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Abstract: Despite advances in vaccination and therapies for coronavirus disease, challenges remain
due to reduced antibody longevity and the emergence of virulent variants like Omicron (BA.1)
and its subvariants (BA.1.1, BA.2, BA.3, and BA.5). This study explored the potential of adoptive
immunotherapy and harnessing the protective abilities using virus-specific T cells (VSTs). Severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) VSTs were generated by stimulating donor-
derived peripheral blood mononuclear cells with spike, nucleocapsid, and membrane protein peptide
mixtures. Phenotypic characterization, including T-cell receptor (TCR) vβ and pentamer analyses,
was performed on the ex vivo-expanded cells. We infected human leukocyte antigen (HLA)-partially
matched human Calu-3 cells with various authentic SARS-CoV-2 strains in a Biosafety Level 3 facility
and co-cultured them with VSTs. VSTs exhibited a diverse TCR vβ repertoire, confirming their
ability to target a broad range of SARS-CoV-2 antigens from both the ancestral and mutant strains,
including Omicron BA.1 and BA.5. These ex vivo-expanded cells exhibited robust cytotoxicity and
low alloreactivity against HLA-partially matched SARS-CoV-2-infected cells. Their cytotoxic effects
were consistent across variants, targeting conserved spike and nucleocapsid epitopes. Our findings
suggest that third-party partial HLA-matching VSTs could counter immune-escape mechanisms
posed by emerging variants of concern.

Keywords: coronavirus disease; immunotherapy; virus-specific T cells; viral immunity; severe acute
respiratory syndrome coronavirus 2

1. Introduction

Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2), presents symptoms like fever, chills, and dry cough, with severe
cases leading to respiratory complications and death. High-risk groups, including older
adults [1–3], those with blood cancers (e.g., malignant lymphoma) [4], and individuals on
immunosuppressive regimens [5], are especially vulnerable. Impaired humoral immunity
heightens the risk of severe disease and prolonged infection, leading to complications like
pulmonary fibrosis and death, even after recovery from hematological disorders [6,7].
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The continued genomic evolution of SARS-CoV-2 has exposed the limitations of
vaccine-elicited humoral responses [8,9]. Variants like Omicron (BA.1/B.1.1.529), with aug-
mented mutations in the spike protein receptor-binding domain, underscore the challenges
of antibody-based strategies [10,11]. Although memory B cells adapt to new variants [12], the
rapid emergence and significant mutations of variants of concern (VOCs) continue to challenge
preventive measures and therapeutic strategies [13]. Although current therapeutic guide-
lines for COVID-19, encompassing immunomodulatory agents such as dexamethasone [14],
antivirals (remdesivir [15], nirmatrelvir/ritonavir [16], molnupiravir) [17], and monoclonal
antibodies [18], offer varying efficacy across disease stages, prolonged SARS-CoV-2 infections,
notably in immunocompromised patients, remain challenging to treat.

The potential for immune escape and heightened disease virulence emphasizes the
essential role of virus-specific T cells (VSTs) [19,20]. Recent studies have highlighted that the
presence of memory T cells significantly influences the clinical course of, and recovery from,
COVID-19 [2,21,22]. T cells play a pivotal role in viral elimination, particularly in patients
with diminished humoral responses [23–25]. Memory T cells provide long-term protection
even when antibody levels wane [26,27]. Correspondingly, the heightened presence of
these cells is evident in individuals with milder clinical presentations than severe ones,
where T-cell exhaustion and lymphopenia occur [28,29]. Prior research demonstrating
the feasibility of expanding SARS-CoV-2 memory T cells from convalescent donors has
been highlighted in various studies [30–33]. Additionally, a noteworthy breakthrough was
demonstrated in adoptive cell therapy in a recent randomized (2:1), open-label, phase 1/2
trial. As reported by Papadopoulou et al. [34], this trial assessed the safety and efficacy of
off-the-shelf, partially HLA-matched, convalescent donor-derived SARS-CoV-2-specific T
cells (‘CoV-2-STs’). These observations highlight the protective capacity of VSTs, thereby
setting the stage for therapeutic interventions that pivot on adoptive cell therapy.

To explore the potential of adoptive immunotherapy leveraging the protective abilities
of VSTs, we established a minibanking system using VSTs from donors matched for at
least one HLA class I allele. This strategy enables the rapid delivery of VSTs to COVID-19
patients, facilitating timely and effective treatment. We developed diverse VST products
using various T-cell receptors (TCRs). Our findings indicate that these VSTs can effec-
tively target and mediate cytotoxicity against both the ancestral SARS-CoV-2 and Omicron
variants BA.1 and BA.5. Unlike vaccines which target the spike protein, VSTs recognize
nucleocapsid and membrane proteins. This versatility, combined with the advantages of
adoptive transfer and immediate availability from minibanks, highlights the potential of
VST-based adoptive therapy for treating SARS-CoV-2.

2. Results
2.1. Enhancing SARS-CoV-2-Specific T-Cell Responses for Adoptive Immunotherapy: Phenotypic
Characterization and TCR Diversity

During a 21-day period, we exposed PBMCs or leukapheresis samples from donors
to S, M, and N protein activators, thereby initiating the activation and expansion of VSTs
that specifically target SARS-CoV-2 antigens (Figure 1A), which induced a 9.6-fold increase
in the total cell count (Figure 1B), revealing a robust VST response-to-antigen stimulation
(Figure 1C). We conducted a comprehensive examination of the phenotypic profile of the
expanded cells. They were predominantly comprised of CD3+ T cells (90.1 ± 1.9%), includ-
ing helper T cells (CD3+CD4+; 54.0 ± 4.7%), cytotoxic T cells (CD3+CD8+; 19.5 ± 3.5%),
and NKT cells (CD3+CD56+; 7.4 ± 2.3%) (Figure 1D). Notably, high expression levels of
central memory markers (CD45RA−/CD62L+; 20.4 ± 3.3%), effector memory markers
(CD45RA−/CD62L−; 57.6 ± 3.4%), and terminally differentiated effector memory markers
(CD45RA+/CD62L−; 21.3 ± 3.7%) were observed, whereas naïve markers (CD45RA+/
CD62L−; 5.1 ± 0.7%) were expressed at lower levels (Figure 1E). Furthermore, to assess
the diversity of the TCR vβ repertoire, we employed a multichannel flow cytometry panel
capable of detecting >70% of all available vβ chains. All measurable vβ family members
were present in the ex vivo-expanded cells (Figure 1F).
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Figure 1. Enhancing SARS-CoV-2-specific T-cell (VST) responses for adoptive immunotherapy: phe-
notypic characterization and TCR diversity. (A) Representation of the 21-day VST expansion process,
where PBMC or leukapheresis samples were stimulated with S, M, and N peptide pools. (B) Post-
expansion fold increase in total cell count. (C) Post-expansion VST response against SARS-CoV-2
antigens. (D) Phenotypic distribution of expanded cell population, showing predominance of CD3+

T cells, with helper (CD3+CD4+), cytotoxic (CD3+CD8+), and NKT (CD3+CD56+) cell subsets. (E) Ex-
pression levels of T-cell memory markers, including central memory (CD45RA−/CD62L+), effector
memory (CD45RA−/CD62L−), terminally differentiated effector memory (CD45RA+/CD62L−), and
naïve markers (CD45RA+/CD62L+). (F) Multichannel flow-cytometric analysis of TCR vβ repertoire
diversity in expanded cells, capturing >70% of all vβ chains and confirming the presence of all
measurable vβ family members; representative donor (left) and summary data are shown as means
± SEMs (right). (G) Intracellular cytokine staining depicting antigen-specific IFNγ, IL-2, and TNF-α
production in CD3+CD4+, CD3+CD8+, and CD3+CD56+ T-cell subsets in response to spike (S), nucle-
ocapsid (N), and membrane (M) antigens. Minimal response in the absence of peptide stimulation
underscores VST-activation specificity against SARS-CoV-2. Data are shown as SFC ± standard error
of mean (SEM). (H) VST cytolytic activity toward carboxyfluorescein succinimidyl (CFSE)-labeled
SARS-CoV-2 peptide-loaded autologous phytohemagglutinin-activated (PHA) blasts. Results show
targeted lysis at an effector–target ratio of 50:1. (I) HLA-mismatched allogenic PBMC experiments
confirm the absence of nonspecific autotargeting and alloreactivity that could lead to graft-versus-host
disease; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. Scale and error bars indicate median and
range, respectively. IFNγ: interferon gamma; M: membrane; N: nucleocapsid; PBMC: peripheral
blood mononuclear cells; S: spike; SARS-CoV-2: severe acute respiratory syndrome coronavirus-2;
SC: spike complete, SFC: spot-forming cell; SI, spike immunodominant; Tem: effector memory T cells;
Tcm: central memory T cells; Temra: terminally differentiated effector memory T cells; TCR: T-cell
receptor; VST: virus-specific T cell.
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2.2. In Vitro Cytolytic Capacity of SARS-CoV-2-Specific T-Cell and Alloreactivity Assessment

To elucidate the T-cell subsets responsible for VST reactivity against S, N, and M
antigens, we assessed IFNγ, IL-2, and TNF-α production within CD3+CD4+, CD3+CD8+,
and CD3+CD56+ cell populations by gating followed by intracellular cytokine staining
(Figure 1G). The antigen-specific release of IFNγ and IL-2 were predominantly detected
in the CD3+CD8+ and CD3+CD56+ populations, whereas the CD3+CD4+ subset showed
minimal response. Conversely, the TNF-α antigen-specific response was largely confined
to the CD3+CD8+ subset. In contrast, control T cells cultured in the absence of peptide
stimulation showed minimal antigen-specific cytokine production.

To investigate the in vitro cytolytic capacity of the VSTs, we co-cultured SARS-CoV-
2-specific VSTs with CFSE-labeled SARS-CoV-2 peptide-loaded autologous PHA- blasts.
The expanded VSTs specifically recognized and lysed SARS-CoV-2-peptide-loaded targets
at an E:T ratio of 50:1 (Figure 1H). VST alloreactivity against both autologous and HLA-
mismatched allogeneic PBMCs was absent in the CFSE proliferation assay (Figure 1I),
suggesting a lower risk of inducing graft-versus-host clinical responses.

Remarkably, the predominant immune responses elicited by SARS-CoV-2 VSTs from
individuals with differing vaccination statuses exhibited distinct patterns (Figure 2A,B).
Specifically, vaccinated donors demonstrated a notable immune reaction, but the ELISPOT
response was primarily directed against spike peptides whereas COVID-19-recovered
individuals displayed a more balanced immune response targeting all three peptides
(Figure 2C). Cells expanded from these donor groups also showed differences in the prolif-
eration rates, where SARS-CoV-2 T cells expanded from COVID-19 recovered individuals
showed the most fold expansion (Figure 2D).
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Figure 2. Comparative analysis of VST production and proliferation responses to viral peptides
among groups based on SARS-CoV-2 exposure and vaccination status. (A,B) Evaluation of IFN-γ
ELISPOT responses to spike, membrane, and nucleocapsid peptides using VSTs produced from
donors in groups classified by SARS-CoV-2 exposure and vaccination status: unvaccinated (no
prior infection), vaccinated (no prior infection), and recovered (post-infection). (C) IFN-γ response
distribution in the unvaccinated group: Spike (49.62%), Nucleocapsid (46.68%), and Membrane (3.7%).
IFN-γ response distribution in the vaccinated group: Spike (92.65%). IFN-γ response distribution in
the recovered group: Spike (44.8%), Membrane (20.84%), and Nucleocapsid (34.36%). (D) Trends in
proliferation rates and fold expansion after 10 and 17 days of incubation. IFN: interferon, SARS-CoV-2:
severe acute respiratory syndrome coronavirus 2; VST: virus-specific T cell.
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2.3. Evaluating VST Cytotoxicity against SARS-CoV-2 Spike-Pseudotyped
Lentivirus-Infected Cells

We tested VSTs against HEK293T-hACE2-TMPRSS2-mCherry cells infected with SARS-
CoV-2 spike-pseudotyped lentivirus. Target cells were transfected to overexpress human
angiotensin-converting enzyme 2 (ACE2) (Figure 3A,B). We further confirmed the ex-
pression of transmembrane protease serine 2 (TMPRSS2) and HLA classes I and II. After
48 h co-culture, we conducted flow cytometry and bioluminescence analyses. The target
cells exhibited GFP and bioluminescence expression upon infection with the pseudotyped
lentivirus (Figure 3C). Fluorescence microscopy conducted 2 days post co-culture revealed
that VSTs did not induce cytotoxicity in uninfected target cells, which remained viable. In
contrast, VSTs demonstrated significant cytotoxicity against the infected target cells, leading
to necrosis (Figure 4A,B). Flow cytometric analyses indicated a decline in the proportion of
viable GFP-expressing target cells accompanied by an increase in the fraction of necrotic tar-
get cells that stained positive for FVD (Figure 4B). Furthermore, a dose-dependent cytotoxic
effect was observed.
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Figure 3. Evaluation of virus-specific T cell (VST) cytolytic capacity across SARS-CoV-2 spike
variants. (A) An illustrative overview of the experimental setup and methodology including the
generation and infection process of SARS-CoV-2 spike-pseudotyped lentivirus. (B) Flow cytometric
characterization, highlighting pronounced expressions of ACE2, TMPRSS2, HLA *A02, and HLA-
A/B/C in both HEK293 wild-type (293T-WT) and HEK293T-hACE2-TMPRSS2-mCherry (293T-
ACE2) cells. (C) Bioluminescence analysis demonstrating a dose-dependent VST-induced cytotoxic
response against cells infected by different variants of SARS-CoV-2 spike-pseudotyped lentiviruses.
Induction of bioluminescence through luciferase is indicative of lentiviral infection, and a decrease
in bioluminescence signals signifies significant VST-induced cytotoxicity toward the infected target
cells. SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
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Figure 4. Evaluation of virus-specific T-cell (VST) reactivity and cytotoxicity across SARS-CoV-2 spike
variants. (A) Fluorescence microscopy after 48 h co-culture of VST with HEK293T-hACE2-TMPRSS2-
mCherry cells infected with SARS-CoV-2 spike-pseudotyped lentivirus. Green fluorescent protein
(GFP) expression indicates lentiviral infection, whereas observations indicate significant VST-induced
cytotoxicity toward infected, but not uninfected, target cells. (B) Flow cytometric analysis after
VST co-culture shows a reduction in viable GFP-expressing cells, with an increase in the number
of fixed-viability dye (FVD)-positive necrotic cells, which emphasizes the potent cytolytic capacity
of VSTs. (C) Mutation sites within the spike protein for the Ancestral (D614), Delta (B.1.617.2), and
Omicron (B.1.1.529/BA.1) variants are indicated by red arrows. (D) Fluorescence microscopic images
of VST-induced cytotoxic effects against cells infected by different variants of SARS-CoV-2 spike-
pseudotyped lentiviruses. The green color represents viral infection-induced GFP-expressing cells,
whereas arrows indicate cells undergoing VST-induced cytolytic effects. (E) Flow cytometric analysis
demonstrating dose-dependent VST-induced cytotoxic response against all evaluated spike variants.
* p < 0.05; *** p < 0.001. HLA: human leukocyte antigen; IL: interleukin; INF: interferon; PBMC:
peripheral blood mononuclear cell; SARS-CoV-2: severe acute respiratory syndrome coronavirus
2; SFC: spot-forming cell; TNF: tumor necrosis factor; RBD: receptor-binding domain; SARS-CoV-2:
severe acute respiratory syndrome coronavirus 2; VST: virus-specific T cell.
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2.4. Cross-Recognition and Cytotoxicity of VSTs against SARS-CoV-2 Variants

To evaluate the potential targeting ability of these cells against clinically relevant
viral variants, we examined their cross-reactivity to three distinct sequences of the SARS-
CoV-2 spike protein: ancestral (D614), Delta variant (B.1.617.2), and Omicron variant
(B.1.1.529/BA.1). Each vector carried mutations from the SARS-CoV-2 spike VOCs
(Figure 4C). Given the intrinsic polyclonality and TCR diversity of our VSTs, we hy-
pothesized that they would recognize each variant even in the absence of direct exposure to
the corresponding antigens. When VSTs were co-cultured with cells infected with the SARS-
CoV-2 spike-pseudotyped lentivirus representing these variant mutation sequences, they
demonstrated notable cytotoxicity across all evaluated strains, confirmed by fluorescence
microscopy (Figure 4D) and flow cytometry (Figure 4E).

2.5. Preserved Reactivity of the Polyclonal VST against SARS-CoV-2 Variants

To uncover the underlying mechanism of the robust VST response to the Omicron vari-
ant BA.5, we analyzed variant-specific epitopes. Spike-protein epitopes targeted by CD4+

and CD8+ T cells were conserved at rates of 82% and 85% (Figure 5A,B) and those of nucle-
ocapsid epitopes at 90% and 93%, respectively (Supplementary Figure S1A). For membrane
epitopes, both cell types showed a 96% conservation rate (Supplementary Figure S1B).
Furthermore, we assessed the reactivity of the VST expanded using a peptide mixture
derived from the reference strain (NC_045512.2) against Omicron variant peptides. These
mutations did not compromise the VST antigen-specific responses. Figure 5C illustrates
the pronounced reactivity of the VST to seven distinct immunogenic epitopes of the spike
antigen via pentamer analysis. Remarkably, all 10 donors exhibited consistent reactivity
against distinct immunogenic epitopes and diverse mutant spike peptides, highlighting
the potential of the polyclonal VST to efficiently target mutations, thereby reducing the
possibility of immune escape following T-cell therapy.

2.6. VST Activation and Targeted Cytotoxicity Toward Cells Expressing SARS-CoV-2 Spike and
Nucleocapsid Proteins

HEK293 cell lines modified to express either SARS-CoV-2 S or N proteins consistently
showed robust protein expression, confirmed by flow cytometry (Figure 6A), confocal
imaging (Figure 6B), and Western blotting (Figure 6C). Flow cytometric analysis also
revealed significant HLA-A/B/C and HLA *A02 expression across all cell lines (Figure 6D).
Effector VSTs from donors with at least one HLA class I allele matching the target 293T cells
demonstrated antigen-specific responsiveness (Figure 6E), displaying spatial heterogeneity
in co-culture, including active peripheral proliferation, transient medial quiescence, and
central hypoxia. Enhanced cytotoxicity was observed in SARS-CoV-2 spike-expressing
HEK293 cells compared to WT cells in the Cell Tox Green assay, with similar results seen in
N protein-transduced HEK293 cells (Figure 6F). In a parallel assay, VSTs stained with PKH26
Red were co-incubated with target cells, showing increased fluorescence in SARS-CoV-2
protein-transduced HEK293 cells after 24 h, indicative of VST antigen-triggered expansion.
Live cell imaging demonstrated efficient elimination of HEK293 N cells by antigen-specific
VSTs, evidenced by reduced CFSE-labeled target cells and increased activity of PKH26
Red-labeled T cells. In contrast, naïve T cells exhibited no cytotoxicity against HEK293 N
cells, remaining in the periphery of the spheroid and eventually dissipating (Supplementary
Figure S2). Finally, in a tumor xenograft model, inoculation with HEK293-WT or HEK293 N
cells at 1-week intervals showed continued tumor growth for HEK293-WT cells (Figure 6G),
while HEK293 N cells displayed a substantial reduction in tumor volume and weight
(Figure 6H).
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Figure 5. VSTs educated by the ancestral SARS-CoV-2 strain recognize conserved epitopes in the
Omicron variant. The expected response frequency for the spike-mutation domain of Omicron
BA.5, as inferred from the Immune Epitope Database, emphasizes the maintained high-response
frequency even with the 34 present mutations. Analysis of spike-protein epitopes in the Omicron
subvariant (BA.5) (A) targeted by CD4+ T cells (conservation rate: 82%), and (B) recognized by
CD8+ T cells (conservation rate: 85%). (C) Representative data showcasing the pronounced reactivity
of VSTs against seven specific Omicron BA.5 spike-protein immunogenic epitopes (indicated by
green triangles in (B)), determined using pentamer analysis. A bar graph consolidates the results
from 10 donors. FMO: fluorescence minus one; SARS-CoV-2: severe acute respiratory syndrome
coronavirus 2; VST: virus-specific T cell.



Int. J. Mol. Sci. 2024, 25, 10512 9 of 21

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 9 of 22 
 

 

heterogeneity in co-culture, including active peripheral proliferation, transient medial 
quiescence, and central hypoxia. Enhanced cytotoxicity was observed in SARS-CoV-2 
spike-expressing HEK293 cells compared to WT cells in the Cell Tox Green assay, with 
similar results seen in N protein-transduced HEK293 cells (Figure 6F). In a parallel assay, 
VSTs stained with PKH26 Red were co-incubated with target cells, showing increased flu-
orescence in SARS-CoV-2 protein-transduced HEK293 cells after 24 h, indicative of VST 
antigen-triggered expansion. Live cell imaging demonstrated efficient elimination of 
HEK293 N cells by antigen-specific VSTs, evidenced by reduced CFSE-labeled target cells 
and increased activity of PKH26 Red-labeled T cells. In contrast, naïve T cells exhibited no 
cytotoxicity against HEK293 N cells, remaining in the periphery of the spheroid and even-
tually dissipating (Supplementary Figure S2). Finally, in a tumor xenograft model, inocu-
lation with HEK293-WT or HEK293 N cells at 1-week intervals showed continued tumor 
growth for HEK293-WT cells (Figure 6G), while HEK293 N cells displayed a substantial 
reduction in tumor volume and weight (Figure 6H). 

 
Figure 6. Antigen-specific activation and targeted cytotoxicity toward cells expressing SARS-CoV-2 
spike and nucleocapsid proteins. (A) Flow cytometric analyses of SARS-CoV-2 spike (S) and nucle-
ocapsid (N) protein expression in engineered cell lines. (B) Confocal imaging visually confirms S 
and N protein expressions. (C) Western blotting validates S and N protein expressions. (D) Flow 
cytometric characterization showing pronounced HLA-A/B/C and HLA *A02 expressions across 
HEK293 wild-type (WT), HEK293 S, and HEK293 N cells. (E) Effector VSTs from a donor with 
matching HLA class I allele relative to target 293T cells. (F) Cell Tox Green assay demonstrating 
increased cytotoxic susceptibility in S protein-expressing HEK293 cells, with cytotoxicity against N 

Figure 6. Antigen-specific activation and targeted cytotoxicity toward cells expressing SARS-CoV-
2 spike and nucleocapsid proteins. (A) Flow cytometric analyses of SARS-CoV-2 spike (S) and
nucleocapsid (N) protein expression in engineered cell lines. (B) Confocal imaging visually confirms
S and N protein expressions. (C) Western blotting validates S and N protein expressions. (D) Flow
cytometric characterization showing pronounced HLA-A/B/C and HLA *A02 expressions across
HEK293 wild-type (WT), HEK293 S, and HEK293 N cells. (E) Effector VSTs from a donor with
matching HLA class I allele relative to target 293T cells. (F) Cell Tox Green assay demonstrating
increased cytotoxic susceptibility in S protein-expressing HEK293 cells, with cytotoxicity against
N protein-transduced HEK293 cells. (G) Post-administration tumor-growth pattern in a xenograft
mouse model inoculated with HEK293-WT cells. Green arrows indicate the time points of VST
injection. VSTs neither recognize nor exert cytotoxic effects on SARS-CoV-2 antigen-unmodified WT
cells, leading to continued tumor growth. (H) With HEK293-N cells expressing the SARS-CoV-2 N
protein in the xenograft model, green arrows indicate the time points of VST injection. VSTs exhibit
specific recognition and potent cytotoxicity, resulting in significant suppression of tumor growth.
** p < 0.01; *** p < 0.001. HLA: human leukocyte antigen; SARS-CoV-2: severe acute respiratory
syndrome coronavirus 2; VST: virus-specific T cell.

2.7. Cytotoxic Activity of VSTs on Cells Infected with Authentic SARS-CoV-2 Omicron Mutants

To determine if VSTs could target and eliminate cells infected with authentic SARS-
CoV-2, human lung epithelial cells (Calu-3) were infected and co-cultured at 24 and 48 h.
Immunofluorescence staining of the SARS-CoV-2 N protein identified infected cells, while
nuclear staining quantified the total cell population. At 24 h, infection rates in Calu-3
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cells ranged from 48 to 60%, with cell viability over 97% and no cytopathic effects. By
48 h, infection increased to 70–80% with notable cytopathic effects and lower cell survival
(Figure 7A). Hence, we selected 24 h for co-culture of VST effector cells with SARS-CoV-
2-infected Calu-3 cells. Remdesivir, a known SARS-CoV-2 replication inhibitor, was used
as a control drug and demonstrated antiviral activity against SARS-CoV-2 in Calu-3 cells
(Figure 7B). After a 24 h co-culture, we washed away the VSTs and exclusively analyzed
the adherent virus-infected Calu-3 cells by immunostaining cell nuclei and SARS-CoV-
2 N protein (Figure 7C). Remarkably, VSTs exhibited a dose-dependent cytotoxic effect
and effectively recognized and eliminated virus-infected cells (Figure 7D). VSTs from
four donors also showed strong, dose-dependent cytotoxicity against Omicron variants
NCCP43408 and NCCP43426 (Figure 7E), similar to their effect on ancestral SARS-CoV-2
(Figures 7F and 8).
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Figure 7. Cytotoxic activity of VST against SARS-CoV-2 Omicron mutant-infected Calu-3 cells.
(A) Comparison of SARS-CoV-2 infectivity in Calu-3 cells at 24 and 48 h post-infection. Data indicate
increased infectivity and significant cytopathic effects at the 48 h timepoint. (B) Antiviral activity of
remdesivir against SARS-CoV-2 in Calu-3 cells, serving as a positive control for the suppression of
viral replication. (C) Visualization of SARS-CoV-2 N protein in Calu-3 cells after a 24 h co-culture
period with VSTs, indicating viral infection. (D) Dose-dependent cytotoxic activity of VSTs against
SARS-CoV-2-infected Calu-3 cells, showcasing the ability of VSTs to selectively target and eliminate
virus-infected cells. (E) Efficacy of VSTs derived from four different donors against the Omicron
mutant strains, NCCP43408 and NCCP43426, revealing a consistent and potent dose-dependent
cytotoxic response. (F) Reflective comparison of the potency of VSTs against the ancestral SARS-CoV-2
strain, emphasizing the consistent therapeutic potential across virus variants. ** p < 0.01; *** p < 0.001.
SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; VST: virus-specific T cell.
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Figure 8. Cytotoxic activity of VST on cells infected with authentic SARS-CoV-2 Omicron mutants.
(A) Dose-dependent response against the ancestral SARS-CoV-2 strain. (B) Dose-dependent response
against the SARS-CoV-2 BA.1 variant. (C) Dose-dependent response against the SARS-CoV-2 BA.5
variant. N, nucleocapsid; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; VST:
virus-specific T cell.

3. Discussion

We generated SARS-CoV-2-specific T cells (VSTs) using peptide pools of 15-mers with
an overlap of 11 amino acids derived from the ancestral SARS-CoV-2 strain. Initially, VSTs
were produced using the ancestral SARS-CoV-2 sequence peptides before the emergence of
the known VOCs major variants. These VSTs showed strong cross-reactive cytotoxic re-
sponses against conserved antigen epitopes across several SARS-CoV-2 variants, including
Alpha, Beta, Gamma, Delta, and Omicron (Figure 5).

Therapies targeting the SARS-CoV-2 spike protein can lose potency due to mutations
like N501Y and E484K (Table 1), which increase transmissibility and resistance [12,35].
When we analyzed the SARS-CoV-2 proteome, specifically focusing on the spike glycopro-
tein, our findings showed that approximately 82% of MHC class II (CD4+ T cell) epitopes
and 85% of MHC class I (CD8+ T cell) epitopes of these proteins in the VSTs were conserved.
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Notably, a significant proportion of T-cell epitopes in the IEDB corresponding to these
structural proteins were preserved across all examined variants (Figure 5A,B). The findings
of recent studies align with our findings on ex vivo-expanded VSTs [36,37] that, unlike
variable neutralizing antibody epitopes, T-cell epitopes targeted by VSTs, both endogenous
and ex vivo, are abundant. These conserved regions serve as primary targets for SARS-CoV-
2-specific T-cell responses, emphasizing the potential of VST-based therapeutic approaches
against novel and forthcoming mutations.

Table 1. The SARS-CoV-2 Interagency Group (SIG) variant classification scheme defines four classes
of SARS-CoV-2 variants *.

WHO Label Pango Lineage Date of Designation

Alpha B.1.1.7 (RBD mutations: N501Y,
A570D) and Q lineages VOC: 29 December 2020 VBM: 21 September 2021

Beta
B.1.351 (RBD mutations: K417N,

E484K, and N501Y) and descendent
lineages

VOC: 29 December 2020 VBM: 21 September 2021

Gamma
P.1 and descendent lineages (RBD
mutations: K417N/T, E484K, and

N501Y)
VOC: 29 December 2020 VBM: 21 September 2021

Delta B.1.617.2 (RBD mutations: L452R,
T478K) and AY lineages VOC: 15 June 2021 VBM: 14 April 2022

Epsilon B.1.427 and B.1.429 VOC: 19 March 2021 VOI: 26 February 2021
VOI: 29 June 2021 VBM: 21 September 2021

Eta B.1.525 VOI: 26 February 2021 VBM: 21 September 2021
Iota B.1.526 VOI: 26 February 2021 VBM: 21 September 2021

Kappa B.1.617.1 VOI: 7 May 2021 VBM: 21 September 2021
N/A B.1.617.3 VOI: 7 May 2021 VBM: 21 September 2021
Zeta P.2 VOI: 26 February 2021 VBM: 21 September 2021
Mu B.1.621, B.1.621.1 VBM: 21 September 2021

Omicron B.1.1.529, BA.1, BA.1.1, BA.2, BA.3,
BA.4, BA.5 lineages VOC: 26 November 2021

Omicron BA.2.74, CH.1.1, XBB.1.5, XBB.1.16,
XBB.2.3, XBB.1.9.2, XBB.1.9.1, BA.2.86 VBM: 1 September 2023

N/A Variants containing the F456L spike
mutations ** VOI: 1 September 2023

KP KP.2, KP.3 VBM: 19 March 2024
JN.1.18 JN.1.18 VBM: 5 April 2024

LB.1 LB.1 VBM: 2 June 2024

* The classification is as per the Centers for Disease Control and Prevention (CDC) dated 30th October 2023. VOC:
variants of concern; VOI: variants of interest; VBM: variants being monitored. ** Many lineages have acquired
the F456L mutation, and common examples include EG.5, FL.1.5.1, and XBB.1.16.6. SARS-CoV-2: severe acute
respiratory syndrome coronavirus 2; WHO: World Health Organization.

In addition, we generated VSTs using the spike immunodominant (SI) peptide pool,
which was derived from the predicted immunodominant sequence of SARS-CoV-2, and
the 15-mer overlapping spike complete (SC) peptide pool, with an overlap of 11 amino
acids, spanning the entire length of the spike protein. We then conducted ELISPOT analysis
between SI-VSTs and SC-VSTs, revealing that SC-VSTs were more abundant and had a
stronger response to mutant peptides, indicating superior recognition of multiple epitopes
(Supplementary Figure S3). This strategy of producing polyclonal VSTs covering the full
viral sequence is promising given the risk of new mutations.

While the spike protein mutates under pressure, internal proteins like the N protein
remain more conserved (Supplementary Figures S4 and S5) [38]. The Omicron BA.5
subvariant had mutations at 65 sites, with the spike protein affected most (ORF, 20; spike,
34; membrane, 3; envelope, 1; and nucleocapsid, 7). In particular, the spike protein was
most frequently altered, with mutations spanning 34 areas, whereas mutations in the
nucleocapsid were limited to seven regions (Supplementary Figure S3A). Further analysis
of the SARS-CoV-2 nucleocapsid protein proteome revealed that 90% of MHC class II and
93% of MHC class I epitopes in the nucleocapsid protein were conserved. In the context
of the expected binding affinity frequency for the BA.5 nucleocapsid mutation, a notable
frequency of >10% was observed in one of the seven mutated regions in the CD4+ T-cell
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epitope. For the CD8+ T-cell epitope, four of the seven regions predicted a frequency below
10%, and the recognition of the other three regions remains unknown.

Most of these epitopes, despite some mutations, remain targets for VSTs. Our pentamer
assay confirmed VST responses in the N 223-231 (A02:01 LLLDRLNQL) and N 362-370
(A11:01 KTFPPTEPK) regions (Supplementary Figure S6). Therapies targeting N proteins
like VSTs may offer broader, more stable protection as the virus becomes endemic.

Our study confirmed VST efficacy in vitro against cells infected with authentic SARS-
CoV-2. In a BSL-3 setting, VSTs recognized and eliminated infected cells in a dose-
dependent manner, showing consistent effectiveness across Omicron variants and ancestral
strains (Figure 7). A key strength is our dual approach, using both SARS-CoV-2 spike-
pseudotyped viruses (Figure 4) and authentic viruses (Figure 7). While pseudotyped
viruses help test antibodies or drugs, they may not fully reflect VST recognition of multiple
viral components beyond the spike protein, such as nucleocapsid and membrane proteins.
This approach more holistically addresses VST cytotoxicity, underscoring the significance
of our findings for future SARS-CoV-2 therapies.

Animal models of COVID-19 have aided in studying pathogenesis and
treatments [39–41] but do not fully replicate human disease. Evaluating human T cells in
animals is complicated by the MHC system. Sefik et al. [42] developed a humanized mouse
model by engrafting human stem cells and inducing ACE2 expression before infecting
mice with authentic SARS-CoV-2, mimicking COVID-19 immunopathogenesis. In contrast,
we used SARS-CoV-2 protein-expressing HEK293 cells in immunodeficient mice to show
T-cell recognition of target antigens via MHC and TCRs. Although limited in assessing
full immune system interactions, this model demonstrated our T-cell products’ ability
to recognize and kill SARS-CoV-2 antigen-expressing cells in vivo (Figure 6G,H). While
more humanized models are needed, VSTs have been safely used in clinical trials for viral
diseases, supporting their use in early-phase trials for emerging viruses.

Our study successfully generated SARS-CoV-2 VSTs capable of targeting a wide
range of antigens, including ancestral strains and variants like Omicron BA.1 and BA.5
(Figure 9). The analysis confirmed a diverse TCR vβ repertoire and consistent cytotoxicity
across strains, underscoring the VSTs’ ability to target conserved viral epitopes. Given the
increased risk for high-risk groups, including older adults, blood cancer patients, and those
on immunosuppressive therapies, we launched a clinical study to assess the safety and
efficacy of these VSTs in vulnerable COVID-19 patients (CRIS Registration No. KCT0008222).
This suggests that third-party, partially HLA-matched VSTs could help counter immune
evasion in emerging variants and benefit the most vulnerable populations.
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via leukapheresis. The cohort included 11 recovered COVID-19 patients, four with ongo-
ing moderate COVID-19, and 25 randomly selected unexposed donors. Informed consent 
was obtained (Seoul St. Mary’s Hospital IRB approval nos. KC20TSSI0274, KC20TSSI0872; 
Clinical Research Information Service, Republic of Korea (nos. KCT0005370, 
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on two PCR tests at least 24 h apart. Unexposed donors reported no symptoms and were 

Figure 9. VSTs against SARS-CoV-2 infected cells: In response to SARS-CoV-2 infection, virus-specific
T cells (VSTs) specifically target cells including epithelial cells and macrophages that become infected
and express the ACE2 receptor. These cells, once infected, process and present viral antigens, which
VSTs recognize through TCR-MHC I interactions. This detection triggers VSTs to release cytotoxic
granules containing interferon-gamma (IFN-γ) and granzyme B, leading to the effective elimination of
the infected cells and impeding the virus’s replication process. Notably, VSTs demonstrate specificity
in their response: (A) they do not show cytotoxicity toward normal, uninfected cells, as these
do not present SARS-CoV-2 antigens on their surface, and (B) they actively exhibit cytotoxicity
against cells expressing virus antigens, thereby effectively inhibiting the viral replication cycle.
IL: interleukin; MHC: major histocompatibility complex; SARS-CoV-2: severe acute respiratory
syndrome coronavirus 2; TCR: T cell receptor; TNF: tumor necrosis factor.

4. Materials and Methods
4.1. Study Design
4.1.1. Donors

Donors were recruited to provide either 50 mL of whole blood or one blood volume
via leukapheresis. The cohort included 11 recovered COVID-19 patients, four with ongoing
moderate COVID-19, and 25 randomly selected unexposed donors. Informed consent was
obtained (Seoul St. Mary’s Hospital IRB approval nos. KC20TSSI0274, KC20TSSI0872;
Clinical Research Information Service, Republic of Korea (nos. KCT0005370, KCT0005864)),
following the Declaration of Helsinki. Recovered donors had no fever, showed clinical
improvement without antipyretics, and tested negative for SARS-CoV-2 on two PCR tests
at least 24 h apart. Unexposed donors reported no symptoms and were IgG-negative for
SARS-CoV-2. HLA typing was performed at the Catholic Hematopoietic Stem Cell Bank by
sequence-based methods as previously described [43]. Donor characteristics are detailed in
Table 2 and Supplementary Table S1.

4.1.2. SARS-CoV-2-Specific T-Cell (VST) Generation

Peripheral blood mononuclear cells (PBMCs) were isolated via Ficoll gradient centrifu-
gation. A minimum of 1 × 106 PBMCs were seeded at a density of 1 × 107 cells/mL and
stimulated with peptivators for SARS-CoV-2 spike (S; Cat. No. 130-126-701), membrane
(M; Cat. No. 130-126-703), and nucleocapsid (N; Cat. No. 130-126-699) proteins (1 µg/mL;
Miltenyi Biotec, Bergisch Gladbach, Germany). A peptivator is a pool of lyophilized pep-
tides comprising 15-mer sequences with 11 overlapping amino acids, covering the entire
sequence of each protein. The S protein peptivator covers only the immunodominant
sequence domains of the spike glycoprotein. On the same day, the cells were stimulated
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with 50 ng/mL of recombinant human interferon-gamma (rhIFN-γ; R&D Systems, Min-
neapolis, MN, USA, Minneapolis, MN, USA). A few days later, the cells were expanded
using recombinant human interleukin-2 (60 ng/mL; R&D Systems) every 3–4 days for
3–4 weeks. The cells were maintained in AIM-V medium (Gibco, Thermo Fisher Scientific,
Wilmington, DE, USA) with 5% human serum (Sigma-Aldrich, St. Louis, MO, USA) at
37 ◦C and 5% CO2, harvested, and cryopreserved.

Table 2. Donor characteristics.

Donor No. Sex/Age Vaccine COVID-19
COVID-19 Days to Recovery Days from

Recovery

Severity From Diagnosis To Cell Production

1 M/29 Unvaccinated Unexposed NA NA NA
2 F/33 Unvaccinated Unexposed NA NA NA
3 F/27 Unvaccinated Unexposed NA NA NA
4 F/23 Unvaccinated Unexposed NA NA NA
5 M/33 Unvaccinated Unexposed NA NA NA
6 F/30 Unvaccinated Unexposed NA NA NA
7 M/32 Unvaccinated Unexposed NA NA NA
8 F/27 Unvaccinated Unexposed NA NA NA
9 F/27 Unvaccinated Unexposed NA NA NA
10 M/25 Unvaccinated Unexposed NA NA NA
11 F/29 Unvaccinated Unexposed NA NA NA
12 F/64 Unvaccinated Unexposed NA NA NA
13 F/39 Unvaccinated Unexposed NA NA NA
14 M/26 Unvaccinated Unexposed NA NA NA
15 M/25 Unvaccinated Unexposed NA NA NA
16 M/65 Unvaccinated Unexposed NA NA NA
17 F/36 Vaccinated Unexposed NA NA NA
18 M/46 Vaccinated Unexposed NA NA NA
19 F/36 Vaccinated Unexposed NA NA NA
20 M/28 Vaccinated Unexposed NA NA NA
21 F/24 Vaccinated Unexposed NA NA NA
22 M/51 Vaccinated Unexposed NA NA NA
23 M/27 Vaccinated Unexposed NA NA NA
24 F/29 Vaccinated Unexposed NA NA NA
25 F/29 Vaccinated Unexposed NA NA NA
26 F/61 Unvaccinated Recovered Mild 23 103
27 M/61 Unvaccinated Recovered Severe 31 90
28 M/43 Unvaccinated Recovered Mild 14 113
29 F/58 Unvaccinated Recovered Mild 26 87
30 F/60 Unvaccinated Recovered Mild 15 78
31 M/23 Unvaccinated Recovered Mild Unknown Unknown
32 M/23 Unvaccinated Recovered Mild Unknown Unknown
33 F/50 Unvaccinated Recovered Mild 14 Unknown
34 M/33 Vaccinated Recovered Mild 14 Unknown
35 M/31 Vaccinated Recovered Mild 14 7
36 F/25 Vaccinated Recovered Mild 14 7
37 F/69 Vaccinated Not within 6 mo Moderate NA NA
38 F/21 Vaccinated Not within 6 mo Moderate NA NA
39 M/46 Vaccinated Not within 6 mo Moderate NA NA
40 F/81 Vaccinated Not within 6 mo Moderate NA NA

COVID 19: coronavirus disease; F: female; M: male; NA: not applicable.

4.1.3. Immunophenotyping

Immunophenotyping was conducted using fluorescence-conjugated antibodies against
CD3 (UCHT1), CD4 (SK3), CD8 (SK1), CD14 (61D3), CD16 (CB16), CD19 (HIB19), CD45RA
(H100), CD45RO (UCHL1), CD56 (TULY56, CMSSB), and CD57 (QA17A04; Biolegend, San
Diego, CA, USA) and CD62L (DREG-56). All antibodies were purchased from eBioscience,
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Inc. (San Diego, CA, USA), unless mentioned otherwise. Cells were stained, washed, and
analyzed via flow cytometry, with gating strategies based on low forward scatter (FSC)
and low side scatter (SSC) gating. The T-cell markers CD3, CD4, and CD8 and the NK cell
marker CD56 were used to identify the major lymphocyte subsets. Various markers have
been used to assess cell activation, cytokine production, and cell exhaustion.

4.1.4. Intracellular Cytokine Staining after Peptide Stimulation

Expanded cells were stimulated overnight with SARS-CoV-2 S, M, and N peptivators
(1 µg/mL each; Miltenyi Biotec). Protein transport inhibitors containing monensin (BD
GolgiStop; Pharmingen, San Diego, CA, USA) inhibitors were added during the last 4 h of
incubation at 37 ◦C, under 5% (v/v) CO2. Positive controls were stimulated with phorbol
12-myristate 13-acetate (PMA), ionomycin, brefeldin A, and monensin (Invitrogen Corp.,
Waltham, MA, USA); negative controls were left unstimulated. Surface markers were
stained for CD3, CD56, CD8, and CD4, followed by intracellular IFNγ, TNF-α, and IL-2
staining according to the manufacturer’s instructions (eBioscience). Cells were analyzed
using a Fortessa Flow Cytometer (BD Biosciences, San Jose, CA, USA).

4.2. Cytotoxicity Assay of VSTs by Peptide-Pulsed Phytohemagglutinin (PHA)-Blasts
4.2.1. Preparation of PHA-Blasts

PHA-blasts were generated by stimulating autologous PBMCs with PHA (3 µg/mL;
Sigma-Aldrich) and rhIL-2 (25 IU/mL) in AIM-V medium with 5% human serum for
3–4 days. For peptide pulsing, PHA-blasts (1 × 107/mL) were incubated with SARS-CoV-
2 S, M, and N protein peptivators (1 µg/mL; Miltenyi Biotec) for 2 h at 37 ◦C and 5%
(v/v) CO2.

4.2.2. Cytotoxicity Assay

Flow cytometric cytotoxicity assays were conducted as previously described [44].
Target cells (1 × 106/mL) were labeled with carboxyfluorescein succinimidyl ester (CFSE)
in a complete culture medium at room temperature under 5% CO2 for 20 min according
to the manufacturer’s protocol. Target cells (1 × 105) were incubated with effector cells at
various effector–target ratios overnight. Prior to flow cytometry, cells were stained with
7-aminoactinomycin D (7-AAD; eBioscience), and cytotoxicity was measured using a FACS
Canto (BD Biosciences). Target cells were gated on CFSE+ cells and examined for cell
death based on 7-AAD uptake. The percentage of effector cell-mediated cytotoxicity was
calculated using the following equation:

Cytotoxicity (%) =
(Dead target cells(%)− spontaneous deaths(%))× 100

(100 − spontaneous deaths(%))

4.3. Generation of SARS-CoV-2-Spike-Pseudotyped Lentivirus

The spike protein sequence (Spike Ancestral, Delta, Omicron) of the SARS-CoV-2-
pseudotyped vector (Spike Ancestral, Cat. No. plv-spike; Delta, Cat. No. plv-spike-
v8; Omicron, Cat. No. plv-spike-v11; InvivoGen, San Diego, CA, USA) was codon-
optimized for human expression. A replication-deficient lentivirus backbone expressing
GFP and luciferase was used. This configuration allows bioluminescence induction through
oxidation of luciferin, a substrate for luciferase. 293T cells were transfected with the
pseudotyped vector and backbone using BioT transfection reagent (Cat. No. B01-01, Bioland
Scientific, Paramount, CA, USA). After 72 h, the supernatant was centrifuged at 500× g
for 5 min and then passed through a 0.45 µM, filtered, and concentrated with a lentivirus
concentrator (Cat. No. TR30026, Origene, Rockville, MD, USA). The resultant virus pellet
was resuspended in phosphate-buffered saline and subsequently stored at −80 ◦C. The
titre of the prepared SARS-CoV-2-spike-pseudotyped lentivirus was ascertained via the
Lenti-X™ qRT-PCR Titration kit (Cat. No. 631235, Takara, Shiga, Japan). All procedures
were performed in a BSL-2 laboratory.
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4.4. Infectivity and Cytotoxicity Analyses of SARS-CoV-2-Spike-Pseudotyped Lentivirus

HEK293T-hACE2-TMPRSS2-mCherry cells (target cells; Cat. No. NR-55293, BEI
Resources, Manassas, VA, USA) were seeded at 3 × 103 cells per well in 96-well plates
and incubated for 24 h. Subsequently, the SARS-CoV-2 spike-pseudotyped lentivirus
was introduced according to the previously determined S protein titres. For cytotoxicity
evaluation, VST cells were used as effector cells with effector–target (E:T) ratios of 0:1,
1:1, 10:1, and 20:1. After the addition of VSTs, the co-culture was maintained for 2 days,
after which the cells were collected, rinsed with staining buffer, and subsequently labeled
with fixed viability dye (FVD) eFluor™ 780 (Invitrogen, Waltham, MA, USA) for 30 min at
4 ◦C. After staining, the cells were washed and resuspended in the staining buffer. Flow
cytometric analysis was performed on a FACS_LSR Fortessa (BD Pharmingen, San Diego,
CA, USA), and data were processed using FlowJo v10.8.1 (TreeStar). Cytotoxicity results are
presented as the percentage of FVD-positive necrotic target cells or viable GFP-expressing
target cells.

4.5. Cytotoxic Effect of VSTs on Authentic SARS-CoV-2

To assess the cytotoxic response of VSTs to live SARS-CoV-2, Calu-3 cells were plated
at 1.0 × 105 cells per well in 96-well µClear plates (Greiner Bio-One, Kremsmünster,
Austria) with Eagle’s Minimum Essential Medium containing 20% fetal bovine serum (FBS),
1× MEM Non-Essential Amino Acids, and 1× antibiotic-antimycotic solution (Gibco,
Thermo Fisher Scientific, Waltham, MA, USA), 24 h before infection with ancestral SARS-
CoV-2 (NCCP43326) and Omicron subvariants BA.1 (NCCP43408) and BA.5 (NCCP43426).
The multiplicities of infection were calibrated for cell viability >90% and virus infectivity
>65% at 0.6, 1.0, and 2.6, respectively, for ancestral SARS-CoV-2, Omicron BA.1, and
Omicron BA.5. At 24 h post-infection, the cells were fixed with 4% paraformaldehyde and
permeabilized with 0.25% Triton-X100. Immunofluorescence staining of the N protein was
performed to quantify cell counts and infection rates using Operetta CLS (PerkinElmer) with
Harmony software, version 4.8 [45]. Statistical analysis of VST-induced cytotoxicity was
performed using Student’s t-test. Remdesivir was used as a control for antiviral activity,
and the results were standardized against mock-infected (0% infection) and negative
control (100% infection, treated with 0.5% dimethyl sulfoxide) cells on each assay plate.
Data were normalized and analyzed using dose–response curve fitting and confirmed
in duplicate, which was supported by the computation of Z’-factor and coefficient of
variation. All authentic SARS-CoV-2 procedures were conducted in a BSL-3 laboratory,
adhering to safety protocols approved by the Institut Pasteur Korea’s Biosafety Committee
(IPKIBC-RA2020-04).

4.6. SARS-CoV-2 VOC Selection and Bioinformatics Analysis

To assess the impact of sequence changes in the Omicron subvariant BA.5 (GenBank
accession: ON249995) on T-cell immune epitopes, we performed a comparative analysis
with the reference ancestral sequence (NC_045512.2). Sequence alignments are in Supple-
mentary Figures S4 and S5. On 11 July 2022, potential CD4+ and CD8+ T-cell epitopes
were sourced from the Immune Epitope Database (IEDB), following Vita et al. [46]. The
IEDB query used these parameters: Epitope: Any, Organism: SARS-CoV-2 (Taxonomy ID:
2697049), Assay Filters: Only positive assays, excluding B cell and major histocompatibility
complex (MHC) assays, Host: Homo sapiens, MHC Restriction Type: Class I (CD8) and
Class II (CD4).

4.7. Xenograft Mice Model

For the tumor xenograft model, NOD/Shi-scid-IL2rγ(null) (NOG) mice, aged
7–9 weeks, were purchased from Jackson Laboratory, Bar Harbor, ME, USA. Mice were
housed in a specific pathogen-free (SPF) environment under a 12-h light/dark cycle, 22 ◦C
(±1 ◦C) temperature, and 55% (±5%) humidity after a one-week quarantine at The Catholic
University of Korea’s Laboratory Animal Research Center. HEK293 cells expressing the
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SARS-CoV-2 nucleocapsid (HEK293-N) (Catalog No. P30920, Innoprot, Spain) or wild-type
HEK293 (HEK293-WT) cells were inoculated subcutaneously into the mice at 1-week inter-
vals. The expression levels of HLA-A/B/C and HLA *A02 were confirmed in the HEK293T
cells expressing the nucleocapsid. Tumor growth was monitored, and VSTs derived from
donors matched for at least one HLA class I allele with the target cells were introduced
to evaluate the tumor-suppressive effects of the VSTs. All procedures involving animal
experiments were approved by the Institutional Animal Care and Use Committee (IACUC)
of The Catholic University of Korea (Approval number: CUMC-2021-0030-01).

4.8. Pentamer Assay

SARS-CoV-2-specific MHC class I and II epitopes were detected using 9-mer pen-
tamers for HLA-A02:01, HLA-A03:01, HLA-A11:01, HLA-B04:01, HLA-B07:02, and HLA-
B27:05. For MHC class II, 16–18-mer tetramers were used for DRA101:01/DRB101:01,
DRA101:01/DRB104:01, and DRA101:01/DRB115:01 (Table 3). LB-DTK-COV19 cells cul-
tured for 21 days were stained with phycoerythrin or allophycocyanin pentamers/tetramers.
Surface staining was performed for CD3 (UCHT1), CD56 (TULY56), CD4 (SK3), and CD8
(SK1) markers. Flow cytometric analysis was carried out using a FACSFortessa cytometer
(BD Biosciences).

Table 3. SARS-CoV-2 pentamer and tetramer sequences.

SARS-CoV-2 Protein Pentamer Tetramer aa Start aa Stop MHC Class Allele

Spike YLQPRTFLL 269 277 HLA-A*02:01
Spike KCYGVSPTK 378 386 HLA-A*03:01
Spike ALNTLVKQL 940 948 HLA-A*02:01
Spike VLNDILSRL 958 966 HLA-A*02:01
Spike LITGRLQSL 996 1004 HLA-A*02:01
Spike RLQSLQTYV 1000 1008 HLA-A*02:01
Spike NLNESLIDL 1174 1182 HLA-A*02:01
Spike QYIKWPWYI 1205 1213 HLA-A*24:02
Spike FIAGLIAIV 1220 1228 HLA-A*02:01
Spike TRFQTRFQTLLALHRSYLT 236 254 DRA1*01:01/DRB1*01:01
Spike GAALQIPFAMQMAYRF 873 888 DRA1*01:01/DRB1*01:01
Spike MAYRFNGIGVTQNVLY 884 899 DRA1*01:01/DRB1*01:01
Spike QALNTLVKQLSSNFGAI 939 955 DRA1 *01:01/DRB1 *04:01
Spike QLIRAAEIRASANLAATK 993 1010 DRA1*01:01/DRB1*01:01

Nucleocapsid QRNAPRITF 9 17 HLA-B*27:05
Nucleocapsid SPRWYFYYL 105–113 113 HLA-B*07:02
Nucleocapsid LLLDRLNQL 223 231 HLA-A*02:01
Nucleocapsid MEVTPSGTWL 322 330 HLA-B*04:01
Nucleocapsid KTFPPTEPK 362 370 HLA-A*03:01

MHC: major histocompatibility complex; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.

4.9. Statistical Analyses

Data are shown as means ± standard deviations. The Mann–Whitney U or Student’s
t-test was used for intergroup comparisons, and the Kruskal–Wallis test for multigroup
comparisons. Statistical analyses were performed with SPSS version 16.0 (IBM), with
p < 0.05 considered significant.
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