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Abstract: Progress made by the medical community in increasing lifespans comes with the costs of
increasing the incidence and prevalence of age-related diseases, neurodegenerative ones included.
Aging is associated with a series of morphological changes at the tissue and cellular levels in the
brain, as well as impairments in signaling pathways and gene transcription, which lead to synaptic
dysfunction and cognitive decline. Although we are not able to pinpoint the exact differences
between healthy aging and neurodegeneration, research increasingly highlights the involvement
of neuroinflammation and chronic systemic inflammation (inflammaging) in the development of
age-associated impairments via a series of pathogenic cascades, triggered by dysfunctions of the
circadian clock, gut dysbiosis, immunosenescence, or impaired cholinergic signaling. In addition,
gender differences in the susceptibility and course of neurodegeneration that appear to be mediated
by glial cells emphasize the need for future research in this area and an individualized therapeutic
approach. Although rejuvenation research is still in its very early infancy, accumulated knowledge
on the various signaling pathways involved in promoting cellular senescence opens the perspective
of interfering with these pathways and preventing or delaying senescence.

Keywords: cellular senescence; neuroinflammation; senescence-associated secretory phenotype;
astrocytes; microglia; immunosenescence

1. Introduction

One of the medical community’s main achievements in the past century is the pro-
longation of lifespans [1]. Estimates by the World Health Organization (WHO) indicate
that 1.4 billion people will be older than 60 by 2030, and the figure will double by 2050 [2].
However, this increase in life expectancy is accompanied by increasing numbers of elderly
people living with disabilities from chronic diseases, with significant variations across
countries [3], which pose a huge burden on families and society, even threatening the
economies of countries facing increasing expenses for medical and social services required
by elderly disabled patients [4] and forcing healthcare providers to reshape their systems
in order to meet the needs of these patients.

Globally, neurological diseases are the main cause of disability, and they have escalated
as the second cause of death after cardiovascular diseases [5]. Aging is the main risk factor
for most neurodegenerative diseases [6], and their prevalence is rising worldwide. It
is estimated that, in the United States alone, the number of Americans with diagnosed
Alzheimer’s disease (AD) will more than double in the next 30 years, reaching 12 million [7],
while Parkinson’s disease (PD), affecting currently around 1 million Americans, has the
fastest-growing prevalence and disability rate [8].

Despite extensive research, we do not yet have effective therapeutic strategies to
halt disease progression in most neurodegenerative disorders. As such, unraveling the
pathogenic mechanisms of neurodegeneration and, possibly, identifying strategies to pre-
vent these conditions appear very appealing. A growing body of evidence implicates
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chronic inflammation, mainly neuroinflammation, in the pathogenesis of various neurode-
generative diseases [9–12].

In this review, we will discuss the differences between normal and pathological brain
aging and highlight a series of pathogenetic pathways through which neuroinflamma-
tion contributes to neurodegeneration. The references reviewed in this manuscript were
obtained from the PubMed and Google Scholar databases using as search criteria “Brain
aging” and “molecular pathways” and “cellular pathways” and “neuroinflammation”. We
referenced full-text articles, experimental studies, and meta-analyses. No limits were set.

2. Aging and Senescent Cells

As we age, the functional capabilities of the various organ systems progressively
decline [7], leading to an increased risk of disease and death [6]. The brain is no exception,
and the human brain shrinks during normal aging, both gray and white matter being
reduced at a rate ranging between 0.2–0.5%/year (with increasing rates in older ages), with
a compensatory enlargement of the ventricles and subarachnoid spaces [13].

Research in the past decades has greatly increased our knowledge of the molecular
mechanisms underlying aging, showing that several signaling pathways are present in
C. elegans, flies, and mammals [14] and suggesting that the biology of aging is conserved
across species.

In 2013, López-Otín and coworkers identified nine systemic, cellular, and molecular
characteristics of aging, known as the hallmarks of aging, as follows [15]:

- Genomic instability;
- Telomere attrition;
- Epigenetic alterations;
- Loss of proteostasis;
- Deregulated nutrient sensing;
- Mitochondrial dysfunction;
- Cellular senescence;
- Stem cell exhaustion;
- Altered intercellular communication.

Subsequently, the same group of researchers added three more characteristics of aging,
namely disabled macroautophagy, chronic inflammation, and dysbiosis [16]. However,
in the present review, gut dysbiosis is discussed as a trigger of chronic inflammation and
cellular senescence.

Mitosis represents the process through which a eukaryotic cell divides into two daugh-
ter cells by going through the following four phases: prophase, metaphase, anaphase, and
telophase. After being formed, the cells go through an interphase period with three stages:
G1, when the proteins required for DNA replication are synthesized; the S phase, with the
replication of nuclear DNA; and G2, when the synthesis of proteins responsible for cell
division occurs. Cells can also be found in the G0 stage, when they have withdrawn from
the cell cycle [17].

By culturing diploid human fibroblast cells, Hayflick and Moorehead showed that the
number of cell divisions is finite (consisting of 50–80 divisions, also known as the “Hayflick
limit”) [18], after which cells enter a state of replicative senescence [19] caused by the short-
ening of telomeres [20], namely the nucleotide sequences of TTAGGG located at the end
of chromosomes, which are not completely replicated by DNA polymerases during DNA
replication and which are progressively lost with each cell division [21]. The uncapped
telomeres and double-strand DNA breaks activate the DNA damage response (DDR) that
stabilizes p53 through posttranslational phosphorylation via ATM (ataxia-teleangiectasia,
mutated) and ATR (ATM and Rad3-related) serine/threonine protein kinases [22] or by
blocking the degradation of p53 via p14ARF (a tumor suppressor)-mediated inhibition of the
MDM2 (mouse double minute 2) ubiquitin ligase [23]. After p53 stabilization, the transcrip-
tion of the cyclin-dependent kinase (CDK) inhibitor p21 leads to the initial arrest of the cell
cycle, followed by permanent arrest controlled via p16INK4A transcriptional upregulation
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through p38 and ERK (extracellular-regulated kinase) signaling [24]. The inhibition of
CDK4 and CDK6 by p16INK4A causes RB (retinoblastoma protein) hypophosphorylation
and the permanent blockage of S-phase entry [25].

Cellular senescence is a homeostatic response that prevents the propagation of dam-
aged cells [26]. While cellular senescence exerts a series of physiological roles during
development, it significantly contributes to an age-related loss of function later in life.
However, other conditions, such as DNA damage, oxidative stress, chromatin disruption,
stalled DNA replication, or the loss of tumor suppressors, can also induce cellular senes-
cence [19,27,28]. Senescent cells remain metabolically active, and although they can be
recognized and cleared via the immune system, they tend to accumulate over time across
all species and contribute to age-related pathologies [26].

Research has highlighted a series of key molecular features of senescent cells:

1. They exhibit permanent cell cycle arrest caused by the increased expression of p53 [29].
2. They resist apoptosis, a resistance conferred via the accumulation of p53 and the

subsequent expression of the Bcl-2 family proteins [30].
3. Senescent cells exhibit the senescence-associated secretory phenotype (SASP) depen-

dent on p38MAPK (p38 mitogen-activated protein kinase), NF-κB (nuclear factor
kappa-light-chain-enhancer of activated B cells), NOTCH, cGAS/STING (cyclic GMP-
AMP synthase/stimulator of interferon genes), and mTOR (mammalian target of
rapamycin) signaling and consisting of chemokines, cytokines, metalloproteinases,
and growth factors that exhibit pro-inflammatory activities and act in an autocrine
and paracrine manner [31], including the release of extracellular vesicles [32].

4. Senescence is also associated with changes in cellular metabolism including the up-
regulation of lysosomal senescence-associated β-galactosidase (SA-β-gal); increased
SA-β-gal reflects an increased number or activity of lysosomes [33].

5. The accumulation of lipofuscin is another hallmark of senescence. Lipofuscin consists
of lipid degradation residues and metal cations that aggregate in the cell, together
with oxidized proteins, and it cannot be degraded via lysosomes, accumulating with
age [34].

6. The senescent phenotype appears to be mediated by mitochondrial dysfunction via
Akt (protein kinase B), ATM, and mTORC1 (the mechanistic target of rapamycin com-
plex) phosphorylation, which link DDR with mitochondrial biogenesis [35]. Moreover,
morphological changes are seen in the mitochondria of senescent cells, which tend to
accumulate due to impaired mitophagy, leading to senescence-associated mitochon-
drial dysfunction (SAMD) and the increased production of reactive oxygen species
(ROS) [36].

Commonly used markers of cellular senescence are as follows:

1. SA-β-gal originates from the lysosomal enzyme β-galactosidase and reflects an in-
creased number or activity of lysosomes [33]. It is measured at pH 6.0 using in situ
staining with the chromogenic substrate X-gal [37].

2. p16INK4A, a member of the INK4A family [38].
3. p21CIP1/WAF1/SD11; p21 is a member of the CIP/KIP family. This family comprises

p21(CIP1), p27(KIP1), and p57(KIP2), which are stoichiometric cyclin-dependent
kinase inhibitors. p21 and inhibits various CDKs, mediating cell death, cell cycle
arrest, and DNA repair, and it is also involved in the reprogramming of differentiated
somatic cells into pluripotent stem cells [39].

4. Lipofuscin binds to a biotinylated compound derived from Sudan Black (GL-13)
and can thereby be detected in fresh tissues, as well as formalin-fixed and paraffin-
embedded samples or biological fluids [40]. More recently, a radiolabeled derivative of
Sudan Black B has allowed for the in vivo detection of lipofuscin via positron emission
tomography (PET) [41].

Senescent cells of the central nervous system (CNS) may contribute to the development
and progression of neurodegenerative diseases via several mechanisms:
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a. Loss of function. The changes in the gene expression of senescent cells may interfere
with the functions of various cell types [42], and as their number increases with time,
they could functionally impair the nervous system. Moreover, as senescent cells are
cleared via the immune system to a certain extent, the brain volume decreases [26].

b. Aging significantly reduces neurogenesis and the regenerative capacities of the CNS [43].
c. The SASP of senescent cells maintains a pro-inflammatory milieu that converts neigh-

boring cells into senescent ones in a paracrine manner, promoting chronic inflamma-
tion [44,45]. IL-6 is a crucial driver of neuroinflammation, and together with activated
microglia and other cytokines and pro-inflammatory mediators, it contributes to the
state referred to as “inflammaging” [46].

d. Because the functions of the CNS depend on an adequate blood supply and an intact
blood–brain barrier (BBB), the age-related decline in the structure of cerebral microvas-
culature, endothelial cell, and pericyte senescence with the associated weakening of
the BBB, as well as the senescence of the cellular components of the choroid plexus,
further compromises neuronal and glial function and survival [47–49].

2.1. The Senescent Neuron

The adult human brain contains an estimated 86 billion neurons [50]. Since neurons
are postmitotic cells, telomere shortening has been regarded as absent in neurons. Nonethe-
less, cell cycle activity has been demonstrated in about 11% of postmitotic neurons in the
cortex of healthy aging brains by showing variations in the DNA content [51]. In addition,
transcripts for telomerase (a ribonucleoprotein enzyme with two subunits: telomerase
reverse transcriptase—TERT, and telomerase RNA—TER) are maintained, although down-
regulated [52], and the enzyme is involved in promoting cell survival [53]. Moreover,
hippocampal TERT modulates mood behaviors and controls the proliferation of neural
progenitor cells (NPCs) [54].

Other age-related changes occur in the nuclei of neurons as well. Studies of tran-
scriptional profiling of the aging human brain and primates revealed that 4% of the genes
are age-regulated, and genes coding for glutamate receptor subunits, members of the
signal transduction systems mediating long-term potentiation, or synaptic and vesicle
proteins [55], as well as genes related to antioxidant defense, DNA repair, mitochondrial
function, calcium signaling, or vesicle-mediated protein transport, are downregulated,
while genes related to stress responses and immune responses are upregulated [56]. More-
over, the impairment of nuclear pores contributes to alterations in the configuration of
nuclei and cytoplasm [57].

Mitochondrial alterations and dysfunction, with their consequences on energy pro-
duction, calcium, and ROS signaling, are other features of senescent cells. Aging is asso-
ciated with excessive mitochondrial fragmentation in the CA1 hippocampal region [58],
mitochondrial enlargement in the frontal cortex [59], a decrease in respiratory-chain en-
zymatic complexes [9], and altered mitochondrial dynamics [60], which may ultimately
ignite apoptosis.

The increase in ROS produced via dysfunctional mitochondria, xanthine oxidase,
NADPH oxidase, nitric oxide synthase, peroxidases, lipoxygenases, cyclooxygenase, and
endoplasmic reticulum [53] leads to DNA damage and the accumulation of oxidatively
damaged proteins, lipids, and RNA [61]. DNA damage activates the p38 MAPK signaling
pathway, leading to pro-inflammatory cytokine production and SA-β-gal activity via the
expression of p21WAF1/CIP1 [62].

All of these changes at the molecular level are associated with morphological and
functional changes to aging neurons. Phenotypically, neurons present pigmented accu-
mulations, including lipofuscin, neuromelanin, and Marinesco bodies, most obvious in
the dopaminergic neurons of the substantia nigra and the norepinephrine-producing neu-
rons of the locus coeruleus [63]. Neuromelanin synthesis is driven by iron-dependent
oxidation of excess cytosolic dopamine or L-DOPA [64], while Marinesco bodies, spherical
eosinophilic nuclear aggregates, contain proteins [65]. Axons lose their myelin sheaths,
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and the myelin also shows a decrease in the water fraction [66],. These alterations, together
with a deficient function of aged oligodendrocytes, lead to longer nodal and paranodal
spaces [59]. The changes in spine shape and size suggest marked changes to synaptic
plasticity as well [63]. The number of dendritic spines, mainly of the thin spines, decreases
with age in the cortex, hippocampus, and subcortical regions [67], changes that are possibly
related to cognitive decline. Microtubules are likely subject to mechanical stress, and
they undergo acetylation as a protective measure, but acetylation reduces mitochondrial
dynamics and alters axonal transport [68], which, together with reduced ATP availability
as a consequence of mitochondrial dysfunction, act synergistically to further slow vesicle
trafficking and synaptic transmission.

Signal transmission relies on a large transient sodium influx and a subsequent potas-
sium efflux mediated via Ca2+-dependent potassium currents, leading to membrane after-
hyperpolarization. Aged hippocampal neurons show upregulated synaptic L-type Ca2+

channels resulting in impaired Ca2+ homeostasis [62] and exhibit increased afterhyper-
polarization, which interferes with the membrane’s ability to reach the action potential
threshold and results in reduced firing frequency [69]. Moreover, certain neuromediator
receptor subtypes, such as nicotinic acetylcholine receptor subtypes [70], dopaminergic
receptors (D1, D2, and D3), and glutamate NMDA receptors, decrease with age [71].

Neural progenitor cells also exhibit features of senescence, with telomere shortening
and increased ROS production [72].

In addition, with aging and age-associated metabolic dysfunctions such as obesity or
peripheral insulin resistance, neurons lose their sensitivity to insulin as well [73]. Brain
insulin resistance induces molecular, functional, and morphological changes characteristic
of neuronal senescence [74] via increasing p25 and activating CDK5 and GSK3β (glycogen
synthase kinase-3 beta) [75].

2.2. Astrocytic Senescence

First recognized by Santiago Ramon y Cajal at the end of the 19th century [76], astro-
cytes were initially thought to simply act as a glue for neurons. Comprising 20–40% of the
total glial cell population [77], today, the complex functions of astrocytes are recognized
and consist of regulation of embryonic and adult neurogenesis [78], glycogen synthesis, the
supply of energy substrates to neurons [79], the clearance of ROS [80], the control of brain
homeostasis [81], and the pruning of synapses and removal of cellular debris in cooperation
with microglia [82]. They also participate in synapse transmission: while neurons take up
mainly inhibitory neurotransmitters, such as gamma-aminobutyric acid (GABA), astrocytes
remove and metabolize excitatory neurotransmitters such as glutamate [83], and they are
major sources of extracellular matrix proteins, neurotrophic factors, and cell-adhesion
molecules in the brain [84]. Moreover, via the secretion of thrombospondins and TGFβ
(transforming growth factor β), they regulate synaptogenesis and the maturation of neu-
ronal circuits [84]. Astrocytes also participate in the formation of the blood–brain barrier
(BBB) and “match” cerebral blood flow with neuronal activity through the neurovascular
unit (NVU) [85]. Finally, together with microglia, astrocytes participate in the immune
response of the CNS [86] and, via the secretion of chemokines and cytokines, they regulate
the traffic of immune cells into the CNS [87].

In response to various stressors such as DNA damage, mitochondrial dysfunction,
oxidative stress, proteotoxic stress, or disrupted nutrient signaling [88], astrocytes initiate
a senescence program partly dependent on p53, with increased expression of p16INK4A,
p21WAF1, and CIP/KIP (CDK interacting protein/kinase inhibitory protein), which leads
to cell cycle arrest independent of telomere shortening [89], referred to as stress-induced
premature senescence (SIPS).

As a result of sublethal injury-induced SIPS, astrocytes alter their transcription of
various genes, with a reduced expression of excitatory amino acid transporters (EAAT1
EAAT2) [90], potassium transporter Kir4, and water transporter aquaporin 4 (AQP4),
thereby contributing to neuronal excitotoxicity [91]. In addition, the activity of glutamine
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synthase is very sensitive to oxidative stress, so available metabolic substrates to neurons
will be reduced in the presence of astrosenescence [92]. The senescence-associated calcium
dyshomeostasis, together with the upregulation of Ca2+-signaling mediators such as L-type
voltage-sensitive Ca2+ channels, endoplasmic reticulum (ER) Ca2+-release channels, or Ca2+-
binding proteins, leads to an increase in cytosolic calcium that, together with HMGB1 (high-
mobility group B), modulates the activity of several transcription factors such as NF-κB, of
peroxisome proliferator-activated receptors (PPARs), modulates the JAK/STAT pathway,
and activates calcineurin, leading to the upregulation of key mediators of inflammation
such as tumor necrosis factor α (TNF-α), interleukins (IL-6, IL-1β), or cyclooxygenase 2
(COX2) [93], chemokines such as CCL2, and matrix metalloproteinases (MMP3 and MMP9),
collectively referred to as the senescence-associated secretory phenotype (SASP) [75,94].

Morphologically, senescent astrocytes exhibit enlarged nuclei and alterations in the
integrity of the nuclear envelope caused by the downregulation of lamin B1 and other
nuclear lamin proteins [95], with chromatin alterations and the formation of senescence-
associated heterochromatic foci [96], hypertrophic processes, and an increased number of
mitochondria but with altered membrane potential [97], and an increased number of lyso-
somes and upregulated lysosomal enzymes, including SA-β-gal [98]. In response to injury
or aging, astrocytes also increase the expression of glial fibrillary acidic protein (GFAP), a
cytoskeletal protein, as well as vimentin, another intermediate filament protein [62].

Due to all the aforementioned changes, senescent astrocytes convert from cells, pro-
viding trophic support to neurons to neurotoxic cells, as shown via the experimental
co-culturing of neurons with senescent astrocytes [99].

Although the secretory phenotype of senescent astrocytes resembles that of A1 reactive
astrocytes polarized as a result of infections or structural lesions, several differences exist,
and caution must be exerted when assessing astrocytic phenotype, as shown in Table 1 and
Figure 1. Moreover, the phenotypic variations of astrocytes go well beyond the classical
separation into pro-inflammatory A1 and anti-inflammatory A2 phenotypes [100].
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regeneration. Telomere attrition, mitochondrial dysfunction, proteasomal insufficiency, oxidative 
stress, or the expression of oncogenes promote astrocytic senescence. This astrocytic state is 
characterized by cell cycle and proliferation arrest, increases in p16INK4A, p21, p53, and by secretion 
of senescence-associated beta-galactosidase (SA-β-gal). Moreover, a diversity of proteases, 
chemokines, and cytokines (senescence-associated secretory phenotype—SASP), could lead to the 
onset and progression of age-related diseases of the central nervous system. Abbreviations: IP-10—
interferon-γ-inducible protein 10, or CXCL10; IL—interleukin; RANTES—chemokine ligand 5, or 
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(A1) phenotype, characterized by GFAP (glial fibrillary acidic protein) and complement component
C3 secretion. These cells, in turn, secrete pro-inflammatory cytokines and lead to neurodegeneration.
Although the cytotoxic phenotypes prevail in the early stages of cerebral ischemia, in time, astrocytes
polarize toward the neuroprotective A2 phenotype, and express S100A10 (S100 calcium-binding
protein A10) and GFAP. The neurotrophic factors and anti-inflammatory mediators produced by A2
astrocytes act as neuroprotectants and promote tissue regeneration. Telomere attrition, mitochondrial
dysfunction, proteasomal insufficiency, oxidative stress, or the expression of oncogenes promote
astrocytic senescence. This astrocytic state is characterized by cell cycle and proliferation arrest,
increases in p16INK4A, p21, p53, and by secretion of senescence-associated beta-galactosidase (SA-β-
gal). Moreover, a diversity of proteases, chemokines, and cytokines (senescence-associated secretory
phenotype—SASP), could lead to the onset and progression of age-related diseases of the central
nervous system. Abbreviations: IP-10—interferon-γ-inducible protein 10, or CXCL10; IL—interleukin;
RANTES—chemokine ligand 5, or CCL5; MIP—macrophage inflammatory protein; TNF-α—tumor
necrosis factor-α.

Table 1. Cytokines and chemokines expressed by senescent versus reactive astrocytes.

Astrocytic Phenotype Cytokines Chemokines Ref.

Senescent
astrocytes

IL-1α, Il-1β, Il-2, IL-6, IL-8,
IL-10, TNF-α GRO-α, IP10, RANTES, MIP-1α, MIP-2 [101–103]

Reactive
astrocytes

IL-1α, IL-1β, TNF-α, IL-6, IL-8,
IL-10, IL-12, IFN-α, IFN-β, IFN-γ

IP10, RANTES, CCL9, CCL10, CCL12,
CXCL1, CXCL5, CXCL13, CXCL16,

MIP-1α, MCP-1
[80,87]

Abbreviations: GRO-α—growth-regulated protein alpha (CXCL1); RANTES—regulated on activation, nor-
mal T-cell-expressed and -secreted (also known as CCL5); IP10—Interferon gamma-induced protein 10 (also
known as CXCL10); MIP-1α—macrophage inflammatory protein-1α; MIP2—macrophage inflammatory protein 2;
TNF-α—tumor necrosis factor α; MCP-1—monocyte chemotactic protein-1; IFN—interferon.

2.3. Oligodendrocyte Senescence

The main function of the terminally differentiated cells of the oligodendrocyte lineage
derived from oligodendrocyte progenitor cells (OPCs), also known as neuron-glial antigen
2 (NG2)-positive glia, in the CNS is to myelinate the axons of neurons. Although this
process occurs at increased rates during the first two years of life, it continues to contribute
to a volume increase in the white matter until midlife [104]. However, other roles are
emerging, such as roles in neuronal–glial signaling, electrical activity, phagocytosis [105],
and stem cell-like behavior [106]. The mature oligodendrocytes can thicken the existing
myelin sheaths or lengthen the internodes, subserving myelin plasticity [107]. Myelin, aside
from increasing the conduction velocity of nerve impulses, also provides metabolic support
for axons by supplying lactate and pyruvate via monocarboxylate transporters [108].

Due to their high metabolic demands, oligodendrocytes are vulnerable to oxidative
stress, and ROS induce DNA damage (mainly DNA double-strand breaks) that activate
the p53/p16 senescent pathway [19], leading to a reduction in the myelinating capabilities.
Oligodendrocyte-specific genes MBP (myelin basic protein) and LINGO-1 (leucine-rich re-
peat and Ig-like domain-containing Nogo receptor-interacting protein 1) are downregulated
with increasing age across all brain regions [109]. While the reduction in MBP is concurrent
with the reduction in myelin content, LINGO-1 is a negative regulator of myelination, but it
promotes the remodeling of actin filaments [110] necessary for myelination. In addition, the
expression of receptors and ion channels, such as NMDA and kainate glutamate receptors,
or voltage-gated sodium and potassium channels, declines with age [111]. Age-associated
mitochondrial dysfunction not only reduces ATP levels but also contributes to ROS pro-
duction. ROS induce the lipid peroxidation of myelin lipids, which, together with the
dysfunctional cellular homeostasis and impaired membrane integrity, contributes to the
altered structure of the myelin membranes [104].
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Extrinsic factors, such as inflammatory cytokines released via microglia, induce nitric
oxide production in oligodendrocytes, leading to hypomyelination and cell death [112]. In
addition, senescent astrocytes fail to supply the necessary amounts of cholesterol for myelin
synthesis to oligodendrocytes [113]. Factors released from axons, namely neuregulin-1
or neuronal adhesion molecule L1, also influence the myelination process. For example,
neuronal adhesion molecule L1 activates Fyn kinase and promotes the transcription of
mRNAs transported from the cell body [114].

Oligodendrocyte progenitor cells constitute about 3–10% of glial cells [115], and al-
though they do not undergo replicative senescence, there is in vitro evidence that esophageal
cancer-related gene 4 (Ecrg4), with increased expression in aged mouse brains, may cause
them to enter a senescence-like state with an increased expression of SA-β-Gal and failure
in their essential function of mediating remyelination via differentiation into myelinat-
ing oligodendrocytes [26]. In addition, increases in p21, p16, and SA-β-Gal have been
reported in these progenitor cells [116], as opposed to mature oligodendrocytes, which are
more resistant to senescent modifications, but in which senescence may occur through a
p16-independent mechanism [75].

The loss of myelin leads to nerve dysfunction through secondary axonal changes
such as paranode reorganization, in which the loss of clusters of ion channels at the
nodes of Ranvier disrupts saltatory conduction [117]. Moreover, age-associated myelin
fragmentation leaves the subjacent axon vulnerable to oxidative damage. Reduced nerve
function due to myelin degeneration, in turn, may cause a positive feedback loop of reduced
myelin maintenance or re-myelination [118].

2.4. Microglial Senescence

Microglia are the resident innate immune cells of the CNS. They have a mesoder-
mal origin, and, together with endothelial cells and pericytes, they are the main non-
neuroectodermal cells of the brain. While the age-associated alterations of microglia are
described in the following section, age-induced modifications of endothelial cells and
pericytes are described in Section 2.6.

In 1899, Franz Nissl described glial cells with phagocytic, migratory, and proliferative
properties of mesodermal origin and termed them “rod cells” (Stäbchenzellen) [119]. Primi-
tive myeloid precursors arise from the yolk sac following the expression of runt-related tran-
scription factor 1 (RUNX1) and macrophage colony-stimulating factor 1 receptor (CSF1R)
during development, reach the embryonic head through the blood flow, and migrate into
the developing brain by using matrix metalloproteinases [120]. After the completion of the
developmental process, the self-renewal of microglia maintains the population of immune
cells of the CNS.

In the resting state, microglia have commonly fixed somata with motile filopodia-
like processes that enable the cells to carry out immune surveillance throughout the
parenchyma [121]. Every few hours, the entire cerebral parenchyma is sampled by home-
ostatic microglia [122]. Resting microglia are characterized by a low expression of CD68,
CD22 and CX3CL1, and the neuronal plasma membrane marker CD200, as well as the
expression of transmembrane protein 119 (TMEM119), Sal-like protein 1 (SALL1), TGFβ1
and TGFβ receptor 1, or sialic acid-binding immunoglobulin-like lectin H (Siglec-H),
which are different transcriptomics than those of CNS monocytes or CNS-associated
macrophages [123,124]. Microglia are maintained in the resting state via the interaction of
specific microglial receptors with neuronal neurotrophins and neurotransmitters [125]. In
addition, resting microglia downregulate MHC-I and MHC-II. Their distribution is subject
to variations, being highly concentrated in the gray matter of the hippocampus, basal
ganglia, substantia nigra, and olfactory cortex and being less abundant in the cerebellum
and brainstem [126]. They also exhibit various spatial phenotypes: in areas lacking BBB,
they are rather amoeboid; in the proximity of fiber tracts, they are mainly longitudinal
branched cells, while near the neuropil, microglia appear as ramified cells [127,128].
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Aside from the immune function, microglia also shape neuroplasticity [129] and
facilitate learning. Suppressing microglia led to a decline in learning-associated synap-
togenesis [121], and research has shown that the BDNF released via microglia increases
the expression of tropomyosin-related kinase receptor B (TrkB) in neurons and leads to
synaptogenesis [130]. Moreover, microglia promote neurogenesis from neural progenitor
cells located in the subventricular zone and the dentate gyrus of the hippocampus [131].

During the constant surveillance of the CNS environment, microglia recognize both
foreign (bacterial or viral) molecules and endogenous proteins or DNA and RNA released
from damaged cells via runt-related transcription factor 1 (belonging to the PRRs) located
on the microglial membrane. Most of these PRRs are toll-like receptors (TLRs), trigger-
ing receptors expressed on myeloid cells (TREMs), or nucleotide-binding oligomerization
domain (NOD)-like receptors (NLRs) [132]. The interaction of the ligands with these
receptors triggers a series of signaling pathways that lead to an upregulated CD68 pro-
file and the production of pro-inflammatory cytokines [interleukin (IL)-1β, IL-6, IL-12,
IL-18, tumor necrosis factor (TNF)-α, matrix metalloproteinases MMP-9 and MMP-12,
interferon γ (IFNγ) and cyclooxygenase-2 (COX2)], chemokines [C-C motif chemokine
ligand 1 (CCL1), CCL5, and C-X-C motif ligand 1 (CXCL1)], or small-molecule messengers
(prostaglandins, nitric oxide, and ROS) to mediate the neuroinflammatory response [133]
and promote the phagocytosis of damaged cells or protein aggregates via the activated
microglia [132]. For an efficient response, microglia cooperate with astrocytes and capillary
endothelial cells, and they promote the infiltration of peripheral immune cells through a
“leaky” BBB [134]. ATP released from injured brain cells induces an astrocyte-derived ATP
gradient that acts on the microglial purinergic receptor P2RY12 and results in microglial
migration and activation [135]. The pro-inflammatory cytokines (IL-1α and TNF-α) and
C1q produced via activated microglia induce the so-called “A1” or neurotoxic reactive
astrocyte phenotype [136].

In situations of systemic inflammation, CCL5 released from endothelial cells triggers
microglial cells to interact with the endothelium and promote the formation of tight junc-
tions in an attempt to maintain BBB integrity. Nonetheless, sustained inflammation leads
to microglial activation and polarization towards the M1 phenotype, with a resultant weak-
ening of the BBB via microglial engulfment of the astrocytic end feet [137]. Subsequently,
systemic adaptive immune cells, such as lymphocytes and macrophages, can infiltrate the
CNS and perpetuate the neuroinflammatory state by interacting with glial cells, or they
can modulate the immune response by releasing various cytokines [138]. For example,
microglia depletion and transcriptomic analysis in mice after an intravenous administra-
tion of bone marrow suggests that peripheral macrophages can replace microglia [139],
opening the possibility of targeting microglia-mediated neuroinflammation by engraft-
ing macrophages to the CNS [140]. Anti-inflammatory cytokines, such as IL-1 receptor
antagonist, IL-4, IL-10, or IL-11, partly resulting from the interaction between microglia
and monocyte-derived macrophages, prevent excessive inflammation and promote tissue
repair by favoring the shifting of the microglia toward the anti-inflammatory M2 pheno-
type [141], characterized by the expression of IL-4, IL-10, IL-13, BDNF, and TGF-β [142].
However, the classical M1–M2 dichotomy of the microglial phenotype is oversimplified,
and research has shown that the microglial transcriptome differs in various brain insults,
such as neurodegeneration, ischemia, or infection [121]. Table 2 summarizes the protective
and detrimental microglial signaling pathways.
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Table 2. Protective and detrimental microglial signaling pathways.

Mediated by Function
Effect on

Ref.Microglial
Activation Neuroinflammation Neurodegeneration

Protective
microglial
signaling
pathways

TGF-β

Promotes a
quiescent state

of microglia,
neuroprotective

Inhibits Inhibits Inhibits [143]

BDNF Neurotrophic No action Decreases Inhibits [144,145]

GDNF Inhibits microglial
activation Decreases Decreases Decreases [146]

CD200
interacting with

CD200R

Maintains microglia
in a quiescent state Decreases Decreases Decreases [147]

CXCL4/CCR5 Inhibits microglial
activation Decreases Decreases Decreases [148]

TNF-TNFR2
Neuroprotective

and
anti-inflammatory

Increases anti-
inflammatory

cytokines
Decreases Inhibits [149]

Detrimental
microglial
signaling
pathways

TNF-TNFR1 Induces microglial
activation Increases Increases Promotes [150]

Astrocytic
IL-33 Pro-inflammatory

Increases
chemokine
expression

Increases recruitment
and infiltration of
macrophages in

the CNS

Increases [151]

TLRs Pro-inflammatory
Increase in
cytokine

production
Increases Promotes [152]

TREM2
receptors

Promote
phagocytosis

Increase
phagocytic

activity
Increase Increase [153]

CCL2, CCL21,
CXCL10 Pro-inflammatory Activate

microglia

Promote recruitment
of infiltrating
immune cells

Promote [121]

Decreased arterial blood flow and reductions in glucose catabolism associated with
aging lead to a sustained activation of microglia that maintains a chronic neuroinflammatory
state [154]. A transcriptional evaluation of neurodegenerative-phenotype microglia has
shown the downregulation of a series of genes, such as Tmem 119, P2ry12, myocyte enhancer
factor 2A (Mef2a), or spalt-like transcription factor 1 (Sall1), via a decline in the important
transcription factor TGF-β [121]. These alterations impair their lipid metabolism and
phagocytic ability, and they can even lead to morphologic changes such as “dark microglia”
(named after their appearance under an electron microscope), characteristically found
in aged brain tissues or specimens from Alzheimer’s disease (AD) models [155]. The
morphologic change could reflect cellular shrinkage, but it is also associated with features
of oxidative stress, such as the dilation of the Golgi apparatus, the condensation of the
nucleoplasm, and alterations in mitochondrial morphology and integrity [156], also being
highly ramified and encircling synaptic elements [157]. This microglial phenotype appears
to prevail in regions adjacent to large blood vessels, suggesting that they appear as an
attempt to preserve BBB integrity [157,158].

However, aged microglia, together with a weakened BBB, lead to an increase in
circulating IL-6 [159,160], TNF-α [161], intercellular adhesion molecule-1 (ICAM-1), the
tissue inhibitor of metalloproteinases 1 (TIMP-1), and glial fibrillary acidic protein (GFAP),
which are associated with sarcopenia and physical frailty [162]. Moreover, a rise in the
microglial load of the brain tissue correlates with a reduction in the activation of neural
progenitor cells [163].
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Figure 2 summarizes the senescence-associated phenotypes and markers in the main
cells of the CNS.
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2.5. Morphological Changes to the Brain with Aging

Figure 2. Senescence-associated phenotypes of brain cells. (A) Diverse stressors (DNA damage,
chromatin alterations, telomere attrition, epigenetic stress, oxidative stress, oncogenic mutations, loss
of tumor suppressors, or mitotic stress) promote the conversion of normal cells into senescent cells
(shown by red arrow). Senescent cells are characterized by cell-cycle arrest and resistance to apoptosis,
and by the presence of heterochromatic foci, the increased production of reactive oxygen species
(ROS), and increases in senescence-associated β-galactosidase (SA-β-gal), p16INK4A (shown by the
short black arrow) and p21, and by the release of a series of proteases, chemokines, and cytokines
collectively known as senescence-associated secretory phenotype (SASP), as shown by the large black
arrow. (B) Markers of senescence in the main cell types in the CNS. Abbreviations: NPC—neural
progenitor cell; OPC—oligodendrocyte progenitor cell.

2.5. Morphological Changes to the Brain with Aging

Age is associated with alterations in brain morphology (shape and anatomy), with
a significant impact on memory, motor performance, and learning abilities [13,164]. The
initial changes occur at the cellular level due to ischemia and the slowing of metabolic
activity [62], followed by tissue- and organ-level changes [165].

Studies have shown that the volume and weight of the brain decrease by 5% per
decade after the age of 40 [166], but they are unevenly distributed across the different brain
areas: while the frontal lobe decreases by 12% and the temporal lobe by 9%, the occipital
and parietal lobe exhibit insignificant changes [167].

Commonly used tools to assess these changes are structural magnetic resonance
imaging (MRI), functional MRI, and positron emission tomography (PET). T1-weighted
MRI allows for the evaluation of volume and cortical thickness, while T2-weighted fluid-
attenuated inversion recovery (FLAIR) allows for the characterization of white-matter
abnormalities. The analysis of white-matter axon fibers, tissue anisotropy, and the direction
of myelin water movement in extra- and intracellular white matter can be performed with
diffusion tensor imaging (DTI), and functional MRI detects neuronal activity during a
resting state or task performance [168]. PET enables the measurement of cerebral blood
flow, metabolism, and regional chemical composition, and it can detect targeted disease
biomarkers [169].
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Research has consistently shown a decline in the volume of gray matter with aging
at rates that may vary with gender, being about 0.4%/year in men and 0.29%/year in
women [170], but with regional variations, striking mainly the hippocampus and dentate
gyrus [171], while the entorhinal cortex is, surprisingly, one of the most resistant areas to
aging [172]. However, the number of cells decreases by only about 2–4%, while most of the
volume loss is due to cell shrinkage and the degeneration of the dendritic network [173,174].

The white matter volume decreases more rapidly, not only at estimated yearly rates
around 0.77–0.88% after the age of 70 [175] but also with regional variations, being more
prominent in the frontal lobe [176]. The underlying mechanisms relate to alterations in
axonal architecture (shortening of the axons by 10% per decade, increase in extracellular
water, and accumulation of harmful plasma proteins) [177], demyelination [178], and the
accumulation of white-matter hyperintensities [179].

The width and depth of the cortical sulci also increase with age, mainly in the frontal
lobe [13]. The loss of brain volume is associated with an enlargement of the cerebral ventri-
cles with an excessive accumulation of CSF and the compression of brain parenchyma [180]
due to the impaired cerebral venous drainage [181] and the weakening of the brain–CSF
barrier [182].

2.6. Aging and the Blood–Brain Barrier

The brain is an extensively vascularized organ with 644 km in the total length of
brain vessels and 20 m2 of vascular surface [183]. Nonetheless, the BBB “shelters” the
CNS from peripheral toxins or microorganisms, having a crucial contribution to brain
homeostasis. The functional unit of the BBB is the neurovascular unit (NVU), composed of
brain endothelial cells, pericytes, a basement membrane layer, and astrocytic endfeet [184].
More recently, the BBB has been divided into four barriers: (a) the vascular BBB (vBBB), at
the level of the arterioles, capillary bed, and venules, where the main function is exerted
by the endothelial cell; (b) the blood–cerebrospinal fluid barrier, at the level of the choroid
plexus, with the ependymal cell being the main player; (c) the meningeal barrier, located at
the level of the arachnoid, with the main role ascribed to the endothelial cells; and (d) the
tanycytic barrier, separating circumventricular organs from areas of barriered brain, whose
fundamental organ is the tanycyte [185]. All of these barriers change with aging.

Brain endothelial cells have a thick luminal glycocalyx layer, are united by tight junc-
tions (TJ) that limit paracellular diffusion, lack fenestrations, and have selective transporter
systems for both the influx and efflux of various molecules [186]. These transporters are
vesicles, channels, or pores that uni- or bidirectionally transit the BBB and are either energy-
dependent or energy-independent [185]. A series of these transporter systems decrease
with age, such as large neutral amino acid transporters, those for the interleukin-1 family,
choline, glucose, TNF-α, or enkephalins [185,187], although it is still a matter of debate
whether these changes are a cause or consequence of CNS dysfunction, reflecting brain
atrophy and reduced demand. Nonetheless, inhibition with normal aging of the brain-
to-blood transporter of low-density lipoprotein receptor-related protein-1 (LRP-1) leads
to decreased efflux of amyloid beta (Aβ) peptide and is one of the mechanisms leading
to Aβ accumulation in the brain [188]. Age-related alterations of the glycocalyx of brain
endothelial cells in aging humans have yet to be studied [185].

Even during normal aging, the BBB deteriorates and is characterized at the functional
level by an increased permeability to serum albumin [189] and at the cellular level by
dysregulation in the expression of TJs [190], altered transport systems [191], and a decrease
in the pericyte coverage of cerebral blood vessels [192]. Single-cell RNA sequencing from
brain endothelial cells of aged mice revealed an increase in the number of p21-positive
cells, while transcriptomic analysis showed a downregulation of occludin and several
transporter genes [193]. Moreover, in an in vitro model of senescent BBB, endothelial cells
were found to express SA-β-gal, p21, decreased levels of occluding, and the extravasation
of high-mobility group box protein 1 [193]. Although astrocytes undergo hypertrophy and
take on a more “reactive” phenotype with aging, these changes do not affect the ability
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of the astrocytic end feet to maintain the BBB [194]. However, they are the main cells that
secrete sonic hedgehog protein that regulates BBB permeability, and the diminished sonic
hedgehog signaling in aging may contribute to age-related BBB dysfunction [195].

Pericytes are thought to primarily derive from the neural crest and mesenchymal cell
lineages [196], with a subset originating from blood-borne macrophages [197]. Pericytes
are embedded in the basal membrane and attached to the endothelial cells of the BBB via
a “peg and socket” structure [198]. They regulate the formation of astrocytic end feet and
BBB endothelium, also interfering with the transport systems [199] and transmigration of
immune cells such as monocytes and lymphocytes [200]. During aging, pericytes have been
shown to exhibit lipofuscin inclusions, changes in mitochondrial size, and overall changes
in structure and morphology, as well as pericyte loss, with subsequent detrimental effects
on BBB permeability and neurovascular regulation [201]. The transcription of the gene
ARHGAP42 declines with age [202], the protein being able to regulate blood pressure [203].
Moreover, the loss of laminin secreted by pericytes enhances BBB permeability [204].
Pericyte loss impacts the microcirculation within the brain, leading to oxidative stress in
the hypoperfused cerebral areas, with ROS being able to trigger inflammation and directly
leading to neuronal loss [205]. In pathological states, such as AD, Aβ oligomers signal to
pericytes, leading to capillary constriction [206]. In addition, pericytes clear Aβ through
receptor-mediated endocytosis, involving the low-density receptor-related protein 1 (LRP1),
a function altered by age-related dysfunction and loss of pericytes [207].

The basement membrane is a 40–100 nm-thick layer of extracellular matrix on the
abluminal surface of the brain endothelium synthesized by endothelial cells, astrocytes,
and pericytes, consisting of a backbone of the heterotrimer laminin and the sheet-like
collagen IV stabilized by cellular fibronectin and heparan sulfate proteoglycans [208].
With age, and precipitated by increases in systolic blood pressure and widened pulse
pressures, a thickening of the basal membrane has been described in various studies [209].
This thickening leads to alterations in the composition of the basement membrane, with
an increase in collagen IV [210], an increase in fibronectin, and the deposition of lipid
droplets [211].

The glymphatic system has important contributions to the removal of waste products
from the brain. Solutes that are not cleared across the vascular BBB are taken up by
the CSF and conveyed into the bloodstream via the arachnoid villi or drained along the
cranial nerves into the cervical lymphatics. The rate of CSF turnover decreases with
age [212], and the loss of astrocytic end feet aquaporin 4 impairs the normal function of the
glymphatic system [213]. Many age-related changes occur in the choroid plexus, such as
a 15% reduction in the height of the epithelial cells and a 10% reduction in the length of
microvilli [214], which leads to a reduction in CSF secretion [215]. Moreover, transporters
and enzymes in the choroid plexus, such as aquaporin 1 and Na+-K+-ATPase, have also
been shown to decline in aged rats [216]. Immune quiescence in the plexus is supported
by klotho, which diminishes with age and, together with peripheral immune senescence,
drives neuroinflammation [217].

Although traditionally considered an organ devoid of lymphatic vessels, the CNS has
some features of lymphatic vessels in the meninges [218]. The initial lymphatic vessels
have small, button-shaped junctions with discontinuous basement membranes and lack
smooth muscle cells. The button junctions and anchoring filaments construct the primary
lymphatic valves that permit the entry of interstitial fluid, macromolecules, and immune
cells [219]. These initial lymphatic vessels drain into pre-collecting and collecting lym-
phatics that have tight junctions between endothelial cells and secondary intraluminal
valves that prevent lymphatic backflow [220]. The meningeal lymphatic vessel flow runs
countercurrent to venous flow in the superior sagittal sinus [221]. The collecting meningeal
lymphatic vessels at the base of the skull then extend along the jugular vein and confluence
with the peripheral collecting lymphatics [222]. The meningeal lymphatic vessels account
for approximately 30–50% of the CSF outflow and drain macromolecules, antigens, im-
mune cells, and interstitial fluid, as well as waste products to maintain homeostasis [223].
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The term “glymphatic” system, first proposed by Nedergaard, drives CSF influx into the
brain parenchyma along the peri-arterial space, while aquaporin-4 expressed by vascular
astrocytic end feet promotes glymphatic transport and the mixing of CSF with interstitial
fluid [224]. These vessels perform important functions in clearing metabolites and mis-
folded proteins, as well as in the trafficking of immune cells [219]. Aging is associated with
a decreased ability to drain immune cells via meningeal lymphatic vessels [225] to clear
misfolded proteins and waste products, as well as a thickening of the vessel walls [226].

Tanycytes in the adult brain are considered to be residual radial glial cells [227].
They occupy the floor and lateral walls of the third ventricle and are found in some
circumventricular organs such as the subfornical and subcommisural organs, the pineal
gland, the organum vasculosum of the lamina terminalis, the area postrema, and the
median eminence [228]. Being exposed to the CSF, they have access to plasma metabolites
and hormones through fenestrated capillaries [229]. Hypothalamic tanycytes play a crucial
role in regulating energy uptake and expenditure. During fasting, the barrier function of
tanycytes is altered through a VEGF (vascular endothelial growth factor)-A dependent
mechanism to allow enhanced vascular permeability and contact between circulating
metabolites and neurons of the arcuate nucleus [230]. Also, leptin, produced by adipocytes,
is taken up by tanycytes and released into the CSF of the third ventricle, from which it
reaches the neurons of the arcuate nucleus. However, studies in rats showed that, with age,
the number of tanycytes is reduced by 30%, and the remaining cells express GFAP [231].
Moreover, aged tanycytes showed significant intracellular separations, with only fine
cytoplasmic processes remaining to interlink them, which could potentially impair the
integrity of the blood–brain–cerebrospinal fluid barrier [232].

2.7. Aging and the Immune System

The contribution of the innate immune system has long been discussed, but more
recently, the role of the adaptive immune system, and mainly of T-cells, is increasingly
highlighted [233].

The innate immune system comprises a series of cell types able to recognize pathogen-
associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs),
and it react in a non-specific manner [234]. The monocyte chemotactic protein 1 (MCP-1)
secreted by senescent hematopoietic cells facilitates tissue infiltration with macrophages,
CNS included [235]. However, due to environmental factors related to SASP, macrophages
in aged brain tissue are primed with inflammatory cytokines and increase the expression
of MHC-II and CD40, leading to impaired synaptic plasticity and the inhibition of long-
term potentiation [236]. Neutrophils become less efficient in clearing tissue debris, having
an impaired phagocytic capacity and producing more ROS [237], thereby leading to an
impaired response to infection or the sterile injury of tissues. Dendritic cells, crucial for
antigen presentation and for maintaining the balance between immune tolerance and
aberrant immune responses, are significantly impacted by age [235]. They have a reduced
ability to stimulate the proliferation of CD4+ and CD8+ T-cells and impaired phagocytic
abilities, prolonging exposure to self-antigens and promoting auto-inflammation in aged
hosts. Research has also shown that they tend to accumulate in the aging brain [238].

Studies on the T-cell pool have shown that, with age, the naïve T-cell compartment de-
creases, and the memory T-cell compartment increases, presumably caused by the exposure
of T-cells to various antigens throughout life, thymic involution, and the impaired homeo-
static proliferation of naïve T-cells [239]. In the elderly, memory T-cells lose the expression
of co-stimulatory molecules, such as CD28 and CD27, and display mitochondrial dysfunc-
tion, signs of DNA damage, and shortened telomeres, activating senescence-associated
signaling pathways [233]. Senescent T-cells exhibit T helper (TH)1, TH9, TH17, or activated
regulatory T-cell (Treg) phenotypes and increase the secretion of pro-inflammatory and cy-
totoxic cytokines [240], thereby driving age-associated chronic inflammation. Experimental
T-cell-specific deletion of the mitochondrial transcription factor A (TFAM) in mice resulted
in an extremely differentiated TH1 phenotype, premature inflammation, cognitive decline,
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and a reduction in lifespans by 50% [241]. Several mechanisms through which T-cells may
contribute to age-related diseases have been proposed [233]:

A. The sustained production of cytokines, such as interferon-γ and TNF, can activate
SASP in neighboring cells, which promotes TH1 and TH17 differentiation and boosts
inflammation in a feed-forward loop. In addition, the secretion of granzyme K via
exhausted T-cells promotes SASP of senescent cells.

B. Dysfunctional T-cells fail to clear senescent and irreversibly damaged cells.
C. Senescent CD4+ and CD8+ T-cells can secrete cytotoxic granules that can directly

damage cells in tissues, leading to the impairment of self-tolerance.
D. T-cells can modulate gut homeostasis (detailed below).

Immune cells can enter the brain parenchyma through the meningeal lymphatic
vessels and regulate important functions. Moreover, the weakened BBB characteristic of
old age can enhance the influx of immune cells [242]. Tissue-resident memory T-cells have
been found to populate the white matter of middle-aged healthy persons [243], together
with CD4+CCR5-high T-cells expressing the VCAM-1 ligand VLA4, which promotes their
against-flow movement and search for sites, allowing their extravasation. Moreover,
following VLA4 binding to VCAM-1, these cells produce granzyme K that induces local
ICAM-1 aggregation and facilitates endothelial transmigration [243].

A series of experimental studies in mice lacking T- and B-cells have highlighted
the involvement of these cells in learning. Meningeal IL-4-producing T-cells maintain
meningeal myeloid cells in the resting state. IL-4-deficient mice have been shown to have
inflammatory myeloid cells and exhibit cognitive impairment that can be reversed by
the transfer of wild-type T-cells [244]. Further, meningeal T-cells, presumably via IFN-γ
secretion, regulate neuronal connectivity and social behavior; IFN-γ receptor-knockout
mice have significant deficits in social interactions [245].

3. Neuroinflammation Pathways in Brain Aging

A growing amount of evidence points toward an important contribution of chronic
inflammation to the aging of all organ systems [246,247]. Normally, an inflammatory event
involves cellular and molecular events that are self-limiting, followed by a resolution
phase of inflammation. The unsuccessful resolution of this inflammation leads to the
sustained recruitment of inflammatory cells, a lack of clearance of cellular debris and dead
cells, and the failure of macrophage switching to the anti-inflammatory and regenerative
phenotype [248]. Chronic inflammation is a characteristic of aging, and it is accompanied by
cellular senescence, immunosenescence, organ dysfunction, and age-related diseases, such
as non-alcoholic fatty liver disease, cardiovascular diseases, pulmonary fibrosis, chronic
obstructive pulmonary disease, type 2 diabetes mellitus, and other conditions. These
consequences are particularly important at the level of the brain [53], given the crosstalk
between the nervous system, the immune system, and the endocrine systems via a series of
neurotransmitters, cytokines, and hormones [248]. A series of molecular pathways have
been convincingly linked to neuroinflammation, and they act synergistically to contribute
to brain aging, as well as to several neurodegenerative diseases.

3.1. Nuclear Factor-κB in Neuroinflammation

First described as a B-lymphocyte cell-specific transcription factor that binds to the
κB site in the immunoglobulin kappa-light-chain-enhancer in B cells [249], nuclear factor
kappa enhancer binding protein (NF-κB) is present in all cell types [250].

The family of NF-κB is composed of structural homologues that include NF-κB1 (p50),
NF-κB2 (p52), RelA (p65), RelB, and c-Rel [251]. In the cytoplasm, NF-κB is maintained in
an inactive form by being bound to inhibitory proteins such as p105, p100, and IκB α, β, γ,
or other binding proteins [252]. Once detached from these inhibitors, NF-κB proteins bind
to κB sites, which are specific sequences of DNA, and promote the transcription of various
genes. However, the final result of NF-κB activation depends on the cell type: while its
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activation in glial cells leads to neuroinflammation and apoptosis, in neurons, it rather
promotes cell survival and neuronal plasticity [253].

To initiate the immune response, the NF-κB pathway is initiated via toll-like receptors
(TLRs) on microglia, which contain an extracellular leucine-rich repeat domain (LRR)
involved in pathogen recognition, a Toll/IL-1 receptor (TIR) domain in the cytoplasmic
region involved in the signaling pathway, and a myeloid differentiating factor 88 (MyD88),
which is an adapter protein, also activating a series of signal transduction pathways [251].
Ligand (lipopolysaccharide, TNF-α, IL-1β, etc.) binding to TLRs ignites the intracellular
kinase signaling cascades, in which a ternary IκB kinase (IKK) complex [consisting of
two catalytic subunits, IKKα and IKKβ, and a regulatory subunit called the inhibitor of
κB kinase gamma (IKKγ) or NF-κB essential modifier (NEMO)] induces IκBα protein
phosphorylation and ubiquitination, disrupts the interaction between IκBα and NF-κB,
and results in nuclear translocation of NF-κB and transcription of specific genes.

3.2. TNF-α and Its Signaling Pathways

TNF-α is an inflammatory cytokine that binds to receptors containing a homologous
cytoplasmic sequence identifying an intracellular death domain, such as tumor necrosis
factor receptor 1 (TNFR1) (p55) or TNFR2 (p75) and CD95 (APO-1/Fas) with their cor-
responding death ligands, TNF-α, and the type II transmembrane protein, FasL. While
TNFR1 is expressed in all cell types and preferentially binds a soluble protein fragment
of TNF, TNFR2 is expressed mainly in cells of the immune system and endothelial cells
and is activated by the transmembrane form of TNF [11]. TNFR1 contains an intracellular
TNF-receptor-associated death domain (TRADD), which, upon TNF binding, interacts with
FAS-associated death domain (FADD) and activates caspase 8 and caspase 3, leading to
apoptosis, while TNFR2 interacts with TNF receptor-associated factors (TRAF1, TRAF2,
and TRAF3), which in turn interact with the cellular inhibitor of apoptosis proteins 1 and 2
(CIAP1/2), NF-κB-inducing kinase (NIK), and phosphoinositide 3 kinase (PI3K) to promote
cell survival via complex pathways [11].

3.3. ROS-Induced Neuroinflammatory Pathways

Already in the 1950s, Harman suggested that ROS cause oxidative damage in cellular
macromolecules, leading to decreased physiological function associated with aging [254].

In neurons, the types of ROS include superoxide anion produced via the mitochondrial
respiratory chain and by different oxidases, hydroxyl radical generated via the hydrogen
peroxide reaction with Cu+ or Fe2+, and nitric oxide (NO) produced in response to increased
intracellular levels of Ca2+ [255]. These molecules must be rapidly converted to non-reactive
molecules via the antioxidant enzymes (glutathione, glutathione reductase, glutathione
peroxidase, catalase, superoxide dismutase, and heme oxygenase-1), the transcription of
which is regulated mainly via the nuclear factor erythroid 2-related factor 2 (Nrf-2) [256].
Normally, Nrf-2 is sequestered by Keap1, which promotes Nrf-2 ubiquitination and pro-
teasomal degradation; the oxidation of cysteines in Keap1 promotes its dissociation from
Nrf-2. Alternatively, Nrf-2 can be activated via phosphorylation via protein kinase C or
casein kinase-2 or by interacting with MAPK [11]. Enhanced ROS generation and decreased
antioxidant defenses associated with aging result in oxidative stress and oxidative damage
to various molecules, especially DNA. Particularly mitochondrial DNA is vulnerable to ox-
idative attack due to the lack of protective histones [11]. However, it appears that cytosolic
ROS is more harmful than mitochondrial ROS [257].

In addition, excess nitric oxide (NO) generated both in mitochondria during the
conversion of L-arginine to L-citrulline and from the induction of inducible nitric oxide
synthase via activated microglia [258] interferes with the homeostatic function of NO,
decreases intracellular glutathione levels, and promotes nitrosative and oxidative damage
to proteins, lipids, and nucleic acids [258].
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3.4. RAGE Signaling Pathway

The receptor for advanced glycation end products (RAGE), expressed by microglia,
neurons, astrocytes, endothelial cells, and pericytes, belongs to the group of PRRs that
interacts with PAMPs and DAMPs to induce the innate immune response [259]. The re-
ceptor can be activated not only via advanced glycation end products (AGEs) but also via
advanced oxidation protein products, advanced lipoxidation end products, heat shock pro-
tein 70 (HSP70), high-mobility group box 1 protein (HMGB1, or amphoterin), complement
components C3a and C1q, or members of the S100/calgranulin protein family [258,260].
In contrast to the large number of ligands able to interact with its extracellular domain,
the intracellular domain interacts mainly with actin-regulating protein—diaphanous 1
(DIAPH1, formerly named mDia1) [261] and via a cascade of signaling pathways, such
as the JAK/STAT, MAPK, NF-κB, and PI3K/Akt pathways, leading to the production of
pro-inflammatory cytokines and ROS via microglia and astrocytes or the downregulation
of homeostatic molecules with the subsequent cellular destruction and demyelination of
axons [259]. However, ligand binding to RAGEs has been suggested to also induce MyD88
(myeloid differentiation primary response 88)-dependent pro-inflammatory signaling simi-
lar to TLR signaling, with Toll/interleukin-1 receptor domain-containing adapter protein
(TIRAP) [262], a regulatory protein, acting as a bridge between the two pathways [258].
In aging, especially in the presence of diabetes, the levels of RAGE ligands increase, and
the expression of RAGEs is upregulated, thereby strengthening the contribution of this
signaling pathway to bot-systemic inflammation and neuroinflammation [263].

3.5. The cGAS-STING Pathway

One of the main ways by which the immune system protects against pathogens is by
recognizing foreign nucleic acids. Cytosolic DNA can be sensed by cGAS (cyclic GMP-
AMP synthase) [264], which activates its catalytic activity and induces the synthesis of
2′3′cyclic GMP-AMP (cGAMP) [265]. cGAMP binds to STING (stimulator of interferon
genes), followed by translocation of STING from the endoplasmic reticulum to the Golgi
apparatus and the recruitment of TANK binding kinase 1 (TBK1), which phosphorylates
STING and interferon regulatory factor 3 (IRF3). Phosphorylated IRF3 translocates to
the nucleus and promotes the production of pro-inflammatory cytokines and interferons
(IFNs). Alternatively, phosphorylated STING can also activate IκB kinase (IKK), leading
to the phosphorylation of the inhibitor of κB (IκB) and the release of NF-κB, the master
transcription factor regulating the production of pro-inflammatory cytokines, such as IL-6
and IL-12 [9]. Further, interferon can emit a signal via the heterodimeric receptor IFNAR
and the JAK/STAT pathway [266].

Aside from viral or bacterial DNA, the cGAS-STING pathway can also be activated
via self-DNA released into the cytosol from the nucleus or mitochondria under conditions
of cellular or mitochondrial stress [258].

The activation of the cGAS-STING pathway induces autophagy (promoting the clear-
ance of intracellular protein accumulations in neurodegenerative diseases), potassium
efflux, and the activation of the NLRP3 inflammasome, as well as pyroptosis [267]. Nonethe-
less, the contribution of this pathway to aging and neurodegeneration is still under research.
While the knockout of cGAS in mice proved protective from Aβ pathology and cognitive
impairment [268], cGMP was shown to induce signaling via TREM2 (triggering receptor
expressed on myeloid cells 2), possibly leading to decreased Aβ deposition and improved
cognitive abilities [269]. It has been suggested that the mild activation of microglia and
astrocytes maintains neurogenesis, neurite outgrowth, and synaptic plasticity [270], while
the stronger activation of glial cells leads to neurodegeneration via the activation of p53
and NF-κB [266].

In aging, dysfunctional mitochondria trigger a ROS-JNK retrograde signaling pathway,
leading to cytosolic fragments of chromatin that can induce the SASP via the cGAS-STING
pathway. Moreover, the expression of DNAse TREX1 is downregulated in aging, resulting
in increased levels of cytoplasmic DNA [271].
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3.6. Inflammasome Signaling

Inflammasomes are multiprotein complexes assembled in the cytosol, consisting of a
sensor protein, the adapter apoptosis-associated speck-like protein (ASC), and procaspase-
1 [272]. The sensor protein, belonging to the family of pattern-recognition receptors, can
be either membrane-bound (TLRs or C-type lectins) or cytoplasmic receptors, such as the
retinoic acid-inducible gene-1 (RIG-1)-like receptors, NOD-like receptors (NLRs), or absent
in melanoma 2 (AIM2) [273]. Following the activation of the sensor protein, it oligomerizes
and binds ASC containing a caspase recruitment domain (CARD), which will recruit pro-
caspase-1 and transform it into active caspase-1. The latter further processes pro-IL-18
and pro-IL-1β into active cytokines [258]. Activated caspase-1 also cleaves gasdermin D,
augmenting the release of pro-inflammatory cytokines and leading to plasma-membrane
rupture and pyroptosis [258]. Of the numerous inflammasomes identified to date (NLRP1,
NLRP2, NLRC4, and others), NLRP3 is the most studied one. A two-signal model has been
suggested to underlie NLRP3 activation. The priming signal is triggered via cytokines
or foreign molecules binding to TLRs and the activation of NF-κB, which increases the
expression of pro-IL-1β. The second signal can be provided by ATP, pore-forming toxins,
non-self-nucleic acids, ROS, and others [274].

During aging, the functional decrease in the immune system enhances the role of
inflammasome signaling, with inflammasomes being assembled mainly in microglia and
macrophages, and also, to a lesser degree, in dendritic cells, astrocytes, oligodendrocytes,
and neurons [273]. Inflammasomes are used in cells to promote the clearance of cellular
debris, accumulated damaged proteins, and senescent cells. However, DAMPs activate
the PRRs and stimulate the inflammasomes, which, in turn, release pro-inflammatory cy-
tokines that maintain chronic, low-level inflammation, driving the SASP [275]. Caspase-1,
caspase-11, ASC, and gasdermin levels were found to increase in the hippocampus of aged
mice [276], and transcriptomic analysis showed that about 50% of genes regulating and
promoting inflammation and oxidative stress are upregulated in aged rodent brains [277].
In humans, chronic hypoperfusion can additionally augment inflammasome signaling [278].
Unfortunately, the available molecules that target inflammasomes (anakinra, rilonacept,
and canakinumab) have poor BBB penetrance and have not been tested yet in neurode-
generative diseases [258]. Sulphoraphane, a natural phytochemical also able to diminish
inflammasome activation, has a similar poor bioavailability [279].

3.7. The Contribution of Necroptosis to Age-Related Neuroinflammation

Necroptosis is a programmed cell death pathway initiated when necroptotic stimuli,
such as TNF-α, mTOR (mammalian target of rapamycin)/Akt activation, or oxidative
stress phosphorylate, activate receptor-interacting protein kinase 1 (RIPK1) and RIPK3
and, in turn, phosphorylate mixed lineage kinase domain-like (MLKL) protein. Following
phosphorylation, MLKL oligomerizes and binds to the cell membrane, which becomes
permeabilized and releases cellular components that can exacerbate inflammation [280].
Necroptosis appears to increase in the CNS in aging, as well as in several neurodegenerative
and inflammatory diseases, as suggested by the increased expression of RIPK1, RIPK3, or
MLKL [281]. However, the increased expression of phosphorylated MLKL is not evenly
distributed across the brain, occurring mainly in the hippocampus and fifth cortical layer
for yet-unknown reasons. It may be that hippocampal neurons are more vulnerable to
TNF-α-induced neuronal necroptosis, and blocking necroptosis in RIPK3 knockout mice
significantly reduced neuronal loss after an intracerebroventricular injection of TNF-α [282].
Aside from neurons, a small percentage of microglia also show an increased expression of
phosphorylated MLKL in the brains of aged mice [281].

4. Triggers of Neuroinflammation and Inflammaging
4.1. The Bidirectional Relationship between Circadian Rhythm Dysfunction and Aging

Most organisms have circadian clocks that ensure physiological and behavioral adap-
tation to the 24-h light–dark cycle of Earth [283]. In mammals, the “master clock” is
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situated in the suprachiasmatic nucleus of the hypothalamus, which receives input from
the retina entraining the cellular clocks of neurons to the external light–dark cycle [284]
and regulating the endocrine and autonomic nervous system function [285]. Each cell has a
molecular clock formed by a positive transcriptional limb composed of the transcription
factor BMAL1, which forms heterodimers with CLOCK or NPAS and binds to E-box mo-
tifs to drive circadian transcription, and a negative limb consisting of the PERIOD and
CRYPTOMCHROME families of proteins, which inhibit BMAL1 function [286]. A series of
secondary clock proteins tune the core clock to a 24-h period by regulating 10–50% of all
transcripts in a cell [283,287].

Aging is associated with a series of sleep changes, including difficulty falling and
staying asleep, increased sleep-to-wake transitions [288], or increased daytime napping,
with a decrease in the slow-wave sleep important for protein clearance [289] and the
consolidation of memory [290]. Melatonin, a pineal gland hormone that normally induces
sleep (possibly by acting on BMAL1) [291], has been inconsistently shown to decrease with
age, which, together with the declining expression of melatonin receptors, may lead to
alterations in the sleep–wake cycle during advanced age [292]. Glucocorticoid secretion
is also regulated via the suprachiasmatic nucleus, and it contributes to synchronizing the
peripheral molecular clocks [283]. Aging is associated with alterations in the rhythmical
variations of circulating cortisol [293], while impairments in hippocampal glucocorticoid
signaling may be involved in the depletion of neural stem cells [294].

A series of morphologic and functional changes have been described in the suprachi-
asmatic nucleus with aging, such as a loss of GABAergic synapses, a decrease in the
expression of neuropeptides (arginine, vasopressin, and vasoactive intestinal peptide), and
impairments in the rhythm of neuronal firing [283]. Some researchers have also docu-
mented an altered expression rhythm of genes such as Bmal1, Clock, or Per2 [295], possibly
related to the accumulation of senescent cells in the CNS and suprachiasmatic nucleus [283].
Glial cells, such as astrocytes and microglia, also include molecular clocks with important
functions in entraining activity rhythms [296] and regulating BBB permeability [297].

Both in vitro and animal studies have convincingly demonstrated the circadian vari-
ation in the strength of immune responses at the periphery [298] and in the CNS [299].
For instance, light-induced circadian-rhythm disruption exacerbates the release of TNF-α
and IL-6 in response to a lipopolysaccharide insult, while the latter differentially elicits
the immune response, depending on the time of day [300]. One may assume that a more
active immune system during the transition from resting to waking is an attempt to prepare
the body for exposure to pathogens during the day and to minimize energy expenditure
induced via the immune system [283].

Brain-specific Bmal1 knockout, as well as Clock/Npas2 double knockout, is associated
in mice with age-dependent increased oxidative stress and chronic inflammation [301],
while Bmal1 knockout in monkeys leads to immune activation and depressive symp-
toms [302]. The expression of microglial Bmal1, Per2, and Nr1d1 is regulated via the
molecular clock [303], and the levels of pro-inflammatory cytokines TNF-α, IL-6, or com-
ponents of the NLRP3 inflammasome, show circadian variations as well [304], which may
be abolished by aging [305]. Moreover, BDNF and the activation of the Nrf-2-dependent
pathway provide protection against oxidative stress, while NF-κB-dependent inflammation
is regulated via the astrocytic molecular clock [303].

4.2. The Role of the Gut Microbiota

Increasing evidence suggests that gut microbiota impact brain functions and are
involved in the pathophysiology of neurodegenerative diseases [186]. The human digestive
tract contains 1013–1014 living microorganisms which contribute to nutrient absorption
and vitamin synthesis. Host immunity prevents extreme pathogenic changes in the gut
microbiota, but aging and dietary habits (including modifications of diet due to age-related
enzyme deficiencies, chronic constipation, and the excess use of laxatives) significantly
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change the gut microbiota towards a more pro-inflammatory composition, increasingly
linked to somatic decline.

At the family level, Bacteroidaceae, Ruminococcaceae, and Lachnospiraceae decrease with
aging, while Christensenellaceae and Synergistaceae increase. As for genera, Eggerthella,
Akkermansia, Bilophila, Escherichia, Desulfovibrio, and Anaerotruncus are more prevalent with
age, and Faecalibacterium, Prevotella, and Bacteroides are reduced in the elderly [306]. The
human gut virome also changes with increasing age, with studies showing a decrease
in viral richness [307]. An unbalanced diet, rich in fats and carbohydrates, such as the
Western diet, leads to gut dysbiosis, and it causes metabolic endotoxemia and increases in
serum markers of inflammation [308], being linked to the etiology of diabetes, metabolic
syndrome, and cardiovascular diseases [309].

The gut is composed of epithelial cells connected via tight junctions, covered by a
mucus layer with antimicrobial peptides and immunoglobulins A on the luminal side,
and immune cells in the lamina propria [310]. Specialized epithelial cells (M cells) cover-
ing the dome of Peyer’s patches perform the immune surveillance of intestinal antigens
transported to the lymphoid follicles [311]. In aging, the mucus layer undergoes thin-
ning, the components of the tight junctions connecting epithelial cells are attenuated, and
serum zonulin, a marker of a “leaky” gut, increases [312]. All of these changes suggest a
weakening of the intestinal barrier. However, D’Amato and coworkers could demonstrate
impairments in learning and memory in young mice following microbiota transplants from
age-matched donor mice in the absence of abnormal gut permeability or an increase in
circulating cytokine levels [313].

Metabolites produced via the gut microbiota significantly impact the intestinal bar-
rier and systemic inflammation. While microbial components and small molecules [314],
short-chain fatty acids, bile acids [315], methane, and hydrogen gas [316] exert anti-
inflammatory effects, lipopolysaccharides, trimethylamine N-oxide, and ammonia may
act as pro-inflammatory factors [315]. A “Leaky” intestinal barrier can be caused by the
disintegration of the tight junctions connecting intestinal epithelial cells, induced through
TNF via a pore pathway regulated via IL-13, or by loss of the intestinal epithelium caused
by caspase-8-triggered apoptosis [317]. Gut inflammation then spreads via the lymphatic
drainage pathway and systemic circulation following the disruption of the gut–vascular
barrier [186].

Systemic inflammation weakens the BBB via several pathways. The integrity of the
BBB relies on the Wnt/β-catenin, TGF-β, PDGF-β, and sonic hedgehog (Shh) signaling
pathways [186]. Astrocytes are the main sources of Wnt signals in the neurovascular unit.
The frizzled receptors of brain endothelial cells bind Wnt, leading to the sequestration
of GSK-3β from β-catenin. However, GSK-3β activation via pro-inflammatory cytokines
ignites the Akt/GSK-3β and weakens Wnt/β-catenin signaling. In the hippocampus of
aged animals, an increase in TNF-α and NF-κB was associated with increased Akt/GSK-3β
activity [318]. Astrocytes are also the main source of Shh, which is positively associated
with tight junction expression [186]. IL-1β from peripheral circulation or released via
activated microglia suppresses the astrocytic production of Shh, promotes the production
of pro-inflammatory factors (such as CCL2) via astrocytes [319], and enhances endothelin-1
activity, which further downregulates Shh signaling and contributes to the uncoupling of
the neurovascular unit and the weakening of the BBB [320]. IL-6 also reduces the expression
of tight junctions, adherens junctions, claudin-5, or VE-cadherin in brain endothelial
cells, while TNF-α decreases the thickness and stiffness of the glycocalyx [186]. Further,
interferon-γ, IL-17A, and zonulin enhance the permeability of both the intestinal barrier
and the BBB by modulating tight junctions and the associated cytoskeleton, opening
the way for immune-cell transmigration into the CNS. Th17 cells can produce matrix
metalloproteinases (MMP-3 and MMP-9) that further damage the BBB by decomposing the
basal membrane [321]. Finally, activated microglia stimulate astrocytes to release TNF and
glutamate and produce more chemokines to recruit leukocytes into the CNS [322].
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4.3. Cholinergic Modulation of Neuroinflammation

Acetylcholine, one of the first identified neuromediators, acts on muscarinic (M1–M5)
receptors, which are metabotropic G protein-coupled receptors, and nicotinic receptors
(nAChRs), which are ionotropic cation channels [70], to exert its various functions in both
peripheral and central nervous system. In the CNS, nAChRs are pentamers formed through
combinations of α and β subunits, and they are expressed by neuronal and glial cells [323],
including microglia and astrocytes.

The existence of a cholinergic anti-inflammatory pathway in the CNS was first pro-
posed by Shytle in 2004, and this pathway is mediated via the activation of α7nAChRs [324].
The anti-inflammatory effect of α7nAChR stimulation in astrocytes is exerted via the activa-
tion of Nrf-2, which leads to the expression of a series of antioxidant genes and a decrease in
the expression of p50, an inhibitor of IκB phosphorylation, with the subsequent inhibition
of NF-κB nuclear translocation [325]. In microglia, α7nAChRs’ anti-inflammatory effect is
also mediated via the activation of the Nfr-2 pathway, as well as the phosphorylation and
activation of p38, p44/42, and c-Jun-N-terminal kinase (JNK) MAP kinases [70].

The vagus nerve’s visceral afferents in the gut can be stimulated via IL-1, the nerve
conveying the information to the nucleus of the solitary tract, which, in turn, projects to
the dorsal motor nucleus of the vagus from where efferent fibers reduce the formation
of pro-inflammatory cytokines through splenic lymphocytes and macrophages via the
α7nAChRs [326].

During aging, a slight decrease in both muscarinic and nicotinic AChRs, as well as a
reduced formation of acetylcholine, has been documented [71], and it may underlie both
cognitive decline and potentiate chronic neuroinflammation.

4.4. Glial Cells and Sex Differences in Brain Aging

Both sex chromosomes and gonadal hormones influence the modifications induced
via aging in the nervous system [327], and women are at greater risk of developing demen-
tia [328]. Moreover, the nervous system has gender-specific responses to physiological and
pathological challenges related to sex differences in systemic immunity, metabolism, and
cardiovascular function, which are also caused by hormones and sex chromosomes [329].
Due to the complex functions of glial cells in the brain, as well as their marked sexual
dimorphism and interaction with gonadal hormones, glial cells are greatly responsible for
these gender differences in brain aging [330].

Oligodendrocytes show higher densities in the corpus callosum, fornix, and ventral
funiculus of the spinal cord in male mice and rats, with thicker myelin sheaths, differences
that may be explained by the effect of androgens acting on specific receptors [331]. Tran-
scriptomic analyses of oligodendrocyte precursor cells showed gender-related differences
in the expression of genes encoding for proteins involved in myelination, proliferation, cell
cycle, and maturation [332], which may underlie different functional properties: female
oligodendrocyte-precursor cells have a greater migratory ability and are more proliferative,
while male ones have higher differentiation and myelinating properties [332].

Female and male astrocytes show differences in the expression of genes in response to
inflammatory insults and in the recruitment of immune cells [330]: in vitro, inflammation
stimulates the phagocytosis of cellular debris via male astrocytes but inhibits phagocytosis
in female ones [333]. Astrocytes also make important contributions to the neuroendocrine
control of the metabolism, and they are differentially affected by metabolic challenges,
which may explain the gender differences in the onset of obesity and related diseases that
impact systemic inflammation and the CNS [334].

Microglia vary between sexes in terms of gene expression, number, and morphol-
ogy [335], as well as the response to brain insults. For instance, female microglia trans-
planted into the brains of male mice subjected to focal cerebral ischemia improved outcomes,
as opposed to male microglia transplanted into female animals [336]. In addition, female
microglia exhibit an increased expression of inflammation-related factors [337] with ad-
vancing age, and they exhibit aging phenotypes earlier [338]. Aging microglia also respond
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differently to estradiol: in female microglia isolated from the adult hippocampus and
stimulated with lipopolysaccharides, estradiol reduces IL-1β expression, as opposed to
male microglia [339].

Moreover, genes situated on the sex chromosomes may contribute to generating gender
differences in brain pathology. For example, extreme downregulation of the Y chromosome
in humans increases the risk of Alzheimer’s disease [340].

Gonadal hormones exert their effect on the CNS through their steroid metabolites,
which act on androgen, estrogen, and progesterone receptors expressed via glial cells [330].
The levels of these gonadal hormones decline with aging, leading to a changing regulation
of glial cell function [341]. Tibolone, a synthetic steroid hormone used for the treatment of
menopausal symptoms, stimulates the phagocytosis of cellular debris via astrocytes more
significantly and acts on different receptors in women compared to men [333].

Still, much research is needed to elucidate the specific cellular and molecular mecha-
nisms that underlie the sex-specific characteristics of nervous-system aging and disease
and to develop gender-specific precision medicine. These gender-related differences in
pathophysiology and the course of neurological diseases may also bias clinical trials. How-
ever, glial cells appear to represent a relevant target for sex-specific interventions against
age-associated neurodegeneration [330].

5. Consequences of Inflammaging on the Brain

During life, there is a continuous duel between damage accumulation from envi-
ronmental and endogenous events and resilience mechanisms that cope with stressors
and resolve damage [342]. With increasing age, these resilience mechanisms become less
effective and allow for the accumulation of molecular and cellular damage expressed
as inflammaging, susceptibility to chronic diseases, physical and cognitive impairment,
frailty, and death [343]. The aging of the immune system, meant to react to commensal
and pathogenic microorganisms, pathogen-associated molecular patterns, and damage-
associated molecular patterns from endogenous and exogenous sources, leads to a state of
pro-inflammatory activation characterized by high circulating levels of pro-inflammatory
cytokines and localized tissue inflammation, as well as an either blunted or excessive
response to antigens and pathogens [343].

All the postulated hallmarks of aging are linked to inflammation via a bidirectional
feedback loop:

a. Genomic instability can lead to inflammation by activating poly (adenosine diphosphate-
ribose) polymerase 1 (PARP1) via single-stranded DNA breaks. PARP1 activity causes
NAD+ depletion, which interferes with SIRT activity. SIRT depletion causes the
accumulation of mitochondrial DNA damage and mitochondrial dysfunction, as
well as the activation of the NLRP3 inflammasome [343]. Damaged DNA can also
leak into the cytoplasm, triggering the cGAS-STING pathway [344]. Conversely,
chronic inflammation can induce genomic instability through elevated TNF-α levels
binding to its receptors and phosphorylation of p47 phagocyte oxidase, followed
by the recruitment and plasma membrane translocation of TNF receptor-associated
factor 4, which facilitates nicotinamide adenine dinucleotide phosphate hydrogen
oxidase activity and leads to ROS production [345], or via inducible nitric oxide
synthase, which reduces DNA methyltransferase 1 and leads to DNA damage and
hypomethylation [346].

b. Telomere dysfunction, together with DNA damage, activate p53, which suppresses
peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) and
mitochondrial sirtuins, leading to mitochondrial dysfunction and oxidative stress [347].
In addition, the downregulation of PGC-1α induces the NLRP3 inflammasome, which
leads to caspase-1 activation and the conversion of pro-IL-18 to IL-18 [348]. Inflamma-
tory cytokines, mainly TNF-α, downregulate telomerase activity and lead to acceler-
ated telomere shortening [349], while type I interferons also inhibit telomerase activity
and promote telomere erosion [350].
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c. Epigenetic alterations, such as DNA methylation and histone modifications, can lead to
inflammatory consequences, activating genes involved in the inflammatory responses,
such as NF-κB or interferons [350], while histone modifications activate or repress
genes via histone acetyltransferases or histone deacetylases [351].

d. Continuous exposure to mutagens leads to the accumulation of misfolded proteins that
overwhelm the cellular proteostasis machinery and elicit the unfolded protein response
through the activation of inositol-requiring transmembrane kinase/endoribonuclease
1α, the activating transcription factor 6, and the protein kinase R-like endoplasmic
reticulum kinase (PERK), resulting in NF-κB activation [352]. Protein aggregates can be
recognized as DAMPs by PRRs and cause the assembly of the NLRP3 inflammasome,
as well as caspase-1 cleavage and increased IL-18 and IL-1β production [353]. On the
other hand, systemic chronic inflammation alters both protein folding and degradation
through PERK-dependent phosphorylation of eukaryotic translation initiation factor
2, thereby hindering the translation of misfolded proteins, and by decreasing the
influx of translated proteins into the ER [354]. Moreover, increased levels of ROS as a
consequence of inflammation impair protein folding and facilitate the formation of
misfolded and cytotoxic protein aggregates [355].

e. Impaired autophagy allows for the accumulation of protein aggregates, dysfunctional
organelles, and cytosolic DNA, thereby contributing to inflammation signaling [356].
Caloric restriction or caloric restriction-mimetic therapies have been shown to activate
autophagy and exert anti-inflammaging effect [350]. Chronic inflammation has been
shown to impair autophagy mainly in neurodegenerative diseases such as AD, PD,
Huntington’s disease, or amyotrophic lateral sclerosis, in which the increased levels of
pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) correlate with decreased levels
of autophagy markers (Beclin-1, p62, and LC3 II) [357].

f. Nutrient sensing is regulated through the insulin and insulin-like growth factor 1 sig-
naling pathways (known as the IIS pathways), the mTOR and AMPK pathways, and
sirtuins [350]. Aging is associated with a decline in insulin clearance and insulin resis-
tance, leading to dyslipidemia [358]. Triglycerides can induce NF-κB in macrophages,
while free fatty acids and chronic hyperinsulinemia activate the mTOR pathway [359].
While the mTOR kinase senses amino acid levels and controls cell growth, the AMPK–
sirtuin pathway senses nutrient scarcity [350]. Prolonged IIS signaling activates mTOR
complex 1, resulting in the inhibition of IKβ and the overactivation of IKK [360]. Pro-
inflammatory cytokines can interact with mTORC1, accelerate aging [361], and inhibit
AMPK activity [362].

g. The bidirectional relationship between mitochondrial dysfunction and inflammation
has been subject to extensive research. The cytoplasmic release of mitochondrial
DNA activates TLRs and ignites NF-κB signaling, inducing the expression of pro-
inflammatory cytokine genes [363]. Cardiolipin stimulates the release of cytochrome c
and leads to apoptosis [364]. Conversely, inflammation impairs mitochondrial function
through inflammasome activation and by promoting excess ROS production, with
increased oxidative damage of mitochondrial proteins, lipids, and DNA [365].

h. Senescent cells secrete the SASP (consisting of a wide array of pro-inflammatory cy-
tokines) and “spread” cellular senescence in a paracrine manner [366], while oxidative
molecular and DNA damage inflicted via the oxidative stress associated with chronic
inflammation can trigger cellular senescence [350].

i. Intercellular signaling includes endocrine, neuronal, and neuroendocrine pathways,
as well as the cell-to-cell exchange of vesicle-packed and free soluble factors, inflam-
matory signals included [16]. Inflammation at the level of the hypothalamic-pituitary
axis contributes significantly to metabolic dysregulation [367] and decreased insulin
sensitivity, leading to impaired immune cell function [350]. Extracellular vesicles are
released via most cell types, and they contain proteins, lipids, and nucleotides, sharing
them between the donor and recipient cell and thereby linking hallmarks of aging
through inflammatory mediators [368].
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j. Multiple factors (DNA damage, telomere attrition, and epigenetic dysregulation) cause
a decline in the proliferative and regenerative capacities of stem cells, leading to the
accumulation of senescent cells [369]. In turn, senescent cells can exacerbate stem-
cell exhaustion via the SASP cytokines that favor the infiltration of the tissues with
immune cells, further impairing stem-cell function [370].

Although the brain has long been considered an immune-privileged organ with lim-
ited exposure to peripheral immune challenges, in the context of inflammaging and the
dysregulation of the neuro-immune axis, the brain becomes increasingly vulnerable [343].
Aging is the most prominent risk factor for a series of neurodegenerative diseases such
as AD, Parkinson’s disease, or other forms of dementia, and in all of these conditions, re-
search has shown an increase in circulating inflammatory cytokines and chemokines [9,10].
There is an age-related increase in the permeability of the BBB due to the loss of tight junc-
tions and a shift from tightly regulated receptor-mediated transcytosis toward nonspecific
transcytosis of plasma proteins [191]. Moreover, circulating inflammatory factors, such
as TNF-α, can further enhance BBB permeability by suppressing the expression of tight
junctions. Circulating TNF-α, IL-1β, and IL-6 bind to receptors on endothelial cells and
induce the expression of cellular adhesion proteins that further promote inflammation by
triggering NF-κB signaling, by enabling the tethering of circulating myeloid cells to the
brain endothelia, and by igniting microglial activation [371]. In addition, inflammatory cy-
tokines and chemokines penetrate the BBB through active-transport or nonspecific caveolar
transcytosis [191]. Chronic infections (for example, periodontal diseases), acute infections,
inflammatory diseases (for example, rheumatoid arthritis and inflammatory bowel disease),
or obesity (through the hypoxia of adipocytes, endoplasmic reticulum stress, the impair-
ment of PPAR receptors, and the activation of inflammasomes and of TLRs) [372] can all
increase the levels of the circulating inflammatory cytokines that eventually reach the brain
through the “leaky” BBB. Many inflammatory mediators shown to increase with aging
(IL-1β, IL-18, and sTNF-R1) are upregulated to an even greater extent in neurodegenerative
conditions such as AD and PD [373,374]. Interestingly, many genes shown to be associated
with late-onset sporadic AD are in or near genes important for immunity or expressed via
brain immune cells [375].

Age itself is associated with phenotypic changes to microglia and astrocytes that are
amplified by the glial inflammatory response after both central and peripheral immune
challenges [376]. Microglial changes include a deramified morphology, increased cytokine
and chemokine expression, and an upregulation of MHC-II and TLRs [377], while astro-
cytes exhibit elevated glial fibrillary acidic protein (GFAP) expression and hypertrophic
morphology [343]. Aged glial cells respond less efficiently to antigens, including amyloid-β
and α-synuclein, and they have reduced phagocytic and anti-inflammatory capacity [378].
Moreover, activated glial cells exert a neurotoxic effect, express increased levels of cytokines
and chemokines, and release DAMPs that promote neuroinflammation via the multiple
pathways discussed above.

Resting microglia perform crucial physiological functions in the regulation of neu-
ronal activity, synaptic transmission, and the formation, modification, or elimination of
synapses [379]. Under normal conditions, complement proteins specifically bind to apop-
totic, immature, or weak developing synapses in the CNS, structures that are recognized
by complement receptors and consequently engulfed. Another signal that promotes synap-
tic pruning is phosphatidylserine, which occurs on apoptotic or injured dendrites and
is recognized by microglial TREM2 receptors [380]. In addition, microglia can regulate
phagocytosis and synapse elimination through the interaction of the microglia-expressed
fractalkine receptor CX3C motif chemokine receptor 1 (CX3CR1) with its ligand, CX3CL1,
expressed by neurons [381]. Microglia are also critically involved in the modulation of
synaptic plasticity, defined as the ability of the CNS to modify synapses and neural con-
nections in response to synaptic activity and sensory and motor experiences. They also
modulate long-term potentiation (LTP) and long-term depression (LTD) via the puriner-
gic receptor P2RY12, PI3K/BDNF signaling, and fractalkine signaling, respectively [382].
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However, a disrupted balance between pro-inflammatory and anti-inflammatory markers
released via microglia significantly impairs synaptic plasticity [383]. Experimentally, a
lipopolysaccharide challenge causes the microglial release of TNF-α (resulting in a transient
increase in LTP) and IL-1β (which impairs LTP in CA1 neurons) [382]. Microglia can also
modulate synaptic transmission through BDNF expression via PI3K/BDNF signaling [384].
As for adult neurogenesis, microglia from the subgranular zone and subventricular zone
play an active role via the phagocytosis of apoptotic newborn neuronal cells [385], and they
direct the migration of newly formed cells [386]. The wide range of inflammatory mediators
released via primed and activated microglia (IL-6 and TNF-α) have been convincingly
shown to reduce neurogenesis [387].

In addition, adaptive immune alterations significantly contribute to the progression
of neurodegenerative diseases and persist throughout the disease. Self-antigens, such
as amyloid β, could induce autoreactive effector T-cells that drive pro-inflammatory and
neurodestructive cascades [388], acting together with an impaired function of the regulatory
T-cells [389].

6. Identifying Inflammation in the CNS
6.1. Imaging Inflammation in the CNS

Molecular imaging of the inflammatory processes is essential in both clinical practice
and research. The main molecular target in functional imaging of inflammation is translo-
cator protein (TSPO), a 169-amino-acid protein on the outer mitochondrial membrane that
binds to benzodiazepines [390] and is upregulated in inflammatory processes. Several
radiolabels allow the assessment of TSPO expression via single-photon emission computer-
ized tomography (SPECT) or positron-emission tomography (PET). Alternatively, several
radiotracers can bind to activated microglia.

The first generation of tracers included Ro5-4864 and isoquinoline. Ro5-4864 is a
member of the 4-chlorodiazepam family which, labeled with the C-11 isotope, can be used
in the PET technique, binding to TSPO but not to the benzodiazepine subunit of the GABA
receptor [391]. Isoquinoline (11-C-PK-1195) binds to activated microglial cells.

The second-generation tracers have higher binding specificity to TSPO and comprise
phenoxy-phenylacetamide [11C]DAA1106 and [18F]DAA1106. They also bind to microglial
cells, but their use is limited due to their binding to astrocytes and other immune cells [391,392].

Third-generation radiolabels are more specific in the imaging of activated microglia.
This group includes tricyclic radiotracers such as [18F]GE180, [18F]FEBMP, or [11c]vinpocetine,
as well as modified agents from the previous generations: [18F]FE-DAA1106, [18F]PBR28,
[18F]PBR111, [11C]DPA-713, or [18F]DPA-714 [393,394].

6.2. Inflammatory Biomarkers

While CSF levels of beta amyloid (Aβ) and tau isoforms, together with markers
of neuronal loss, such as neurofilament light (Nfl), are increasingly used as biomarkers
in Alzheimer’s disease, neuroinflammatory markers are beginning to be evaluated to
allow for the stratification of subjects according to the underlying molecular and cellular
mechanisms leading to their impairments. Although it is difficult to capture the entire
spectrum of the ongoing neuroinflammatory process through a single measurement of a
panel of biomarkers, and the reported results are sometimes conflicting (probably varying
with the disease stage and underlying comorbidities), serial measurements have started to
reveal interesting associations, as shown in Table 3 below.
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Table 3. Inflammatory biomarkers evaluated in cognitive impairment.

Marker Sample Correlations Ref.

sTyro3 CSF
Old age, high tau levels, less of an Aβ burden
Higher gray matter and white matter volume, less white matter hyperintensities,
better memory, slower atrophy rates

[395]

sAXL CSF
Old age, high tau levels, less of an Aβ burden
Higher gray matter and white matter volume, less white matter hyperintensities,
better memory, slower atrophy rates

[395]

serum Negatively correlated with structural imaging and cognitive function [396]

sTREM2 CSF
Old age, high tau levels, less of an Aβ burden
Higher gray matter and white matter volume, less white matter hyperintensities,
better memory, slower atrophy rates

[395]

YKL-40 CSF
Old age, high tau levels, less of an Aβ burden
Higher gray matter and white matter volume, less white matter hyperintensities,
better memory, slower atrophy rates

[395]

Serum Correlated with structural changes but not with cognitive outcomes [396]

IL-6 Serum Negative correlation with structural measures of Braak regions [396]

CRP CSF Male gender, high body mass index, greater vascular risk, less gray matter and
white matter volume, worse memory [395,397]

IL-18 CSF Male gender, high body mass index, greater vascular risk, less gray matter and
white matter volume, worse memory [395]

Complement C4 CSF Male gender, high body mass index, greater vascular risk, less gray matter and
white matter volume, worse memory [395]

C1q CSF
Old age, high tau levels, less Aβ burden
Higher gray matter and white matter volume, less white matter hyperintensities,
better memory, slower atrophy rates

[395]

IP-10, sICAM-1 CSF Correlated with neuropsychiatric symptoms [397]

MIP-1, VEGF Serum Associated with neuropsychiatric symptoms [397]

IL-12 Plasma Associated with slower cognitive decline [398]

Explanation: Tyro3 and AXL are type I receptor–tyrosine kinases that contribute to the clearance of apoptotic
cells. YKL-40 is a chitinase-3-like protein 1 expressed via various cells, including macrophages, and used
as a marker of disease activity in inflammatory and autoimmune diseases. Abbreviations: CRP—C reactive
protein; MIP-1—macrophage inflammatory protein-1; IP-10—interferon-γ-inducible protein 10; IL—interleukin;
sTREM2—soluble triggering receptor expressed on myeloid cells-2; sICAM-1—soluble intercellular adhesion
molecule-1; VEGF—vascular endothelial growth factor.

7. Therapeutic Approaches to Modulating Inflammaging

Several lifestyle approaches can delay aging and help maintain health [399]. A diet
rich in certain metabolites, micronutrients, and phytochemicals contributes to epigenetic
modulation and diminishes the risks of age-related diseases and inflammaging [400].
Consuming whole-grain cereals, vegetables, fish, and fruits, as in the Mediterranean
diet, has been shown to have protective, antioxidant, and anti-inflammatory effects [401].
Furthermore, although not yet verified in humans, caloric restriction has been shown
to prevent the onset of immunosenescence in animal models and extend lifespans [402].
Several plant supplements, such as polyphenols, curcumin, sulforaphane, or quercetin,
have proven antioxidant and anti-inflammatory activities [279], acting via many pathways,
despite their limited ability to cross the BBB.

Physical exercise leads to the release of a series of humoral factors from skeletal
muscles, liver, and adipose tissue, which mediate several beneficial effects. One such factor
is IGF1, which crosses the BBB via receptor-mediated transport and promotes synaptic
plasticity and neurogenesis in the CNS [403]. Moreover, exercise prevents DNA damage,
promotes telomerase activity [404], and reduces oxidative stress [405].
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Psychological stress continuously activates the hypothalamus–pituitary–adrenal axis
and causes persistent elevations of glucocorticoid levels, which lead to hippocampal atro-
phy [406]. As such, maintaining a good mental state can also delay aging [407].

Plant-derived drugs, such as flavonoids and icariin (a natural flavanol glycoside) en-
hance SIRT6 enzyme expression and repress NF-κB inflammatory signaling pathways [408].
Metformin inhibits the mTOR pathway, activates AMPK, and reduces ROS levels, insulin,
and insulin-like growth factor-1 signaling [409].

Maintaining a healthy gut microbiota and the use of probiotics have been shown to
reduce the level of systemic inflammatory factors and the expression of aging markers p53
and p16 [410] and to reduce sarcopenia caused by prolonged immobilization [411].

When referring strictly to neuroinflammation and neurodegenerative diseases (mainly
AD), epidemiological studies have suggested that the long-term use of non-steroidal anti-
inflammatory drugs (NSAIDs) was linked to a decreased risk of AD [412] and PD [413]. A
follow-up analysis of the ADAPT clinical trial showed a modest effect of naproxen in pre-
venting AD [414]. A novel non-steroidal anti-inflammatory drug (CHF5074 or itanapraced)
lacking cyclooxygenase inhibitory activity was shown to restore normal microglial function,
increase phagocytosis, and decrease the production of pro-inflammatory cytokines [415],
and it has completed several phase 2 clinical trials [9]. Monoclonal antibodies against
TNF-α are already used for autoimmune and inflammatory diseases, and they have also
been evaluated in AD. The selectively soluble TNF inhibitor XPro-1595 inhibits TNF re-
ceptors type 1 and has been shown to reduce Aβ plaques, restore long-term potentiation,
and prevent synaptic loss in mice [416]. It has completed a phase 1 open-label safety and
tolerability study (NCT03943264) with unpublished results. The tyrosine kinase inhibitor
dasatinib, used with quercetin, is currently in phase 1 and ½ clinical trials [9]. Inhibitors
of p38 MAP kinase (neflamapimod and MW150) have also entered clinical trials [417].
Monoclonal antibodies targeting various receptors to interrupt several pathogenic neu-
roinflammatory cascades are clinically tested in phase 1 and 2 trials, including AL002
targeting TREM2 receptors, AL003 directed against CD33, daratumumab, a humanized
IgG1κ monoclonal antibody targeting the CD38 epitope, or canakinumab, developed for
use against IL-1β [9]. Several other anti-inflammatory therapeutic strategies are being
evaluated in preclinical stages.

Finally, senotherapies are in active research. By secreting pro-inflammatory cytokines,
senescent brain cells are a source of damaged macromolecules that propagate a pro-
inflammatory response in the brain microenvironment and create harmful conditions with a
significant negative impact on brain functioning. Eliminating senescent cells with senolytic
compounds, or shaping the SASP with senomorphics, are exciting new strategies still in
very early infancy. Most research is in preclinical stages, but they could help us achieve healthy
aging and avoid the cognitive dysfunction, sarcopenia, and physical frailty associated with
aging. Table 4 summarizes these attempts to modulate brain aging and neuroinflammation.

Table 4. Therapeutic attempts to modulate brain aging.

Category Intervention Mechanisms of Action Comments Ref.

Lifestyle approaches

A healthy diet (whole-grain
cereals, vegetables, fruits,
and fish, supplemented with
polyphenols, quercetin,
curcumin, and sulforaphane)

Pleiotropic (antioxidant,
anti-inflammatory actions)

Contributes to
epigenetic modulation [279,401]

Caloric restriction Increases SIRT activity
Not verified in humans but
shown to extend lifespan
in animals

[402]

Physical exercise

Released exerkines promote
neuroplasticity and neurogenesis,
prevent DNA damage, promote
telomerase activity

[403–405]
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Table 4. Cont.

Category Intervention Mechanisms of Action Comments Ref.

Avoidance of stress Dampens the
hypothalamo–pituitary–adrenal axis [407]

Probiotics Reduce systemic inflammatory markers,
promote healthy gut microbiome [410]

Strategies targeting
neuroinflammation

NSAIDs Reduce systemic inflammation
and neuroinflammation

Epidemiologic studies have
shown them to be efficient in
preventing AD and PD

[412,414]

Itanapraced (CHF5074)
Restores normal microglial function,
decreases pro-inflammatory
cytokine production

Completed phase 2 trials
(NCT01303744, NCT01602393,
NCT01421056)

[9,415]

XPro-1595 Inhibits TNF receptors Completed a phase 1 study
(NCT03943264) [416]

Dasatinib Tyrosine kinase inhibitor

Currently in phase 1 and ½ trials
(together with
quercetin—NCT04063124,
NCT04785300, NCT05422885,
NCT04685590)

[9,418]

Neflamapimod and MW150 Inhibitors of p38MAPK
Completed 3 phase 2 studies
(NCT02423200, NCT02423122,
NCT03402659)

[417,418]

AL002 Monoclonal antibody against
TREM2 receptors

Evaluated in a phase 2
trial—NCT04592874 [9,418]

AL003 Monoclonal antibody against the
CD33 epitope

Evaluated in a phase 1 trial
(NCT03822208) [9,418]

Daratumumab Monoclonal antibody against the
CD38 epitope

Currently tested in a phase 2
trial—NCT04070378 [9,418]

Canakinumab Monoclonal antibody against IL-1β Assessed in a phase 2
trial—NCT04795466 [9,418]

Strategies targeting
senescent cells Senolytics and senomorphics Eliminate senescent cells or modulate

the SASP Mostly in preclinical trials [419]

8. Challenges and Future Directions

Although the involvement of neuroinflammation in the pathophysiology of neurode-
generative diseases and aging of the CNS has been consistently shown in research, and the
link between chronic peripheral inflammation and neuroinflammation has been convinc-
ingly demonstrated, we are still far from fully explaining the mechanisms underlying these
links. A series of complex interactions between genetics, environment, and lifestyle further
shape our immune system and modulate the aging process.

Research using the classical in vitro and in vivo models is ongoing.

a. In vitro models consist of the following:

- Replicative senescence models in which hydrogen peroxide is used to cause
stress-induced premature senescence [420].

- Oncogene-induced senescence, achieved via the activation of various oncogenes [421].
- Chemotherapy-induced senescence, usually using doxorubicin [422].

b. In vivo models include the following:

- Induced aging mouse models, with the preferred agent being D-galactose [423].
- Genetic mouse models, using particular senescence-accelerated mouse/prone

(SAMP) strains, such as the SAMP8 strain [424].
- Premature aging models based on the identification of the genetic mutations

causing human progeroid syndromes and genetically modifying rodents accord-
ingly [425].

- Studying animals with naturally long lifespans or human centenarians.
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In the future, spatial single-cell technologies (spatial transcriptome and spatial metabolome)
will allow the construction of three-dimensional aging atlases at the organ level [426]. How-
ever, these models are less sensitive in identifying the interactions of specific brain regions
with each other, a problem that might be solved using brain organoids [427]. Finding ways
to vascularize these brain organoids and complement them with microglial cells could
significantly advance our knowledge of neuroinflammation and brain aging [428].

In our view, before the much-awaited future innovative therapeutic strategies can
enter clinical trials, several key areas require further investigation:

1. The identification of non-invasive biomarkers of neuroinflammation and immune
dysregulation could be helpful in the early detection of impaired immune response,
the prognostication of neurodegeneration, and the monitoring of treatment responses.

2. It is very likely that each stage of neuroinflammation will require targeted strategies
for efficient modulation. Moreover, treating neurodegenerative diseases will need
to combine immunomodulatory therapies with strategies aiming at clearing specific
protein aggregates. Aside from exploring novel therapeutic targets, improving exist-
ing immunomodulatory therapies, with new drug-delivery systems, could enhance
efficacy and minimize the side effects and off-target effects of drugs.

3. Given the influence of genetic factors and gender on the risk and progression of aging
and neurodegenerative diseases, tailoring therapeutic interventions to individual pa-
tient profiles holds promise, and precision medicine strategies will have to incorporate
computational modeling, algorithms, and multi-omics data integration to improve
treatment selection.

4. Collaborative efforts between basic scientists, industry partners, and clinicians could
accelerate the development of effective treatments against neurodegenerative and
neuroimmune disorders.

A better understanding of the mechanisms linking all age-associated dysfunctions
could open the perspective on ensuring healthy aging, retaining memories and physical fit-
ness, the ability to make decisions, and all of those things that make long lives worth living.
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List of Abbreviations

AChRs acetylcholine receptors
AD Alzheimer’s disease
Akt protein kinase B
ASC apoptosis-associated speck-like protein
ATM ataxia-teleangiectasia, mutated
ATP adenosine triphosphate
ATR ATM and Rad3-related
AQP4 aquaporin 4
BBB blood–brain barrier
BDNF brain-derived neurotrophic factor
BMAL1 Basic Helix–Loop-Helix ARNT Like 1
CARD caspase activation and recruitment domain
CDK cyclin-dependent kinase
cGAS 2′3′-cyclic GMP-AMP synthase
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CNS central nervous system
COX cyclooxygenase
CSF cerebrospinal fluid
DAMPs danger-associated molecular patterns
DDR DNA damage response
DNA deoxyribonucleic acid
EAAT excitatory amino acid transporter
Ecrg4 esophageal cancer-related gene 4
ER endoplasmic reticulum
ERK extracellular-regulated kinase
FADD FAS-associated death domain
GABA gamma-aminobutyric acid
GFAP glial fibrillary acidic protein
GSK3β glycogen synthase kinase-3 beta
HMGB high-mobility group B
HSP heat shock protein
ICAM-1 intercellular adhesion molecule-1
IFN interferon
IIS pathways insulin and insulin-like growth factor 1-signaling pathways
IκB inhibitor of κB
IKK IκB kinase
IL interleukin
IRF3 interferon regulatory factor 3
JAK/STAT pathway Janus kinase/signal transducer and activator of transcription pathway
JNK c-Jun N-terminal kinase
Kir inwardly rectifying potassium channels

LINGO-1
leucine-rich repeat and Ig-like domain-containing Nogo receptor-interacting
protein 1

LRP-1 low-density lipoprotein receptor-related protein-1
MAPK mitogen-activated protein kinase
MBP myelin basic protein
MCP monocyte chemoattractant protein
MDM2 mouse double minute 2
MHC major histocompatibility complex
MIP macrophage inflammatory protein
MLKL mixed lineage kinase domain-like
MMP matrix metalloproteinase
MRI magnetic resonance imaging
mTOR mammalian target of rapamycin
mTORC mechanistic target of rapamycin complex
MyD88 myeloid differentiating factor 88
NADPH reduced nicotinamide adenine dinucleotide phosphate
NF-κB nuclear factor κB
NLRS NOD-like receptors
NMDA N-methyl-D-aspartate
NOD nucleotide-binding oligomerization domain
NPCs neural progenitor cells
Nrf-2 nuclear factor erythroid 2-related factor 2
NVU neurovascular unit
OPCs oligodendrocyte progenitor cells
PAMPs pathogen-associated molecular patterns
PARP1 poly (adenosine diphosphate-ribose) polymerase 1
PD Parkinson’s disease
PDGF Platelet-derived growth factor
PERK protein kinase R-like endoplasmic reticulum kinase
PET positron emission tomography
PGC-1α peroxisome proliferator-activated receptor gamma coactivator 1 alpha
PI3K phosphoinositide 3 kinase



Int. J. Mol. Sci. 2024, 25, 10535 31 of 47

PPAR peroxisome proliferator-activated receptor
PRRs pattern-recognition receptors
RAGE receptor for advanced glycation end product

RANTES
regulated on activation, normal T-cell-expressed and -secreted (also known
as CCL5)

RB retinoblastoma protein
RIPK receptor-interacting protein kinase
RNA ribonucleic acid
ROS reactive oxygen species
RUNX1 runt-related transcription factor 1
SA-β-gal senescence-associated β galactosidase
SALL1 Sal-like protein 1
SAMD senescence-associated mitochondrial dysfunction
SASP senescence-associated secretory phenotype
SIPS stress-induced premature senescence
STING stimulator of interferon genes
TBK1 TANK binding kinase 1
TER telomerase RNA
TERT telomerase reverse transcriptase
TFAM mitochondrial transcription factor A
TGF transforming growth factor
TIMP-1 tissue inhibitor of metalloproteinases 1
TJ tight junction
TLRs toll-like receptors
TNF-α tumor necrosis factor α
TNFR tumor necrosis factor receptor
TRADD TNF-receptor-associated death domain
TREMs triggering receptor expressed on myeloid cells
VCAM-1 vascular cell adhesion molecule 1
VEGF vascular endothelial growth factor
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156. St-Pierre, M.K.; Šimončičová, E.; Bögi, E.; Tremblay, M.È. Shedding Light on the Dark Side of the Microglia. ASN Neuro. 2020, 12,
1759091420925335. [CrossRef]
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