Rapid and Direct Detection of the Stubby Root Nematode, Paratrichodorus allius, from Soil DNA Extracts Using Recombinase Polymerase Amplification Assay
Abstract
:1. Introduction
2. Results
2.1. RPA Specificity
2.2. RPA Sensitivity
2.2.1. Real-Time Detection of DNA Extracted from Nematode Individuals
2.2.2. Real-Time Detection of DNA Extracted Directly from Artificially Infested Soil
2.3. Regression Analysis of Threshold Time and Nematode Number
2.4. Direct Detection of P. allius from Naturally Infested Field Soil
3. Discussion
4. Materials and Methods
4.1. Nematode Collection
4.2. Nematode Extraction from Soil and Genus Identification
4.3. DNA Extraction
4.4. Species Confirmation
4.5. RPA Probe Design
4.6. Development of Real-Time RPA Assay
4.7. Threshold Estimation for Real-Time RPA Assay
4.8. Evaluation of RPA Specificity
4.9. Evaluation of RPA Sensitivity
4.9.1. For Paratrichodorus allius Nematode Individuals
4.9.2. For Direct Detection of Paratrichodorus allius from Artificially Infested Soil
4.10. Validation of the Developed RPA Assay Using Field Soil Samples
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Subbotin, S.A.; Vera, I.C.D.P.; Inserra, R.N.; Chizhov, V.N.; Decraemer, W. Molecular characterisation of some stubby root nematodes (Nematoda: Trichodoridae) from the USA and other countries. Nematology 2019, 22, 39–52. [Google Scholar] [CrossRef]
- Standifer, M.S.; Perry, V.G. Some effects of sting and stubby root nematodes on grapefruit roots. Phytopathology 1960, 50, 152–156. [Google Scholar]
- Zuckerman, B.M. Parasitism and pathogenesis of the cultivated cranberry by some nematodes. Nematologica 1961, 6, 135–143. [Google Scholar] [CrossRef]
- Ayala, A.; Allen, M.W.; Noffsinger, E.M. Host range, biology, and factors affecting survival and reproduction of the stubby root nematode. J. Agric. Univ. Puerto Rico 1970, 54, 341–369. [Google Scholar] [CrossRef]
- Decraemer, W. The Family Trichodoridae: Stubby Root and Virus Vector Nematodes; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Ploeg, A.T.; Decraemer, W. The occurrence and distribution of trichodorid nematodes and their associated tobraviruses in Europe and the former Soviet Union. Nematology 1997, 43, 228–251. [Google Scholar]
- Decraemer, W.; Robbins, R.T. The who, what and where of longidoridae and trichodoridae. J. Nematol. 2007, 39, 295–297. [Google Scholar]
- Hooker, W.J. Compendium of Potato Diseases; International Potato Center: Lima, Peru, 1981. [Google Scholar]
- Jensen, H.J. Trichodorus allius, a new species of stubby-root nematode from Oregon (Nemata: Dorylaimoidea). Proc. Helminthol. Soc. Wash. 1963, 30, 157–159. [Google Scholar]
- Mojtahedi, H.; Santo, G.S. Ecology of Paratrichodorus allius and its relationship to the corky ring-spot disease of potato in the Pacific Northwest. Am. J. Potato Res. 1999, 76, 273–280. [Google Scholar] [CrossRef]
- David, N.; Mallik, I.; Gudmestad, N.C. First Report of tobacco rattle virus associated with corky ringspot in potatoes grown in North Dakota. Plant Dis. 2009, 94, 130. [Google Scholar] [CrossRef] [PubMed]
- Mojtahedi, H.; Crosslin, J.M.; Santo, G.S.; Brown, C.R.; Thomas, P.E. Pathogenicity of Washington and Oregon isolates of tobacco rattle virus on potato. Am. J. Potato Res. 2001, 78, 183–190. [Google Scholar] [CrossRef]
- Ingham, R.E.; Hamm, P.B.; Willams, R.E.; Swanson, W.H. Control of Paratrichodorus allius and corky ringspot disease of potato in the Columbia Basin of Oregon. J. Nematol. 2000, 32, 566–575. [Google Scholar] [PubMed]
- Kirk, W.W.; Gieck, S.L.; Crosslin, J.M.; Hamm, P.B. First report of corky ringspot caused by Tobacco rattle virus on potatoes (Solanum tuberosum) in Michigan. Plant Dis. 2008, 92, 485. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Nicora, H.D.; Mekete, T.; Sekora, N.; Niblack, T.L. First report of the stubby-root nematode (Paratrichodorus allius) from a corn field in Ohio. Plant Dis. 2014, 98, 1164. [Google Scholar] [CrossRef]
- Yan, G.P.; Plaisance, A.; Huang, D.; Upadhaya, A.; Gudmestad, N.C.; Handoo, Z.A. First report of the stubby root nematode Paratrichodorus allius on potato in North Dakota. Plant Dis. 2016, 100, 1247. [Google Scholar] [CrossRef]
- Yan, G.P.; Khan, M.; Huang, D.; Lai, X.; Handoo, Z.A. First report of the stubby root nematode Paratrichodorus allius on sugar beet in Minnesota. Plant Dis. 2016, 100, 1022. [Google Scholar] [CrossRef]
- Hajihassani, A.; Hamidi, N.; Dutta, B.; Tyson, C. First report of stubby-root nematode, Paratrichodorus minor, on onion in Georgia, USA. J. Nematol. 2018, 50, 453–455. [Google Scholar] [CrossRef]
- Zeng, Y.; Ye, W.; Tredway, L.; Martin, S.; Martin, M. Taxonomy and morphology of plant-parasitic nematodes associated with turfgrasses in North and South Carolina, USA. Zootaxa 2012, 3452, 1–46. [Google Scholar] [CrossRef]
- Mojtahedi, H.; Santo, G.S.; Handoo, Z.; Crosslin, J.M.; Brown, C.R.; Thomas, P.E. Distribution of Paratrichodorus allius and Tobacco rattle virus in Pacific Northwest potato fields. J. Nematol. 2000, 32, 447. [Google Scholar]
- Decraemer, W.; Baujard, P. A polytomous key for the identification of species of the family Trichodoridae Thorne, 1935 (Nematoda: Triplonchida). Fundam. Appl. Nematol. 1998, 21, 37–62. [Google Scholar]
- Riga, E.; Karanastasi, E.; Oliveira, C.M.G.; Neilson, R. Molecular identification of two stubby root nematode species. Am. J. Potato Res. 2007, 84, 161–167. [Google Scholar] [CrossRef]
- Huang, D.; Yan, G.; Skantar, A.M. Development of real-time and conventional PCR assays for identifying stubby root nematode Paratrichodorus allius. Plant Dis. 2017, 101, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Yan, G.; Gudmestad, N.; Ye, W.; Whitworth, J.; Frost, K.; Crow, W.; Hajihassani, A. Developing a one-step multiplex PCR assay for rapid detection of four stubby-root nematode species, Paratrichodorus allius, P. minor, P. porosus, and Trichodorus obtusus. Plant Dis. 2019, 103, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Yan, G.; Gudmestad, N.; Skantar, A. Quantification of Paratrichodorus allius in DNA extracted from soil using TaqMan Probe and SYBR Green real-time PCR assays. Nematology 2017, 19, 987–1001. [Google Scholar] [CrossRef]
- Blaxter, M.L.; De Ley, P.; Garey, J.R.; Llu, L.X.; Scheldeman, P.; Vierstraete, A.; Vanfleteren, J.R.; Mackey, L.Y.; Dorris, M.; Frisse, L.M.; et al. A molecular evolutionary framework for the phylum Nematoda. Nature 1998, 392, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Boutsika, K.; Phillips, M.S.; MacFarlane, S.A.; Brown, D.J.F.; Holeva, R.C.; Blok, V.C. Molecular diagnostics of some trichodorid nematodes and associated Tobacco rattle virus. Plant Pathol. 2004, 53, 110–116. [Google Scholar] [CrossRef]
- Kumari, S.; Subbotin, S.A. Molecular characterization and diagnostics of stubby root and virus vector nematodes of the family Trichodoridae (Nematoda: Triplonchida) using ribosomal RNA genes. Plant Pathol. 2012, 61, 1021–1031. [Google Scholar] [CrossRef]
- Lawaju, D.B.; Yan, D.G.; Whitworth, J. Development of a droplet digital PCR assay for detection and quantification of stubby root nematode, Paratrichodorus allius in soil. Plant Dis. 2023, 107, 3344–3353. [Google Scholar] [CrossRef]
- Subbotin, S.A. Recombinase polymerase amplification assay for rapid detection of the root-knot nematode Meloidogyne enterolobii. Nematology 2019, 21, 243–251. [Google Scholar] [CrossRef]
- Subbotin, S.A.; Burbridge, J. Sensitive, accurate and rapid detection of the northern root-knot nematode, Meloidogyne hapla, using recombinase polymerase amplification assays. Plants 2021, 10, 336. [Google Scholar] [CrossRef]
- Wang, X.; Lei, R.; Peng, H.; Jiang, R.; Shao, H.; Ge, J.; Peng, D. Rapid Diagnosis and Visual Detection of Potato Cyst Nematode (Globodera rostochiensis) Using Recombinase Polymerase Amplification Combination with Lateral Flow Assay Method (RPA-LFA). Agronomy 2022, 12, 2580. [Google Scholar] [CrossRef]
- Ju, Y.; Lin, Y.; Yang, G.; Wu, H.; Pan, Y. Development of recombinase polymerase amplification assay for rapid detection of Meloidogyne incognita, M. javanica, M. arenaria, and M. enterolobii. Eur. J. Plant Pathol. 2019, 155, 1155–1163. [Google Scholar] [CrossRef]
- Chi, Y.K.; Zhao, W.; Ye, M.D.; Ali, F.; Wang, T.; Qi, R.D. Evaluation of recombinase polymerase amplification assay for detecting Meloidogyne javanica. Plant Dis. 2020, 104, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Cha, D.; Kim, D.; Choi, W.; Park, S.; Han, H. Point-of-care diagnostic (POCD) method for detecting Bursaphelenchus xylophilus in pinewood using recombinase polymerase amplification (RPA) with the portable optical isothermal device (POID). PLoS ONE 2020, 15, e0227476. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Yang, X.; Zhang, X.; Luan, M.; Guo, B.; Liu, C.; Pan, J.; Mei, S. Rapid and visual detection of Meloidogyne hapla using recombinase polymerase amplification combined with a lateral flow dipstick assay. Plant Dis. 2021, 105, 2697–2703. [Google Scholar] [CrossRef]
- Daher, R.K.; Stewart, G.; Boissinot, M.; Bergeron, M.G. Recombinase polymerase amplification for diagnostic applications. Clin. Chem. 2016, 62, 947–958. [Google Scholar] [CrossRef]
- Goraya, M.; Yan, G.; Whitworth, J.; Grimm, K.S. Advancing nematode identification on potato: An isothermal recombinase polymerase amplification assay for stubby root nematode, Paratrichodorus allius. Am. J. Potato Res. 2023, 101, 52–64. [Google Scholar] [CrossRef]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA detection using recombination proteins. PLoS Biol. 2006, 4, 1115–1121. [Google Scholar] [CrossRef]
- Goraya, M.; Yan, G.; Plaisance, A.; Handoo, Z.A. Identification and reproduction of dagger nematode, Xiphinema americanum, in potato. Nematology 2023, 25, 1127–1139. [Google Scholar] [CrossRef]
- Nunn, G.B. Nematode Molecular Evolution: An Investigation of Evolutionary Patterns among Nematodes Based Upon DNA Sequences; University of Nottingham: Nottingham, UK, 1992. [Google Scholar]
- Cherkaoui, D.; Huang, D.; Miller, B.S.; Turbé, V.; McKendry, R.A. Harnessing recombinase polymerase amplification for rapid multi-gene detection of SARS-CoV-2 in resource-limited settings. Biosens. Bioelectron. 2021, 189, 113328. [Google Scholar] [CrossRef]
- Jenkins, W.R. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis. Report. 1964, 48, 692. [Google Scholar]
- Li, J.; Ma, B.; Fang, J.; Zhi, A.; Chen, E.; Xu, Y.; Yu, X.; Sun, C.; Zhang, M. Recombinase polymerase amplification (RPA) combined with lateral flow immunoassay for rapid detection of Salmonella in food. Foods. 2019, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.X.; Cui, J.Q.; Park, H.; Chan, K.W.; Leung, T.; Tang, B.Z.; Yao, S. Isothermal background-free nucleic acid quantification by a one-pot Cas13a assay using droplet microfluidics. Anal. Chem. 2022, 94, 5883–5892. [Google Scholar] [CrossRef]
- Wang, H.; Qi, J.; Xiao, D.; Wang, Z.; Tian, K. A re-evaluation of dilution for eliminating PCR inhibition in soil DNA samples. Soil Biol. Biochem. 2017, 106, 109–118. [Google Scholar] [CrossRef]
- Gao, B.; Ma, J.; Li, X.; Wang, R.; Chen, S. A real-time recombinase polymerase amplification assay for fast and accurate detection of Ditylenchus destructor. Mol. Cell Probes. 2022, 61, 101788. [Google Scholar] [CrossRef] [PubMed]
- Sato, E.; Goto, K.; Min, Y.Y.; Toyota, K.; Suzuki, C. Quantitative detection of Pratylenchus penetrans from soil by using soil compaction and real-time PCR. Nematol. Res. 2010, 40, 1–6. [Google Scholar] [CrossRef]
- Yan, G.; Smiley, R.W.; Okubara, P.A.; Skantar, A.M. Species-specific PCR assays for differentiating Heterodera filipjevi and H. avenae. Plant Dis. 2013, 97, 1611–1619. [Google Scholar] [CrossRef]
- Berry, S.D.; Fargette, M.; Spaull, V.W.; Morand, S.; Cadet, P. Detection and quantification of root-knot nematode (Meloidogyne javanica), lesion nematode (Pratylenchus zeae) and dagger nematode (Xiphinema elongatum) parasites of sugarcane using real-time PCR. Mol. Cell Probes. 2008, 22, 168–176. [Google Scholar] [CrossRef]
- Hall, T.; Biosciences, I.; Carlsbad, C.J. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2011, 2, 60–61. [Google Scholar]
- McGinnis, S.; Madden, T.L. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004, 32, W20–W25. [Google Scholar] [CrossRef]
- Kibbe, W.A. OligoCalc: An online oligonucleotide properties calculator. Nucleic Acids Res. 2007, 35, W43–W46. [Google Scholar] [CrossRef]
- Wahed, A.A.E.; El-Deeb, A.; El-Tholoth, M.; Kader, H.A.E.; Ahmed, A.; Hassan, S.; Hoffmann, B.; Haas, B.; Shalaby, M.A.; Hufert, F.T.; et al. A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus. PLoS ONE 2013, 8, e71642. [Google Scholar]
Primers | Sequences (5′→3′) | Length (bp) | Reference |
---|---|---|---|
D2A | ACAAGTACCGTGAGGGAAAGTTG | 23 | [40,41] |
D3B | TCGGAAGGAACCAGCTACTA | 20 | |
PaF11 | AAGCTTGCTGGTAGTTTGTTGG | 22 | [23] |
PaR12 | AAGTAGTTAAAAGGGGAGTCG | 21 | |
MG2F | TCGGTCCTAGCTGGCAGGCCATATTCATAAGC | 32 | [38] |
MG2R | GCAGGTGTAACTGTAAGACCACACAGTCGACGT | 33 | |
Probe | |||
Pro13 | GAATGGGCTCAGAAGGTCCCTTTATGAGTGGCTT-T(FAM)-G-THF-G-T(BHQ-1)-GTCGCTTCTACACGCTT-Spacer C3 | 56 | This study |
Code a | Nematode Species | Origin | Sample ID | Crop b | PCR c | qPCR d | RPA e |
---|---|---|---|---|---|---|---|
1 | Paratrichodorus allius | North Dakota | ND-1 | Potato | + | 26.35 ± 0.50 | + |
2 | P. allius | Idaho | I-1 | Potato | + | 28.24 ± 0.40 | + |
3 | P. allius | Washington | W-1 | Potato | + | 22.73 ± 0.49 | + |
4 | Nanidorus minor | North Carolina | NC-34214 | Soybean | - | N/A | - |
5 | N. minor | North Carolina | NC-34538 | Soybean | - | N/A | - |
6 | N. minor | North Carolina | NC-34537 | Soybean | - | N/A | - |
7 | N. minor | North Carolina | NC-34536 | Soybean | - | N/A | - |
8 | N. minor | North Carolina | NC-34546 | Soybean | - | N/A | - |
9 | N. minor | North Carolina | NC-32943 | Soybean | - | N/A | - |
10 | P. porosus | South Carolina | SC-C | Spinach | - | N/A | - |
11 | Trichodorus obtusus | Florida | FL-1 | Golfgrass | - | N/A | - |
12 | T. obtusus | South Carolina | SC-G | Golfgrass | - | N/A | - |
13 | Helicotylenchus sp. | North Dakota | Spi | Potato | - | N/A | - |
14 | Heterodera glycines | North Dakota | SCN | Soybean | - | N/A | - |
15 | Hoplolaimus sp. | North Dakota | Hop | Soybean | - | N/A | - |
16 | Paratylenchus sp. | North Dakota | Prt | Field pea | - | N/A | - |
17 | Pratylenchus dakotaensis | North Dakota | Hg50-1 | Soybean | - | N/A | - |
18 | P. neglectus | North Dakota | Pn1 | Corn | - | N/A | - |
19 | P. scribneri | North Dakota | Ps1 | Corn | - | N/A | - |
20 | Tylenchorhynchus sp. | North Dakota | Tyl | Potato | - | N/A | - |
21 | Xiphinema americanum | North Dakota | Xph | Potato | - | N/A | - |
22 | Free-living nematode 1 | North Dakota | NPN1 | Potato | - | N/A | - |
23 | Free-living nematode 2 | North Dakota | NPN2 | Potato | - | N/A | - |
24 | Free-living nematode 3 | North Dakota | NPN3 | Potato | - | N/A | - |
25 | Nematode community 1 | North Dakota | S-1 | N/A | - | N/A | - |
26 | Nematode community 2 | North Dakota | S-2 | N/A | - | N/A | - |
27 | Nematode community 3 | North Dakota | S-3 | N/A | - | N/A | - |
Field Samples a | SRN/kg b | Population Density of SRN c | RPA d | Mean Fluorescence Intensity (mV)e ± Standard Deviation e |
---|---|---|---|---|
ND-1 | 750 | High density | positive | 1243.8 ± 383.2 |
ND-2 | 700 | High density | positive | 731.8 ± 142.0 |
ND-3 | 900 | High density | positive | 837.2 ± 14.6 |
ND-4 | 1050 | High density | positive | 763.4 ± 551.5 |
ND-5 | 300 | Medium density | positive | 1540.4 ± 40.2 |
ND-6 | 300 | Medium density | positive | 487.4 ± 509.4 |
ND-7 | 300 | Medium density | positive | 563.5 ± 463.6 |
ND-8 | 300 | Medium density | positive | 1058.7 ± 56.8 |
ND-9 | 150 | Low density | negative | 141.1 ± 15.2 |
ND-10 | 150 | Low density | positive | 906.1 ± 871.7 |
ND-11 | 200 | Medium density | positive | 1164.8 ± 264.5 |
ND-12 | 150 | Low density | positive | 490 ± 203.9 |
ND-13 | 400 | Medium density | positive | 1545.1 ± 858.1 |
ND-14 | 600 | High density | positive | 2536.8 ± 1961.4 |
ND-15 | 0 | Low density | negative | 191.5 ± 122.5 |
16-control | 0 | Nil sample | negative | 191.8 ± 54.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goraya, M.; Yan, G. Rapid and Direct Detection of the Stubby Root Nematode, Paratrichodorus allius, from Soil DNA Extracts Using Recombinase Polymerase Amplification Assay. Int. J. Mol. Sci. 2024, 25, 10371. https://doi.org/10.3390/ijms251910371
Goraya M, Yan G. Rapid and Direct Detection of the Stubby Root Nematode, Paratrichodorus allius, from Soil DNA Extracts Using Recombinase Polymerase Amplification Assay. International Journal of Molecular Sciences. 2024; 25(19):10371. https://doi.org/10.3390/ijms251910371
Chicago/Turabian StyleGoraya, Mankanwal, and Guiping Yan. 2024. "Rapid and Direct Detection of the Stubby Root Nematode, Paratrichodorus allius, from Soil DNA Extracts Using Recombinase Polymerase Amplification Assay" International Journal of Molecular Sciences 25, no. 19: 10371. https://doi.org/10.3390/ijms251910371
APA StyleGoraya, M., & Yan, G. (2024). Rapid and Direct Detection of the Stubby Root Nematode, Paratrichodorus allius, from Soil DNA Extracts Using Recombinase Polymerase Amplification Assay. International Journal of Molecular Sciences, 25(19), 10371. https://doi.org/10.3390/ijms251910371