The Aggravation of Neuropsychiatric Symptoms in the Offspring of a Korean Family with Intellectual Disability and Developmental Delay Caused by a Novel ARX p.Lys385Ter Variant
Abstract
:1. Introduction
2. Case Presentation
2.1. The Proband
2.2. The Proband’s Mother
2.3. The Proband’s Grandmother
3. Genetic Diagnosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bienvenu, T.; Poirier, K.; Friocourt, G.; Bahi, N.; Beaumont, D.; Fauchereau, F.; Ben Jeema, L.; Zemni, R.; Vinet, M.C.; Francis, F.; et al. ARX, a novel Prd-class-homeobox gene highly expressed in the telencephalon, is mutated in X-linked mental retardation. Hum. Mol. Genet. 2002, 11, 981–991. [Google Scholar] [CrossRef] [PubMed]
- Colasante, G.; Simonet, J.C.; Calogero, R.; Crispi, S.; Sessa, A.; Cho, G.; Golden, J.A.; Broccoli, V. ARX regulates cortical intermediate progenitor cell expansion and upper layer neuron formation through repression of Cdkn1c. Cereb. Cortex 2015, 25, 322–335. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Das, S.; Petras, K.; Kitamura, K.; Morohashi, K.I.; Abuelo, D.N.; Barr, M.; Bonneau, D.; Brady, A.F.; Carpenter, N.J.; et al. Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum. Mutat. 2004, 23, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Wallerstein, R.; Sugalski, R.; Cohn, L.; Jawetz, R.; Friez, M. Expansion of the ARX spectrum. Clin. Neurol. Neurosurg. 2008, 110, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Bettella, E.; Di Rosa, G.; Polli, R.; Leonardi, E.; Tortorella, G.; Sartori, S.; Murgia, A. Early-onset epileptic encephalopathy in a girl carrying a truncating mutation of the ARX gene: Rethinking the ARX phenotype in females. Clin. Genet. 2013, 84, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, J.; Calvert, S.; Shoubridge, C.; McGaughran, J. A novel ARX loss of function variant in female monozygotic twins is associated with chorea. Eur. J. Med. Genet. 2021, 64, 104315. [Google Scholar] [CrossRef]
- Migeon, B.R. X-linked diseases: Susceptible females. Genet. Med. 2020, 22, 1156–1174. [Google Scholar] [CrossRef]
- Mattiske, T.; Moey, C.; Vissers, L.E.; Thorne, N.; Georgeson, P.; Bakshi, M.; Shoubridge, C. An Emerging Female Phenotype with Loss-of-Function Mutations in the Aristaless-Related Homeodomain Transcription Factor ARX. Hum. Mutat. 2017, 38, 548–555. [Google Scholar] [CrossRef]
- Curie, A.; Nazir, T.; Brun, A.; Paulignan, Y.; Reboul, A.; Delange, K.; Cheylus, A.; Bertrand, S.; Rochefort, F.; Bussy, G.; et al. The c.429_452 duplication of the ARX gene: A unique developmental-model of limb kinetic apraxia. Orphanet J. Rare Dis. 2014, 9, 25. [Google Scholar] [CrossRef]
- Gras, M.; Heide, S.; Keren, B.; Valence, S.; Garel, C.; Whalen, S.; Jansen, A.C.; Keymolen, K.; Stouffs, K.; Jennesson, M.; et al. Further characterisation of ARX-related disorders in females due to inherited or de novo variants. J. Med. Genet. 2024, 61, 103–108. [Google Scholar] [CrossRef]
- Shoubridge, C.; Tan, M.H.; Seiboth, G.; Gécz, J. ARX homeodomain mutations abolish DNA binding and lead to a loss of transcriptional repression. Hum. Mol. Genet. 2012, 21, 1639–1647. [Google Scholar] [CrossRef] [PubMed]
- Poeta, L.; Padula, A.; Attianese, B.; Valentino, M.; Verrillo, L.; Filosa, S.; Shoubridge, C.; Barra, A.; Schwartz, C.E.; Christensen, J.; et al. Histone demethylase KDM5C is a SAHA-sensitive central hub at the crossroads of transcriptional axes involved in multiple neurodevelopmental disorders. Hum. Mol. Genet. 2019, 28, 4089–4102. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, K.; Yanazawa, M.; Sugiyama, N.; Miura, H.; Iizuka-Kogo, A.; Kusaka, M.; Omichi, K.; Suzuki, R.; Kato-Fukui, Y.; Kamiirisa, K.; et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat. Genet. 2002, 32, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Strømme, P.; Mangelsdorf, M.E.; Shaw, M.A.; Lower, K.M.; Lewis, S.M.; Bruyere, H.; Lütcherath, V.; Gedeon, A.K.; Wallace, R.H.; Scheffer, I.E.; et al. Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat. Genet. 2002, 30, 441–445. [Google Scholar] [CrossRef]
- Moffat, J.J.; Ka, M.; Jung, E.M.; Kim, W.Y. Genes and brain malformations associated with abnormal neuron positioning. Mol. Brain 2015, 8, 72. [Google Scholar] [CrossRef]
- Poirier, K.; Van Esch, H.; Friocourt, G.; Saillour, Y.; Bahi, N.; Backer, S.; Souil, E.; Castelnau-Ptakhine, L.; Beldjord, C.; Francis, F.; et al. Neuroanatomical distribution of ARX in brain and its localisation in GABAergic neurons. Brain Res. Mol. Brain Res. 2004, 122, 35–46. [Google Scholar] [CrossRef]
- Colombo, E.; Galli, R.; Cossu, G.; Gécz, J.; Broccoli, V. Mouse orthologue of ARX, a gene mutated in several X-linked forms of mental retardation and epilepsy, is a marker of adult neural stem cells and forebrain GABAergic neurons. Dev. Dyn. 2004, 231, 631–639. [Google Scholar] [CrossRef]
- Friocourt, G.; Parnavelas, J.G. Mutations in ARX Result in Several Defects Involving GABAergic Neurons. Front. Cell Neurosci. 2010, 4, 4. [Google Scholar] [CrossRef]
- Olivetti, P.R.; Noebels, J.L. Interneuron, interrupted: Molecular pathogenesis of ARX mutations and X-linked infantile spasms. Curr. Opin. Neurobiol. 2012, 22, 859–865. [Google Scholar] [CrossRef]
- Gécz, J.; Cloosterman, D.; Partington, M. ARX: A gene for all seasons. Curr. Opin. Genet. Dev. 2006, 16, 308–316. [Google Scholar] [CrossRef]
- Shoubridge, C.; Fullston, T.; Gécz, J. ARX spectrum disorders: Making inroads into the molecular pathology. Hum. Mutat. 2010, 31, 889–900. [Google Scholar] [CrossRef] [PubMed]
- Strømme, P.; Mangelsdorf, M.E.; Scheffer, I.E.; Gécz, J. Infantile spasms, dystonia, and other X-linked phenotypes caused by mutations in Aristaless related homeobox gene, ARX. Brain Dev. 2002, 24, 266–268. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, R.; Moro, F.; Kato, M.; Barkovich, A.J.; Shiihara, T.; McShane, M.A.; Hurst, J.; Loi, M.; Tohyama, J.; Norci, V.; et al. Expansion of the first PolyA tract of ARX causes infantile spasms and status dystonicus. Neurology 2007, 69, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Akula, S.K.; Quiroz, V.; D’Gama, A.M.; Chiu, M.Y.; Koh, H.Y.; Saffari, A.; Zaman, Z.; Tam, A.; Srouji, R.; Valentine, R.; et al. The spectrum of movement disorders in young children with ARX-related epilepsy-dyskinesia syndrome. Ann. Clin. Transl. Neurol. 2024, 11, 1643–1647. [Google Scholar] [CrossRef]
- Kato, M.; Koyama, N.; Ohta, M.; Miura, K.; Hayasaka, K. Frameshift mutations of the ARX gene in familial Ohtahara syndrome. Epilepsia 2010, 51, 1679–1684. [Google Scholar] [CrossRef]
- Ekşioğlu, Y.Z.; Pong, A.W.; Takeoka, M. A novel mutation in the aristaless domain of the ARX gene leads to Ohtahara syndrome, global developmental delay, and ambiguous genitalia in males and neuropsychiatric disorders in females. Epilepsia 2011, 52, 984–992. [Google Scholar] [CrossRef]
- Shoubridge, C.; Jackson, M.; Grinton, B.; Berkovic, S.F.; Scheffer, I.E.; Huskins, S.; Thomas, A.; Ware, T. Splice variant in ARX leading to loss of C-terminal region in a boy with intellectual disability and infantile onset developmental and epileptic encephalopathy. Am. J. Med. Genet. A 2019, 179, 1483–1490. [Google Scholar] [CrossRef]
- Sherr, E.H. The ARX story (epilepsy, mental retardation, autism, and cerebral malformations): One gene leads to many phenotypes. Curr. Opin. Pediatr. 2003, 15, 567–571. [Google Scholar] [CrossRef]
- Vacca, M.; Della Ragione, F.; Scalabrì, F.; D’Esposito, M. X inactivation and reactivation in X-linked diseases. Semin. Cell Dev. Biol. 2016, 56, 78–87. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, H.; Liu, X.; Shi, Z.; Li, H.; Wang, Z.; Jie, X.; Huang, S.; Zhang, F.; Li, J.; et al. Mutations of ARX and non-syndromic intellectual disability in Chinese population. Genes. Genom. 2019, 41, 125–131. [Google Scholar] [CrossRef]
- Scheffer, I.E.; Wallace, R.H.; Phillips, F.L.; Hewson, P.; Reardon, K.; Parasivam, G.; Stromme, P.; Berkovic, S.F.; Gecz, J.; Mulley, J.C. X-linked myoclonic epilepsy with spasticity and intellectual disability: Mutation in the homeobox gene ARX. Neurology 2002, 59, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Lyon, M.F. Sex chromatin and gene action in the mammalian X-chromosome. Am. J. Hum. Genet. 1962, 14, 135. [Google Scholar] [PubMed]
- Marsh, E.; Fulp, C.; Gomez, E.; Nasrallah, I.; Minarcik, J.; Sudi, J.; Christian, S.L.; Mancini, G.; Labosky, P.; Dobyns, W.; et al. Targeted loss of Arx results in a developmental epilepsy mouse model and recapitulates the human phenotype in heterozygous females. Brain 2009, 132, 1563–1576. [Google Scholar] [CrossRef] [PubMed]
- De Hoon, B.; Monkhorst, K.; Riegman, P.; Laven, J.S.; Gribnau, J. Buccal swab as a reliable predictor for X inactivation ratio in inaccessible tissues. J. Med. Genet. 2015, 52, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Poeta, L.; Fusco, F.; Drongitis, D.; Shoubridge, C.; Manganelli, G.; Filosa, S.; Paciolla, M.; Courtney, M.; Collombat, P.; Lioi, M.B.; et al. A regulatory path associated with X-linked intellectual disability and epilepsy links KDM5C to the polyalanine expansions in ARX. Am. J. Hum. Genet. 2013, 92, 114–125. [Google Scholar] [CrossRef]
Grandmother (I-2) | Mother (II-2) | Aunt (II-3) | The Proband (III-2) | |
---|---|---|---|---|
Cognitive ability | ||||
DD/ID | Absent | Mild ID | Mild ID | Severe DD |
ASD | Absent | Absent | Absent | Absent |
Learning disability | Present | Present | Present | Present |
Brain MRI | ||||
ACC | Absent | Present | Not assessed | Present |
Gyration abnormalities | Absent | Absent | Not assessed | Present |
Epilepsy | ||||
Age at first seizures | Absent | Absent | Absent | 5 months |
Initial epileptic features | Absent | Absent | Absent | Generalized seizures |
Epilepsy | Absent | Absent | Absent | Present |
DEE | Absent | Absent | Absent | Present |
Pharmacoresistance | Absent | Absent | Absent | Present * |
Epileptic manifestation at last examination | Absent | Absent | Absent | Controlled with polytherapy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.Y.; Kim, T.Y.; Gwack, J.; Park, J. The Aggravation of Neuropsychiatric Symptoms in the Offspring of a Korean Family with Intellectual Disability and Developmental Delay Caused by a Novel ARX p.Lys385Ter Variant. Int. J. Mol. Sci. 2024, 25, 10327. https://doi.org/10.3390/ijms251910327
Han JY, Kim TY, Gwack J, Park J. The Aggravation of Neuropsychiatric Symptoms in the Offspring of a Korean Family with Intellectual Disability and Developmental Delay Caused by a Novel ARX p.Lys385Ter Variant. International Journal of Molecular Sciences. 2024; 25(19):10327. https://doi.org/10.3390/ijms251910327
Chicago/Turabian StyleHan, Ji Yoon, Tae Yun Kim, Jin Gwack, and Joonhong Park. 2024. "The Aggravation of Neuropsychiatric Symptoms in the Offspring of a Korean Family with Intellectual Disability and Developmental Delay Caused by a Novel ARX p.Lys385Ter Variant" International Journal of Molecular Sciences 25, no. 19: 10327. https://doi.org/10.3390/ijms251910327
APA StyleHan, J. Y., Kim, T. Y., Gwack, J., & Park, J. (2024). The Aggravation of Neuropsychiatric Symptoms in the Offspring of a Korean Family with Intellectual Disability and Developmental Delay Caused by a Novel ARX p.Lys385Ter Variant. International Journal of Molecular Sciences, 25(19), 10327. https://doi.org/10.3390/ijms251910327