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Abstract: Clubroot, a significant soil-borne disease, severely impacts the productivity of cruciferous
crops. The identification and development of clubroot resistance (CR) genes are crucial for mitigating
this disease. This study investigated the genetic inheritance of clubroot resistance within an F2

progeny derived from the cross of a resistant parent, designated “377”, and a susceptible parent,
designated “12A”. Notably, “377” exhibited robust resistance to the “KEL-23” strain of Plasmodiophora
brassicae, the causative agent of clubroot. Genetic analyses suggested that the observed resistance
is controlled by a single dominant gene. Through Bulked Segregant Analysis sequencing (BSA-
seq) and preliminary gene mapping, we localized the CR gene locus, designated as BraPb8.3, to
a 1.30 Mb genomic segment on chromosome A08, flanked by the markers “333” and “sau332-1”.
Further fine mapping precisely narrowed down the position of BraPb8.3 to a 173.8 kb region between
the markers “srt8-65” and “srt8-25”, where we identified 22 genes, including Bra020861 with a
TIR-NBS-LRR domain and Bra020876 with an LRR domain. Quantitative reverse transcription
polymerase chain reaction (qRT-PCR) analyses confirmed that both Bra020861 and Bra020876 exhibit
increased expression levels in the resistant parent “377” following inoculation with P. brassicae, thereby
underscoring their potential as key genes implicated in BraPb8.3-mediated clubroot resistance. This
study not only identifies molecular markers associated with BraPb8.3 but also enriches the genetic
resources available for breeding programs aimed at enhancing resistance to clubroot.
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1. Introduction

Chinese cabbage (Brassica rapa subsp. pekinensis) is a vital vegetable crop within the
Brassicaceae family that holds significant economic and nutritional importance in various
regions across the globe [1]. This species is widely cultivated due to its rapid growth
cycle and its strong adaptability to various environmental conditions. One of the primary
challenges faced during Chinese cabbage cultivation is its susceptibility to various diseases,
with clubroot caused by the obligate pathogen Plasmodiophora brassicae being one of the
most devastating [2,3]. Clubroot disease is characterized by the enlargement of plant roots,
which impedes the absorption of water and nutrients and, in severe cases, can result in plant
death [4]. The life cycle of P. brassicae is not well understood due to its obligate intracellular
biotrophic nature [5]. Current management strategies for clubroot include field practices,
chemical interventions, biological measures, and the development of resistant cultivars [6].
Among these, the identification of resistance genes from naturally immune plant materials
and the breeding of clubroot-resistant cultivars are the most efficient and sustainable
approaches to prevent the spread of the disease [7]. Traditional breeding methods have
been employed to introduce resistance traits, but these can be time-consuming and labor-
intensive. The advent of molecular biology and genomics has opened new avenues for
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the identification of genetic markers associated with disease resistance, facilitating more
efficient and targeted breeding strategies [8].

Plants have evolved an immune system to defend against pathogens, comprising
two primary branches: pattern-triggered immunity (PTI) and effector-triggered immunity
(ETI) [9]. PTI is initiated by cell surface-localized pattern-recognition receptors (PRRs)
that detect conserved microbial patterns. In contrast, ETI is activated in response to
pathogen-derived effectors. Plants can develop resistance genes that recognize these effec-
tors, triggering a robust immune response [10]. Most resistance genes encode proteins of the
TIR-NBS-LRR (Toll-interleukin-1 receptor-like domain-nucleotide binding site-leucine-rich
repeat) family [11]. In B. rapa, numerous CR genes have been identified, such as Crr2 [12],
PbBa1.1 [13], and QS_B1.1 [14] on chromosome A01; Crc [15] and Rcr8 [16] on chromosome
A02; Cra [17], Crb [18], Crd [19], Crk [15], Crr3 [20], PbBa3.1, PbBa3.2, PbBa3.3 [13], Rcr1 [21],
Rcr2 [22], Rcr4 [16], Rcr10ECD01 [23], CRA3.7 [7] on chromosome A03; CrrA5 [24] on chromo-
some A05; Crr4 [25] on chromosome A06; qBrCR38-1 on chromosome A07 [26]; and Crr1a
and Crr1b [27], CRs [28], PbBa8.1 [13], qBrCR38-2 [26], Rcr3, and Rcr9wa [29] on chromosome
A08. Notably, the majority of CR loci are concentrated on chromosomes A03 and A08, with
no identified loci on chromosomes A04, A09, and A10. Among these, only CRa and Crr1a
have been isolated and functionally validated. These CR genes confer distinct resistance
to various pathotypes of P. brassicae. For example, CRa from “T136-8” is resistant to the
M85 isolate (race 2) of P. brassicae [17]; CRb from “CR Shinki” is resistant to races 2, 4, and
8 [18]; CRd from “85-74” is resistant to LAB-19 isolate (race 4) [19]; and Crr1a from “G004”
confers resistance to the Ano-01 isolate [27]. Thus, identifying new CR genes or alleles
with resistance to different pathotypes of P. brassicae is essential for managing clubroot
disease in Chinese cabbage and addressing the pathogen’s rapid mutation, which can lead
to resistance breakdown.

Molecular marker selection (MAS) is a powerful tool in plant breeding that uses
DNA markers to screen for agriculturally important traits, enhancing the efficiency and
effectiveness of trait selection [30]. Common molecular markers include simple sequence
repeats (SSRs), inter simple sequence repeats (ISSRs), insertions and deletions (InDels), and
single-nucleotide polymorphisms (SNPs) [31–33]. MAS has been widely applied in the
improvement and breeding of various crops [34–37]. Identifying molecular markers linked
to CR genes or loci can significantly speed up the breeding process of Brassica crops [38].
By combining multiple CR genes within a single cultivar, broad-spectrum resistance to
clubroot can be achieved [39]. Currently, MAS is extensively used for transferring CR genes
in Brassicaceae crops [38,40,41].

To identify novel clubroot resistance (CR) genes in Chinese cabbage, this study es-
tablished a new segregating population from the sensitive cultivars “12A” and “377” to
elucidate the genetic basis of BraPb8.3 resistance. By employing Bulked Segregant Analysis
sequencing (BSA-seq) on two extreme pools, in conjunction with genetic mapping, we
identified the BraPb8.3 resistance locus. The outcomes of this research provide a robust tool
for the breeding of clubroot-resistant Chinese cabbage varieties.

2. Results
2.1. Phenotype Evaluation and Genetic Analysis

To delineate the genetic inheritance of the clubroot disease-resistance locus BraPb8.3,
a cross was performed between the resistant B. rapa cultivar ‘377’ (Figure 1a) and the
susceptible cultivar ‘12A’ (Figure 1b), yielding F1 and F2 progenies. Inoculation tests with P.
brassicae on 28 F1 plants uniformly demonstrated resistance, with no susceptible individuals
observed (Figure 1c). Within the F2 population of 470 plants, 357 showed resistance and
113 showed susceptibility, resulting in a segregation ratio of 3:1, as detailed in Table 1. The
chi-square test was applied to assess the fit to Mendelian inheritance patterns, yielding a
calculated χ2 value of 0.18, which is substantially lower than the critical value of 3.84 at the
p = 0.05 level (χ2

0.05 = 3.84). These findings strongly suggest that the resistance to clubroot
disease in the B. rapa cultivar ‘377’ is governed by a single dominant gene.
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Figure 1. Phenotype of two parental Chinese cabbage lines and the F1 offspring after inoculation
with “KEL-23” isolate. (a) Resistance parent “377” (P1). (b) Susceptible parent “12A” (P2). (c) The F1

offspring individuals.

Table 1. Genetic analysis of clubroot resistance in the 377, 12A, F1, and F2 populations.

Resistant Plant Susceptible Plant Theoretical Ratio χ2 χ2
0.05

377 36 0
12A 0 36
F1 28 0
F2 357 113 3:1 0.18 3.84

2.2. BSA-Seq Data Analysis

BSA-seq was utilized to identify the genomic region associated with clubroot resis-
tance, with the sequence raw data deposited under the SRA accession SRX24034031 and
SRX24034032. This approach involved sequencing two DNA pools: the resistant pool
(R-pool) and the susceptible pool (S-pool), as detailed in Table 2. The R-pool yielded
72,065,694 clean reads, while the S-pool produced 67,798,184 clean reads, corresponding to
10,553,867,052 and 9,861,094,696 clean bases, respectively. Of these, 10,004,832,128 bases
from the R-pool and 9,374,230,064 bases from the S-pool were successfully mapped to
the reference genome, achieving mapping rates of 94.80% and 95.06%, respectively. The
duplication rates were 17.41% for the R-pool and 17.60% for the S-pool. The high-quality
base percentages were consistent at 67.00% for the R-pool and 67.46% for the S-pool. The
average depth of coverage on the reference genome was 28.45 for the R-pool and 26.65
for the S-pool. Furthermore, the coverage rates, which represent the proportion of the
reference genome covered at least four times, were 94.88% for the R-pool and 94.97% for
the S-pool. These metrics indicate a high degree of consistency between the sequencing
data of the R-pool and S-pool, providing a reliable foundation for identifying candidate
genomic regions linked to clubroot disease resistance.
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Table 2. Quality control of sequencing data.

Sample R-Pool S-Pool

Genome Length 351,063,200 351,063,200
Clean Reads 72,065,694 67,798,184
Clean Bases 10,553,867,052 9,861,094,696

Mapped Bases 10,004,832,128 9,374,230,064
Mapping Rate (%) 94.80 95.06

Duplication Rate (%) 17.41 17.60
Uniq Rate (%) 67.00 67.46
Mean Depth 28.45 26.65

Coverage Rate (%) (>=4X) 94.88 94.97
Genome Length 351,063,200 351,063,200

Analysis of SNPs and InDels across various chromosomes revealed significant genomic
variation within the studied population, as illustrated in Figure 2. The total count of
identified variants, including both SNPs and InDels, across all chromosomes reached
2,941,021, which is indicative of considerable genomic diversity. Notably, chromosome A03
exhibited the highest variant count, suggesting regions of enhanced genetic diversity or
increased mutational activity relative to other chromosomes. Additionally, the prevalence
of SNPs over InDels across most chromosomes indicated that single nucleotide changes are
more common than insertion–deletion events in this population. Furthermore, there was
observed variability in the count of variants among different chromosomes; for instance,
chromosomes A03 and A09 showed significantly higher variant counts than others. This
variability may be attributed to differences in recombination rates, selective pressures, or
other genomic factors that influence mutation rates and genetic diversity.
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2.3. Euclidean Distance Analysis and Prediction of Candidate Areas

The Euclidean distance (ED) analysis was conducted to assess the genetic distance
between two samples based on SNP difference. Out of the 2,941,021 variants identified,
a subset comprising 942,954 SNPs was selected for the calculation of the SNP index. As
a result, a candidate genomic region was identified on chromosome A08, spanning from
position 788 to 16,743,576, with a threshold cut-off value of 0.0079 for the ED analysis
(Figure 3).
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2.4. Preliminary Mapping of BraPb8.3

To accurately pinpoint the chromosomal location of the BraPb8.3 gene locus, a cohort
of 470 F2 individual plants was utilized for preliminary mapping. Initially, 120 plants were
randomly selected to form the mapping population. Linkage analysis, conducted using nine
marker pairs in the JoinMap software, demonstrated a significant association with the target
trait. The marker sequences are detailed in Table S3. Subsequent analysis, incorporating
post-inoculation phenotypic evaluation of P. brassicae and quantitative trait loci (QTL)
analysis with the IciMapping software, identified a significant SNP site characterized by
a LODs score of 32.81, a contribution rate of 7.39%, and an additive effect of −0.83. This
SNP site was located between the markers “sau192” and “Acmp08-6”, thereby mapping
the BraPb8.3 gene locus to chromosome A08 (Figure 4a).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 4. Preliminary mapping of the BraPb8.3 gene locus. (a) Genetic mapping and Logarithm of 
Odds (LODs) threshold analysis for BraPb8.3 gene locus. (b) Preliminary mapping of the BraPb8.3 
gene, including analysis of recombinant genotypes. Marker genotypes �377� and �12A� are repre-
sented in black and white, respectively, with heterozygous genotypes depicted in gray. Phenotypic 
classifications are indicated by �R� for resistance and �S� for susceptibility. The Arabic numerals be-
neath the figure indicate the count of recombinants. 

2.5. Fine Mapping of BraPb8.3 
To further refine the localization interval of the BraPb8.3 gene locus, fine mapping 

was conducted. A cohort of 3000 F2 progenies was screened using the molecular markers 
“333” and “sau332-1”, which are linked to BraPb8.3, resulting in the identification of 96 
recombinants. These recombinants were self-pollinated to generate F3 lineages, which 
were then inoculated with P. brassicae to assess resistance phenotypes. The phenotypic 
analysis revealed 30 families with pronounced resistance, 12 families with complete sus-
ceptibility, and 54 families showing intermediate levels of resistance. Subsequently, the 96 
recombinants were genotyped using nine sets of polymorphic markers within the interval 
defined by “333” and “sau332-1” (Figure 5). By integrating phenotypic data from clubroot 
disease assessments with genotypic information, the BraPb8.3 resistance locus was pre-
cisely mapped to a 173.8 kb segment flanked by the molecular markers “srt8-65” and 
“srt8-25” on chromosome A08. 

Figure 4. Preliminary mapping of the BraPb8.3 gene locus. (a) Genetic mapping and Logarithm of
Odds (LODs) threshold analysis for BraPb8.3 gene locus. (b) Preliminary mapping of the BraPb8.3
gene, including analysis of recombinant genotypes. Marker genotypes ‘377’ and ‘12A’ are represented
in black and white, respectively, with heterozygous genotypes depicted in gray. Phenotypic classifica-
tions are indicated by ‘R’ for resistance and ‘S’ for susceptibility. The Arabic numerals beneath the
figure indicate the count of recombinants.
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To refine the localization interval of the BraPb8.3 gene locus, the remaining 350 F2
individuals were subjected to a recombinant screening process using the flanking markers
“sau192” and “Acmp08-6”. This screening identified 51 recombinant individuals. Sub-
sequent genotyping of these individuals with a refined set of markers, including “331”,
“sau339”, “333”, “sau332-1”, and “Acmp08-3”(Table S3), along with phenotypic analysis,
allowed for the preliminary mapping of the BraPb8.3 locus to a 1.30 Mb interval between
the markers “333” and “sau332-1” (Figure 4b).

2.5. Fine Mapping of BraPb8.3

To further refine the localization interval of the BraPb8.3 gene locus, fine mapping
was conducted. A cohort of 3000 F2 progenies was screened using the molecular mark-
ers “333” and “sau332-1”, which are linked to BraPb8.3, resulting in the identification of
96 recombinants. These recombinants were self-pollinated to generate F3 lineages, which
were then inoculated with P. brassicae to assess resistance phenotypes. The phenotypic
analysis revealed 30 families with pronounced resistance, 12 families with complete sus-
ceptibility, and 54 families showing intermediate levels of resistance. Subsequently, the 96
recombinants were genotyped using nine sets of polymorphic markers within the interval
defined by “333” and “sau332-1” (Figure 5). By integrating phenotypic data from clubroot
disease assessments with genotypic information, the BraPb8.3 resistance locus was precisely
mapped to a 173.8 kb segment flanked by the molecular markers “srt8-65” and “srt8-25” on
chromosome A08.
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2.6. Candidate Genes Analysis

Upon comparison with the Chiifu-401-42 reference genome, it was determined that the
173.8 kb region containing the BraPb8.3 locus encompasses 22 genes (Table 3). Among these,
the gene Bra020861 is particularly noteworthy, as it encodes a disease-resistance protein of
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the TIR-NBS-LRR class, which implicates its potential role in conferring resistance to club-
root disease. Additionally, the Bra020876 gene, which contains a leucine-rich repeat (LRR)
domain, may also contribute to the resistance response against clubroot. Furthermore, sev-
eral other genes within this region are known to be involved in stress responses, chromatin
remodeling, DNA binding, and protein chaperoning. Notably, Bra020860 encodes an F-box
protein, which could be implicated in the protein degradation pathways associated with
disease resistance. The presence of genes associated with calcium permeability, methionine
sulfoxide reduction, and RNA polymerase subunits further indicated the involvement
of diverse molecular pathways in the resistance to clubroot disease. Further functional
characterization of these genes could elucidate the molecular underpinnings of clubroot
resistance in Chinese cabbage. In this study, Bra020861 and Bra020876 were considered as
candidate genes retained for further investigation.

Table 3. Characteristics of 22 predicted genes between molecular markers “srt8-65” and “srt8-25”.

Gene Homologous Genes Functional Annotations

Bra020856 AT4G22140 Encoding a chromatin remodeling factor that regulates flowering time
Bra020857 AT4G22120 Calcium-permeable stretch-activated cation channel
Bra020858 AT4G22100 Beta glucosidase 2
Bra020859 AT4G22080 Root hair specific 14
Bra020860 AT4G22060 F-box protein
Bra020861 AT3G25510 Disease resistance protein (TIR-NBS-LRR class) family protein
Bra020862 AT4G21910 MATE efflux family protein
Bra020863 AT4G21910 MATE efflux family protein
Bra020864 AT4G21895 DNA binding protein
Bra020865 AT4G21870 HSP20-like chaperone
Bra020866 AT4G21865 Hypothetical protein
Bra020867 AT4G32270 Unknown
Bra020868 AT4G21850 Methionine sulfoxide reductase B9
Bra020869 AT3G18550 Unknown
Bra020870 AT4G21810 DERLIN-2.1
Bra020871 AT4G21800 Conserved hypothetical ATP binding protein
Bra020872 AT4G21750 Encodes a homeobox protein similar to GL2
Bra020873 AT4G21710 Encodes the unique second-largest subunit of DNA-dependent RNA polymerase II
Bra020874 AT4G21710 Encodes the unique second-largest subunit of DNA-dependent RNA polymerase II
Bra020875 AT4G20930 Encodes a 3-hydroxyisobutyrate dehydrogenase
Bra020876 AT4G20940 Leucine-rich repeat N-terminal domain
Bra020877 AT4G20960 Cytidine and deoxycytidylate deaminase zinc-binding region

Following a comparative sequence analysis of the Bra020876 gene from the resistant
parent “377” and the susceptible parent “12A,” seven nucleotide differences were identified.
These variations included four transitions between cytosine (C) and thymine (T), two
transitions between guanine (G) and adenine (A), and a single transversion from guanine
(G) to thymine (T) (Supplementary Figure S1a). Moreover, the analysis revealed significant
deletions in the Bra020861 gene sequence of the resistant parent “377” compared to that of
the susceptible parent “12A” (Supplementary Figure S1b).

2.7. Expression Analysis of Candidate Genes

To elucidate the contribution of two candidate genes to clubroot resistance, their ex-
pression levels were quantified using quantitative reverse transcription PCR (qRT-PCR)
(Figure 6). The qRT-PCR analysis revealed significantly higher expression of the Bra020876
gene in the resistant line “377” compared to the susceptible line “12A”. Additionally, expres-
sion of the Bra020861 gene was exclusively detected in the resistant line ‘377’. These findings
collectively suggest that both Bra020876 and Bra020861 are likely to play a contributory role
in the mediation of resistance against clubroot disease.
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3. Discussion

Clubroot disease, caused by P. brassicae, poses a significant threat to cruciferous crops,
impairing their ability to absorb water and nutrients [4]. The obligate biotrophic nature and
intricate life cycle of P. brassicae present numerous challenges for the prevention and man-
agement of clubroot [5]. The exploration of clubroot resistance (CR) genes and the breeding
for disease resistance are considered the most effective strategies for clubroot disease pre-
vention [7,42,43]. Some resistant germplasms exhibit specificity to different pathotypes of P.
brassicae [13,19,42]. Considering the frequent presence of multiple pathotypes of P. brassicae
in the field, a germplasm with resistance to several pathotypes can more effectively prevent
clubroot disease. The Chinese cabbage disease-resistant parent “377” utilized in this study
exhibited robust resistance to pathotypes Pb2, Pb4, and Pb10 of P. brassicae, as defined by
the sinitic clubroot differential set [44]. Therefore, identifying the resistant locus in “377” is
of significant importance for breeding efforts against clubroot disease.

Numerous studies have shown that resistance within the A genome is commonly
regulated by a major dominant locus [18,19,45]. In our study, the F1 hybrid derived from
the resistant parent “377” and the susceptible parent “12A” exhibited clubroot resistance,
with a segregation ratio of 3:1 for resistance and susceptibility observed in the F2 generation.
This segregation pattern strongly suggests that clubroot resistance is controlled by a single
dominant gene. BSA-seq is an efficient method for finely mapping the quantitative trait
loci interval of target genes through the sequencing of mixed-DNA gene pools. This
approach is widely employed in gene mapping studies [46–50]. In our research, we utilized
the combination of BSA-seq with the ED algorithm to establish a threshold of 0.0079 for
identifying candidate regions, which allowed us to pinpoint the clubroot-resistance gene
to chromosome A08. Several studies have documented the presence of seven clubroot
resistance (CR) loci on chromosome A08, spanning the 10.39–13.67 Mb region, including
CRs, PbBa8.1, Rcr3, Rcr9, Crr1, Rcr9wa, and CRA8.1 [13,28,29,51,52]. In this work, BraPb8.3
was identified within the 10.69–10.87 Mb region of chromosome A08. Employing traditional
preliminary and fine mapping approaches, we further refined the BraPb8.3 locus to a
173.8 kb interval flanked by the “srt8-65” and “srt8-25” markers on chromosome A08. The
development of molecular markers closely associated with target genes, coupled with
molecular marker-assisted breeding techniques, provides powerful tools for combating
clubroot disease [41,53]. The molecular markers ‘333’ and ‘sau332-1’ have demonstrated
exceptional efficacy in selecting clubroot-resistant individuals within the F2 population,
indicating their close linkage to the clubroot resistance (CR) loci. Furthermore, the molecular
markers ‘srt8-65’ and ‘srt8-25’ have been identified as closely linked to the BraPb8.3 locus,
suggesting their potential utility in assisting breeding programs focused on enhancing
clubroot resistance in Chinese cabbage

The majority of characterized disease resistance (R) genes are known to feature the
TIR-NBS-LRR domains [11,41]. In our study, within the finely mapped region of the Chiifu-
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401-42 genome, Bra020861 was identified as a TIR-NBS-LRR type R gene, while Bra020876
was found to possess an LRR domain, highlighting their potential roles in disease resistance
mechanisms. Sequence analysis revealed variations between these candidate genes in the
resistant and susceptible parents. Additionally, relative gene expression analysis showed
that Bra020861 was highly expressed in the disease-resistant parent “377”, in contrast to
being either undetectable or expressed at very low levels in the susceptible parent “12A”.
On the other hand, Bra020876 was upregulated in the resistant parent “377”. Together,
these results suggest that Bra020861 and Bra020876 are likely key contributors to clubroot
disease resistance.

In summary, the clubroot resistance locus BraPb8.3 has been precisely located within
a 173.8 kb interval between markers “srt8-65” and “srt8-25” on chromosome A08 of B.
rapa. Within this delineated region, two genes featuring the TIR-NBS-LRR or LRR domains
were identified. Through sequence comparison and expression analysis, Bra020861 and
Bra020876 have emerged as significant candidate genes for the BraPb8.3-mediated resistance
to clubroot disease. These findings necessitate further investigation to confirm the roles
of these genes in disease resistance. Importantly, our research not only identified a key
clubroot resistance locus in B. rapa but also established molecular markers linked to novel
CR genes. This advancement significantly contributes to our understanding of the genetics
and management strategies against clubroot disease. Furthermore, our work provides
valuable genetic resources that can be utilized for the control of clubroot and offers potent
molecular markers to enhance breeding programs in Chinese cabbage.

4. Materials and Methods
4.1. Plant Materials and P. brassicae Inoculation

The Chinese cabbage-resistant inbred line ‘377’ was hybridized with the susceptible in-
bred line ‘12A’ to generate a segregating F1 generation. This F1 generation was subsequently
self-pollinated to yield an F2 generation consisting of 3470 individuals. In order to pinpoint
the clubroot resistance (CR) locus, the F1, F2, and F3 populations were inoculated with
the P. brassicae isolate “KEL-23” (Pb4). For inoculation, P. brassicae isolates were extracted
from homogenized clubbed Chinese cabbage roots and then diluted to a concentration of
1 × 107 spores/mL. Following this, 1 mL of the suspension was introduced into the soil
near the roots of each 2-week-old seedling. The assessment of clubroot disease resistance
was conducted at five weeks post-inoculation.

4.2. BSA-Seq Analysis

DNA from “377”, “12A”, and the 3470 F2 progenies was extracted using a modified
CTAB method [54]. Two DNA pools from the F2 generation, one of susceptible (S-pool)
and one of resistant individuals (R-pool), each containing DNA from 20 individuals, were
sequenced on an Illumina HiSeq 2500 (Annogene, Beijing, China). After cleaning and
aligning the sequences to the B. rapa reference genome (http://brassicadb.cn/#/ (accessed
on 23 September 2024)), we conducted a variant analysis with GATK [55], filtering for
quality and depth. ANNOVAR was used for annotation [56]. SNPs and InDels were further
screened, with a focus on significant variations, leveraging Euclidean distance (ED) for
differential analysis [57], and we set a threshold based on the standard deviation.

4.3. Molecular Marker Development

This study utilized Bulk Segregant Analysis sequencing (BSA-seq) and employed the
Chiifu-401-42 reference genome sequence, sourced from the Brassica Database (BRAD,
http://brassicadb.cn/#/ (accessed on 23 September 2024)), for the purpose of developing
molecular markers within the BraPb8.3 candidate region. SSR and InDel markers were
designed to facilitate quantitative trait loci (QTL) mapping and fine mapping. A subset of
the SSR markers was generated using SSR Hunter version 1.3 software [58], while other SSR
markers have been previously established by our research team [13,59]. The development
of InDel markers adhered to the methodologies outlined in recent research [7].

http://brassicadb.cn/#/
http://brassicadb.cn/#/
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4.4. Construction of Genetic Linkage Map and QTL Analysis

The genetic linkage map construction was performed using the JoinMap version 4.0
software [60]. This involved integrating genotype data from the F2 population with the
corresponding markers. Recombination frequencies were calculated using the Kosambi
mapping function. A threshold LODs score of 3.0 was applied to guide the generation
of the genetic linkage map. Simultaneously, the QTL IciMapping software version 4.0
was utilized to analyze phenotypic responses in individual F2 progenies post P. brassicae
inoculation. This analysis included computing LODs scores and identifying QTL linked to
disease resistance.

4.5. Fine Mapping of BraPb8.3

Two molecular markers, “333” and “sau332-1”, which are closely linked to the BraPb8.3
locus, were employed to select recombinant individuals. Following this selection process,
96 recombinant individuals were identified from an F2 population of 3000 individuals,
and these individuals were subsequently self-pollinated to generate F3 families. Both
parental lines and the 96 F3 family lines underwent inoculation with the P. brassicae isolate
“KEL-23”. By integrating the clubroot resistance phenotype observed in the F3 families
with the genotype of the recombinant individuals, the clubroot resistance gene BraPb8.3
was finely mapped.

4.6. Prediction and Analysis of Candidate Genes

Candidate genes within the BraPb8.3 fine mapping interval were predicted using
the BRAD website. Subsequently, these genes were analyzed on the Pfam website (http:
//pfam.xfam.org/ (accessed on 23 September 2024)) to ascertain the presence of the TIR-
NBS-LRR domain. Primers, outlined in Table S1 and designed based on the Chiifu-401-42
reference genome sequence, were used to amplify candidate genes from the genomic DNA
of the disease-resistant parent ‘377’ and the susceptible parent ‘12A’. The PCR products
were purified, ligated into the T vector (Takara, Dalian, China), then transformed into
Escherichia coli strain DH5α, and selected for monoclonal colonies. These were subsequently
subjected to Sanger sequencing to determine the nucleotide sequences of the cloned inserts.
A comparative analysis of the sequencing data was performed to identify sequence varia-
tions potentially contributing to the observed phenotypic differences in disease resistance
between the parental lines.

4.7. Total RNA Extraction and qRT-PCR

Total RNA was extracted from the roots of both parental lines using a TRIZOL reagent
(Tiangen, Beijing, China), according to the manufacturer’s instructions. RNA isolation
of high quality was then followed by the synthesis of first-strand complementary DNA
(cDNA) using the FastKing RT Kit (Tiangen, Beijing, China). Quantitative Real-Time PCR
(qRT-PCR) analysis was conducted using SuperReal PreMix Plus (Tiangen, Beijing, China).
Primers for qRT-PCR were designed based on the reference genome sequence of Chiifu-
401-42, with sequences provided in Table S2. The 18SrRNA gene was chosen as the internal
reference for normalization in Chinese cabbage. The relative expression levels of the genes
of interest were determined using the 2−∆∆CT method [61].

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijms251910462/s1.
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