated by LPS (p < 0.05).

As illustrated in Figure 7, the administration of Ureidopropionic acid at concentrations
of 25, 12.5, 6.25, and 3.125 µmol resulted in a significant reduction in the expression of
TNF-α mRNA in LPS-stimulated RAW264.7 cells (p < 0.05). The transcriptional regulation
of TNF expression is primarily mediated by the MyD88-NF-κB signaling pathway. Previous
studies have established that upon LPS stimulation, the mRNA expression of TNF-α in
macrophages increases rapidly, peaking within a brief time frame, followed by a swift
decline after one hour [50]. Consequently, in our assessment of relative TNF-α mRNA
levels, we opted to shorten the modeling duration to 0.5 h, with sampling conducted within
one hour. The findings indicate that Ureidopropionic acid can significantly modulate the
transcriptional levels of TNF-α during the initial phase of inflammatory stimulation.
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2.5.5. Molecular Docking of Ureidopropionic Acid with Autocatalytic Enzymes and
Potential Targets

In the annotation map pertaining to the potential targets involved in β-alanine
metabolism (Figure 4C), Upb1 was identified as the gene encoding β-ureidopropionase, an
enzyme that functions as a hydrolase, facilitating the conversion of Ureidopropionic acid
into β-alanine, ammonia, and carbon dioxide [51].

Initially, molecular docking studies were performed using the Autodock Vina software
(autodock_vina_1_1_2) to assess the interactions between β-ureidopropionase and both
Ureidopropionic acid and β-alanine. It is generally observed that the binding affinity
of catalytic enzymes for their substrates exceeds that for their products. The results of
the molecular docking analysis (Table 1) indicated binding energies of −5.1 kcal/mol for
the interaction between Upb1-encoded β-ureidopropionase and Ureidopropionic acid,
and −3.7 kcal/mol for the interaction with β-alanine. Subsequently, molecular docking
of the iNOS-encoded protein, nitric oxide synthase, with Ureidopropionic acid was also
conducted using the Autodock Vina software, yielding a binding energy of −5.3 kcal/mol.
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This finding suggests a strong affinity between nitric oxide synthase and the ligand molecule
Ureidopropionic acid (Figure 9A,B). This target may be significantly associated with the
mechanism by which Ureidopropionic acid modulates the inflammatory response.

Table 1. Molecular docking binding energy results of Ureidopropionic acid with Upb1, iNOS encoded
proteins, and the result of β-alanine with Upb1.

Chemical Compound Protein Gene Affinity (kcal/mol)

UREIDOPROPIONIC ACID
Nitric oxide synthase iNOS −5.3

Beta-ureidopropionase Upb1 −5.1
β-ALANINE −3.7
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3. Discussion

The dataset employed in this investigation was derived from multi-omics datasets
that encompass a variety of feature modules documented in the existing literature. The
integration or fusion of these datasets can significantly enhance the comprehension of sam-
ple variability. The concept of latent variables is instrumental in facilitating the integrated
analysis of multiple datasets that share a common mode [53]. This study was inspired
by the principles of ensemble learning, which led to the formulation of a classification
sampling model. The implementation of this algorithm, alongside a series of bioinformatics
analyses, revealed that the significance of enriched pathways within the inflammatory
system of ‘LPS-stimulated RAW264.7 mouse macrophages’ could elucidate specific molec-
ular mechanisms linked to time-dependent signaling dynamics, as both predicted and
confirmed by iterative mathematical models.
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In the context of literature data statistics, two predominant methodologies for ad-
dressing systematic bias are meta-analysis and data merging. Meta-analysis involves
calculating relevant statistics for individual datasets before their aggregation, while data
merging entails analyzing pooled data after bias removal. A comparative evaluation was
conducted using both synthetic and real data, utilizing two manually curated microarray
compendia [54]. Generally, algorithms and models associated with ensemble learning
may overlook certain pathways or targets due to the reduced significance of constructing
algorithmic models in isolation. However, low abundance or diminished significance
does not inherently imply a lack of activity. Consequently, this study adopted the data
merging approach, emphasizing the initial data from multidimensional histology follow-
ing manual normalization preprocessing to delineate microarrays for each section. An
integrated classification sampling model was subsequently reconstructed, with subsets
categorized based on temporal discrimination to facilitate separate bioinformatics analyses
of the responses. This methodology augmented both the diversity and quantity of genes
identified in the original omics data, resulting in the identification of new pathways or an
enhancement in the significance of certain pathways during the multi-omics enrichment
analysis at each time point. Notably, β-alanine metabolism was initially overlooked as
a significant pathway for anti-inflammatory target discovery due to its low significance
and abundance within the individual omics network. However, following the model’s
construction post-normalization preprocessing, the significance of β-alanine metabolism
was markedly increased, and novel compounds with potential drug-forming properties
within this metabolic pathway, specifically Ureidopropionic acid, were identified and
preliminarily validated for their anti-inflammatory effects.

Macrophages play a crucial role in the inflammatory response, serving as a vital
component of the innate immune system and engaging in a wide range of physiological
and pathological processes. Their involvement in the development of various inflamma-
tory diseases positions them as a focal point for inflammation research and therapeutic
strategy development. The ‘LPS-stimulated RAW264.7 mouse macrophages’ system is
a well-established in vitro model for investigating inflammatory responses. RAW264.7
cells exhibit rapid responses to LPS stimulation, characterized by significant dynamic
changes governed by time-dependent signaling mechanisms. In this inflammatory con-
text, inflammation-related signaling pathways reach peak activation within minutes to
hours following LPS stimulation, resulting in the production and release of numerous
pro-inflammatory factors and the establishment of a complex interaction network. The
expression of key enzymes in metabolic pathways is modulated through transcriptional
and post-translational modifications, thereby influencing metabolic pathways [55]. Thus,
early intervention is critical in this inflammatory system, as it can effectively inhibit the
signaling of relevant pathways and positively regulate associated metabolic pathways to
mitigate the production of inflammatory mediators, control the inflammatory response, and
provide optimal treatment within the therapeutic window to prevent irreversible damage.

In light of the fundamental principles of gene expression, there exists a discourse
regarding whether different omics layers, such as the proteome and transcriptome, should
be sampled at distinct time points to avoid the accumulation of noise resulting from tem-
poral bias. It is essential to acknowledge that timing discrepancies exist not only between
omics layers but also within the layers themselves [56]. For instance, in the metabolome,
second messengers are synthesized rapidly within seconds to minutes [57], while energy
metabolism undergoes changes over minutes to hours [58]. There is no universally optimal
time point for each omics layer, nor is there an ideal time interval for sampling between
different omics layers [56]. Throughout our investigative research, preprocessing was
employed to eliminate duplicate terms, thereby mitigating the accumulation of noise in
the comprehensive analysis. Consequently, we opted to integrate and normalize sample
data from various omics layers at the same time point within this inflammatory model.
Furthermore, our findings indicated that the temporal order of pathway significance in the
shared signaling pathways, as determined through Venn intersection analysis, exhibited
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an oscillatory trend consistent with the oscillatory response of intra-pathway signaling
dynamics. This observation validated the construction of our model and demonstrated the
feasibility of our data integration and normalization approach.

Utilizing the SwissTargetPrediction database, we predicted the target of Ureidopro-
pionic acid and found that it may be involved in inflammatory regulation by modulating
Toll-like and IL-1 receptors. The activation of Toll-like receptors (TLRs) is closely associated
with the initiation of inflammatory responses, which can activate various transcription
factors that further promote the expression of inflammatory cytokines. Within the Toll-like
receptor family, TLR4 directly recognizes lipopolysaccharide (LPS) stimulation and initiates
a series of subsequent inflammatory responses. Upon binding to LPS, TLR4 is activated via
the myeloid differentiation factor 88 (MyD88)-dependent pathway, leading to the activation
of IL-1 receptor-associated kinases (IRAKs). The activated IRAKs facilitate the release and
translocation of the NF-κB complex to the nucleus, where NF-κB binds to the promoter re-
gions of TNF-α, IL-6, IL-1β, and other genes, thereby stimulating the transcription of TNF-α,
IL-6, and IL-1β mRNA [59]. Similarly, when NF-κB is activated, it can bind directly to the
promoter of the iNOS gene, promoting the transcription of iNOS mRNA and subsequently
increasing the expression of iNOS proteins. iNOS catalyzes the production of nitric oxide
(NO) and citrulline from L-arginine and oxygen. Under LPS-stimulated inflammatory
conditions, elevated expression of iNOS results in increased NO production [60].

Therefore, in the present study, we selected the expression levels of IL-6 and IL-1β
mRNA, as well as the content of NO, to preliminarily assess whether Ureidopropionic
acid is involved in the regulation of inflammation following LPS stimulation of RAW264.7
cells. Additionally, we conducted molecular docking of nitric oxide synthase, a key tar-
get protein for NO production, with Ureidopropionic acid to predict its potential as a
candidate for intervening in the cellular inflammatory system as one of the targets in the
regulatory mechanism.

This research provides only a preliminary validation of the inflammatory regulatory
role of Ureidopropionic acid. Further exploration of the underlying mechanisms by which
Ureidopropionic acid participates in inflammatory regulation through nitric oxide synthase
is warranted (Figure 10).
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4. Materials and Methods
4.1. Retrieval Strategy and Screening Extraction of Literature Omics Data

Utilization of the PubMed database (https://pubmed.ncbi.nlm.nih.gov/ accessed
on 12 September 2024), the retrieval terms included ‘RAW264.7, LPS, transcriptomics’,
‘RAW264.7, LPS, proteomics’, ‘RAW264.7, LPS, metabolomics’ with a search date from
1 January 2014 to 1 January 2024, collected relevant omics literature targeting LPS-induced
RAW264.7 mouse macrophages. The heat map or Supplementary Table Data of the relevant
omics in the literature were screened and extracted, respectively. For the data of screened
genes, proteins, and metabolites, data collection, and extraction included omics classifi-
cation, LPS intervention time point, differential genes or proteins or metabolites, and the
above contents were classified and sorted. The origin of our searches was fixed to the ‘LPS,
RAW264.7’ model, and all textual data collected in this baseline were collected, but data on
differential expression were not included in our screening criteria.

4.2. Preprocessed of Original Omics Data

In our work, the original omics data of each group were preprocessed by manual
normalization, and the processed omics data were classified into several gene ID matrices.

4.2.1. Differential Genes of Transcriptomics

Used the Biomart database (http://asia.ensembl.org/biomart/martview/ accessed on
12 September 2024), Bioconductor version: Release (3.18). DataSet with Ensemble Genes-
Mouse Gene selected the Input external references ID list-UniProtKB Gene Name in the
Filters column, exported the Excel file, and the title bar which names NCBI gene (formerly
Entrez Gene) ID was the gene ID obtained by batch conversion. For genes that cannot be
converted in batches, the conversion of mouse gene ID was performed by querying the
conversion separately in the UniProt database (https://www.uniprot.org/ accessed on
12 September 2024), Release 2024_02, GeneCards database (https://www.genecards.org/
accessed on 12 September 2024), Version 5.20 and NCBI database (https://www.ncbi.nlm.
nih.gov/ accessed on 12 September 2024).

4.2.2. Differential Proteins in Proteomics

The protein heat map or Supplementary Table Data of proteomics were used to query
the gene encoding the protein of the mouse species through the UniProt database and then
further converted into the gene Entrez Gene ID in the Biomart and NCBI databases.

4.2.3. Metabolites of Metabolomics

Used the method of querying the related catalytic enzymes involved in the synthe-
sis of metabolites in the KEGG database (https://www.genome.jp/kegg/ accessed on
12 September 2024), Release 110.0, and the related catalytic enzymes that used metabolites
as substrates to produce new substances. Then UniProt, GeneCards, and NCBI were uti-
lized to screen the genes of mice by using the enzymes obtained from the query, and they
were also converted into Entrez Gene ID by batch conversion or single conversion.

4.3. Construction of Classification Sampling Model

After eliminating duplicates, the data normalized to Entrez Gene ID were put into the
same matrix as the total set T. A subset M was selected from the total set T, and a total of N
times was selected according to the time sequence. Subsequent biographical analysis was
performed on each subset, respectively.

4.4. KEGG Pathway Enrich Analysis

The multi-gene pathway enrichment analysis was performed through the DAVID
database (https://david.ncifcrf.gov/ accessed on 12 September 2024), DAVID Knowledge-
base v2024q1 release, according to time resolution.

https://pubmed.ncbi.nlm.nih.gov/
http://asia.ensembl.org/biomart/martview/
https://www.uniprot.org/
https://www.genecards.org/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.genome.jp/kegg/
https://david.ncifcrf.gov/
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4.5. Pathway Intersection Analysis and Target Prediction

According to the results of multi-gene pathway enrichment at each time point, the
Bioinformatics website (https://www.bioinformatics.com.cn/ accessed on 12 September
2024) was used to draw the Venn diagram for intersection analysis. Subsequently, they were
output as mutual pathways and differential pathways with differential genes at each time
point. After extracting the differential pathway with the smallest p-value and enriching the
main substances in the differential pathway, the SwissTargetPrediction target prediction
online platform (http://www.swisstargetprediction.ch accessed on 12 September 2024)
was used to predict the potential active target of the substance.

4.6. Molecular Docking

The crystallographic texture of the target was retrieved and downloaded from the
Protein Data Bank (PDB) database (http://www.rcsb.org/ accessed on 12 September
2024) at a resolution of less than 3 Å. The mouse source crystallographic texture was
selected and saved in PDB format. The original ligand was removed from the protein
crystallographic texture using the PyMOL software (PyMOL 2.5) (https://pymol.org/2/
accessed on 12 September 2024) and saved as a PDB file. The AutoDockTools software was
used to remove water molecules, add polar hydrogen atoms, and assign charges to the
protein. The 3D structure of the chemical composition was obtained from the PubChem
database and saved as an SDF file, which was then converted to PDB format by the PyMOL
software. In the AutoDockTools software, the ligands were processed by adjusting the
charge, determining the root of the ligand, and selecting the twisted bond of the ligand
before being saved in PDBQT format. The grid box module in the AutoDockTools software
was used to set the X, Y, and Z coordinates to identify the active sites of the protein and
generate a docking information file. Molecular docking was carried out in AutoDock Vina
to determine the docking affinity (kcal/mol) of the active ingredient with the key target,
with each docking process repeated three times. The affinity score was used to assess the
binding of active ingredients to the receptors. Finally, the docking results were visualized
using the PyMOL software.

4.7. Cell Culture and Activity Determination

Mouse monocyte-macrophage leukemia cell line RAW264.7 (Cell Bank, Chinese
Academy of Sciences, Shanghai, China, TCM13) was cultured in high glucose DMEM
medium (Vina Cell Biotechnology Co., Ltd. Shanghai, China, Lot. 2351429) containing
15% fetal bovine serum (Cellmax, FBS, Beijing, China) and a 1% penicillin–streptomycin
mixture (Boster Bioengineering Co., Ltd., Wuhan, China) at 37 ◦C and 5% CO2 saturated
humidity. RAW264.7 cells in the logarithmic growth phase were seeded in 96-well plates
at a density of 1.5 × 105 cells/mL. The cells were stimulated with 0.1 µg/mL LPS for 6 h
and then cultured with 50, 25, 12.5, 6.25, 3.125, 1.5625, and 0.78125 µmol Ureidopropionic
acid for 6 h, respectively. The cell viability was measured by CCK8 (Baoguang Biological,
Chongqing, China, Lot. # X2544481X), and the absorbance value (OD value) was measured
by Thermo Electron Corporation (Waltham, MA, USA) at 450 mm.

4.8. Determination of the Nitric Oxide (NO) Level

RAW264.7 cells in the logarithmic growth phase were seeded in 24-well plates at a
density of 1 × 106 cells/mL overnight and stimulated with 0.1 µg/mL LPS. After 6 h, the
upper medium was discarded and treated with two concentrations of Ureidopropionic
acid (6.25, 0.78125 µmol) for another 6 h. After the treatment, the cell culture medium was
collected, and the supernatant was taken for NO level detection by the Griess method (A
NO kit was purchased from Beyotime Biotechnology Co., Ltd., Shanghai, China, S0021S,
Lot No. 052223231108).

https://www.bioinformatics.com.cn/
http://www.swisstargetprediction.ch
http://www.rcsb.org/
https://pymol.org/2/
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4.9. Real-Time Fluorescence Quantitative PCR

RAW264.7 cells in the logarithmic growth phase were seeded in 24-well plates at a
density of 1 × 106 cells/mL overnight and stimulated with 0.1 µg/mL LPS. After 6 h, the
upper medium was discarded and treated with two concentrations of Ureidopropionic acid
(6.25, 0.78125 µmol) for 6 h.

RAW264.7 cells in the logarithmic growth phase were seeded in 24-well plates at a
density of 1 × 106 cells/mL overnight and stimulated with 0.1 µg/mL LPS. After 0.5 h, the
upper medium was discarded and treated with seven concentrations of Ureidopropionic
acid (25, 12.5, 6.25, 3.125, 1.5625, 0.78125, 0.390625 µmol) for 0.5 h.

After the treatment, the bottom cells were collected, and the RNA extraction kit (Lot.
No. R230501) was used to extract the RNA from the cells. After the RNA concentration
was measured and quantified, according to the reverse transcription kit (Servicebio Biotech-
nology Co., Ltd., Wuhan, China, Cat: G3337-100; lot. MPC2311007). The RNA was reverse
transcribed into cDNA, and fluorescence quantification was performed using SYBR Prime
(purchased from Baoguang Biological, Chongqing, China, Lot. # L1445255T). The mRNA
expression levels of IL-6, IL-1β, and TNF-α were standardized by β-actin as an internal
reference gene. The data were calculated by the 2∆∆Ct method. The primer sequences used
are as follows (Table 2):

Table 2. The primer sequences in this work.

Gene Gene Accession No. Primer Sequence (5′–3′)

IL-6 NM_031168 F: CAAAGCCAGAGTCCTTCAGAG
R: AGCATTGGAAATTGGGGTAG

IL-1β NM_008361 F: TGGCAACTGTTCCTG
R: GGAAGCAGCCCTTCATCTTT

TNF-α NM_013693 F: CCCTCACACTCAGATCATCTTCT
R: GCTACGACGTGGGCTACAG

β-Actin NM_007393 F: TGACGGGGTCACCCACACTG
R: AAGCTGTAGCCGCGCTCGGT

4.10. Statistical Analysis

The data were processed by the GraphPad Prism 9.3.0 software, and the data were
expressed as Mean ± SEM. The mean comparison between multiple groups was analyzed
by the analysis of variance, and the pairwise comparison between multiple groups was
performed using the t test. p < 0.05 was set as statistically significant.

5. Summary and Conclusions

This research utilized ensemble learning techniques to analyze a dataset related to
omics literature on cell inflammation. By integrating and classifying the model, the study
re-evaluated the pathway linked to β-alanine metabolism in RAW264.7 cells exposed
to lipopolysaccharide (LPS) stimulation, a pathway that may have been previously ne-
glected in the study of inflammatory systems. Furthermore, a novel anti-inflammatory
compound, Ureidopropionic acid, was identified within the β-alanine metabolism pathway.
An initial in vitro pharmacodynamic evaluation of Ureidopropionic acid demonstrated
a dose–response relationship, particularly at lower concentrations, which significantly
affected the expression levels of TNF-α mRNA. However, the lack of pharmacokinetic data
has obscured the specific mechanism of action of this compound. Therefore, additional
in vivo studies, the formulation of well-structured dosing regimens, and the implementa-
tion of techniques such as Ligand fishing and Surface Plasmon Resonance are imperative to
ascertain whether Ureidopropionic acid acts as a single-target or multi-target therapeutic
agent in future research endeavors.
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