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Abstract: Cystic fibrosis (CF) is a genetic disorder caused by mutations in the cystic fibrosis trans-
membrane conductance regulator (CFTR) gene, resulting in defective chloride ion channels. This
leads to thick, dehydrated mucus that severely disrupts mucociliary clearance in the respiratory
system and triggers infection that eventually is the cause of death of CF patients. Current therapeutic
strategies primarily focus on restoring CFTR function, blocking epithelial sodium channels to prevent
mucus dehydration, or directly targeting mucus to reduce its viscosity. Among the ion channels
expressed in ciliated bronchial epithelial cells, the transient receptor potential vanilloid 4 (TRPV4)
channel emerges as a significant channel in CF pathogenesis. Activation of TRPV4 channels affects
the regulation of airway surface liquid by modulating sodium absorption and intracellular calcium
levels, which indirectly influences CFTR activity. TRPV4 is also involved in the regulatory volume de-
crease (RVD) process and enhances inflammatory responses in CF patients. Here, we combine current
findings on TRPV4 channel modulation as a promising therapeutic approach for CF. Although limited
studies have directly explored TRPV4 in CF, emerging evidence indicates that TRPV4 activation can
significantly impact key pathological processes in the disease. Further investigation into TRPV4
modulators could lead to innovative treatments that alleviate severe respiratory complications and
improve outcomes for CF patients.
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1. Introduction

The human airway is protected by an advanced defense system that maintains lung
sterility. Inhaled particles are consistently cleared from the airways via mucociliary clear-
ance (MCC), which is crucial for respiratory health [1]. The MCC system comprises
two primary components: mucus secreted by goblet cells and submucosal glands, which
trap microbes and debris, and tiny hair-like motile cilia that line the airways and beat in
a continuous rhythmic motion. The apical airway surface is lined by a complex airway
surface liquid (ASL), consisting of two distinct layers. The upper gel-like mucus layer traps
inhaled pathogens, while the underlying less viscous periciliary liquid (PCL) lubricates the
airway surface, enabling the cilia to beat efficiently (Figure 1A) [2,3]. Adenosine triphos-
phate (ATP) is a vital energy source for ciliary motion. Motile cilia are primarily found on
the ciliated epithelium lining the respiratory tract, brain ventricles, fallopian tubes, and
spinal cord [3,4]. Respiratory cilia are highly specialized hair-like structures primarily
composed of microtubule-based organelles originating from basal bodies on the apical
membranes of airway epithelial cells [3,5]. Each ciliated airway epithelial cell contains
approximately 200–300 cilia.
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apical membranes of airway epithelial cells [3,5]. Each ciliated airway epithelial cell con-
tains approximately 200–300 cilia. 

 
Figure 1. Mucociliary clearance system. (A) Cross-section of the differentiated conducting airway 
epithelium, illustrating ciliated columnar epithelial cells and secretory goblet cells (in blue with se-
cretory granules). The apical airway surface liquid (ASL) is a low-viscosity periciliary layer (PCL) 
that enables effective ciliary beating. Above this, a more viscous mucus layer functions to entrap 
inhaled pathogens, providing a protective barrier for the respiratory tract. (B) Schematic diagram of 
a ciliary axoneme and basal body. Motile cilia have a 9 + 2 microtubule pair ultrastructure, with 
inner and outer dynein arms. The dynein arms are crucial for ciliary motility. 

The structure of a motile cilium includes a microtubule-based axoneme with two sin-
gle microtubules at the center, surrounded by nine peripheral doublet microtubules, form-
ing a “9 + 2” arrangement. Each outer microtubule pair is equipped with inner and outer 
dynein arms, which produce the required energy for motility through ATP hydrolysis 
[3,4,6] (Figure 1B). Motile cilia beat in a coordinated metachronous pattern, facilitating the 
movement of inhaled debris trapped in the mucus layer out of the airways [7]. The cilium 
moves forward quickly and forcefully in a power stroke to propel the mucus gel layer. 
This is followed by a slower recovery phase, during which the cilium bends backward at 
a 90° angle, moving along the same plane to return to its initial position [2,3]. Defects in 
ciliary function can severely hinder MCC, leading to various airway diseases such as cystic 
fibrosis, a classic example of a respiratory disorder resulting from defective MCC [7]. 

The TRPV4 cation channel, a member of the transient receptor potential (TRP) vanil-
loid subfamily, plays a crucial role in cell volume homeostasis, medium viscosity, and the 
regulation of ciliary beat frequency (CBF) in epithelial cells [8,9]. Activated by various 
stimuli such as heat, mechanical forces, hypo-osmolarity, and arachidonic acid metabo-
lites, TRPV4 integrates multiple environmental signals through its diverse regulatory sites 
[10]. TRPV4 has demonstrated high druggability, with various chemotypes yielding po-
tent ligands that exhibit oral bioavailability and favorable drug-like characteristics [11]. 
This channel is essential for the physiology of ciliated epithelia and has been implicated 
in modulating respiratory function. Understanding the signaling mechanisms that govern 
TRPV4 function is vital, as it holds potential as a therapeutic target for respiratory dis-
eases, including cystic fibrosis, the most prevalent muco-obstructive disease [12,13]. 

2. Cystic Fibrosis and CFTR Dysfunction 
Cystic fibrosis (CF) is an inherited condition caused by mutations in the cystic fibrosis 

transmembrane conductance regulator (CFTR) gene. Over 2000 CFTR mutations have 
been identified, leading to dysregulated ion transport characterized by increased sodium 
absorption and reduced chloride and bicarbonate secretion into the ASL [14]. This imbal-
ance decreases the water content in both the mucus and periciliary layers, producing thick, 

Figure 1. Mucociliary clearance system. (A) Cross-section of the differentiated conducting airway
epithelium, illustrating ciliated columnar epithelial cells and secretory goblet cells (in blue with
secretory granules). The apical airway surface liquid (ASL) is a low-viscosity periciliary layer (PCL)
that enables effective ciliary beating. Above this, a more viscous mucus layer functions to entrap
inhaled pathogens, providing a protective barrier for the respiratory tract. (B) Schematic diagram of
a ciliary axoneme and basal body. Motile cilia have a 9 + 2 microtubule pair ultrastructure, with inner
and outer dynein arms. The dynein arms are crucial for ciliary motility.

The structure of a motile cilium includes a microtubule-based axoneme with two
single microtubules at the center, surrounded by nine peripheral doublet microtubules,
forming a “9 + 2” arrangement. Each outer microtubule pair is equipped with inner
and outer dynein arms, which produce the required energy for motility through ATP
hydrolysis [3,4,6] (Figure 1B). Motile cilia beat in a coordinated metachronous pattern,
facilitating the movement of inhaled debris trapped in the mucus layer out of the airways [7].
The cilium moves forward quickly and forcefully in a power stroke to propel the mucus
gel layer. This is followed by a slower recovery phase, during which the cilium bends
backward at a 90◦ angle, moving along the same plane to return to its initial position [2,3].
Defects in ciliary function can severely hinder MCC, leading to various airway diseases
such as cystic fibrosis, a classic example of a respiratory disorder resulting from defective
MCC [7].

The TRPV4 cation channel, a member of the transient receptor potential (TRP) vanilloid
subfamily, plays a crucial role in cell volume homeostasis, medium viscosity, and the
regulation of ciliary beat frequency (CBF) in epithelial cells [8,9]. Activated by various
stimuli such as heat, mechanical forces, hypo-osmolarity, and arachidonic acid metabolites,
TRPV4 integrates multiple environmental signals through its diverse regulatory sites [10].
TRPV4 has demonstrated high druggability, with various chemotypes yielding potent
ligands that exhibit oral bioavailability and favorable drug-like characteristics [11]. This
channel is essential for the physiology of ciliated epithelia and has been implicated in
modulating respiratory function. Understanding the signaling mechanisms that govern
TRPV4 function is vital, as it holds potential as a therapeutic target for respiratory diseases,
including cystic fibrosis, the most prevalent muco-obstructive disease [12,13].

2. Cystic Fibrosis and CFTR Dysfunction

Cystic fibrosis (CF) is an inherited condition caused by mutations in the cystic fibrosis
transmembrane conductance regulator (CFTR) gene. Over 2000 CFTR mutations have
been identified, leading to dysregulated ion transport characterized by increased sodium
absorption and reduced chloride and bicarbonate secretion into the ASL [14]. This imbal-
ance decreases the water content in both the mucus and periciliary layers, producing thick,
sticky mucus that impairs ciliary function [15]. Although infants with CF are born with
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seemingly normal lungs, they progressively develop chronic lung disease due to impaired
mucociliary clearance, resulting in recurrent infections and bronchiectasis [16,17]. Respira-
tory failure remains the leading cause of mortality in individuals with cystic fibrosis [18].
Cystic fibrosis was considered a fatal childhood disease, with limited treatment options
and an inappropriate prognosis [19].

2.1. Advancements in CF Clinical Care

Recent advancements in clinical care have been diverse and impactful. These in-
clude earlier diagnosis through the implementation of newborn screening programs, the
standardization of airway clearance therapies, and the reduction of malnutrition through
effective pancreatic enzyme replacement and a high-energy, high-protein diet [16,20]. In
high-income countries, center-based care has become the standard, enabling patients to
benefit from the expertise of multidisciplinary teams [21]. Pharmacological interventions
now address respiratory symptoms by targeting airway mucus and surface liquid hy-
dration alongside antimicrobial therapies such as antibiotic eradication treatments for
early-stage infections and maintenance protocols for chronic infections [15]. Various CFTR
modulator compounds and combinations are progressing through the preclinical to clinical
development stages [22]. Therefore, dependable screening tools and personalized medicine
approaches that can accurately predict drug efficacy are crucial to support translational
research and develop individualized treatment plans [14]. Using nasal and bronchial epithe-
lial cultures from individual CF patients for drug testing through in vitro assays, such as
electrophysiological measurements of CFTR activity and assessments of ion and fluid move-
ment in organoid cultures, allows for the prediction of patient-specific responses [22]. These
patient-derived model systems offer valuable opportunities to forecast drug responses in
individual CF patients and are expected to play a key role in advancing precision medicine
for this population [14,20,22]. However, the exact significance and accuracy of these models
in predicting long-term clinical outcomes have yet to be fully determined. Additionally,
despite recent progress with CFTR modulators for cystic fibrosis, the continued develop-
ment of new mucolytic, anti-inflammatory, and anti-infective therapies remains crucial,
particularly for patients with advanced stages of lung disease [20].

2.2. Mechanisms of Mucus Dehydration and Impaired Mucociliary Clearance

A critical function of airway epithelia is to regulate the fluid layer’s volume, pH, and
viscosity to ensure normal lung function. This regulation requires the coordinated transport
of solutes, ions, and water across airway epithelial cells’ basal and apical surfaces. The api-
cal membrane contains various ion channels, including CFTR, that facilitate transepithelial
chloride transport [17,23]. Mutations impairing CFTR function significantly disrupt ion
and water transport, causing a range of harmful effects across various organs. The reduced
secretion of chloride and bicarbonate in the lungs has several serious consequences [24].
Firstly, the decrease in electrolyte and water secretion results in the dehydration of airway
surfaces, which hinders mucociliary clearance [25]. This problem is exacerbated by the
increased activity of the epithelial sodium channel (ENaC) in CF airways, a condition
partially linked to CFTR malfunction [24]. Secondly, diminished bicarbonate secretion
leads to the acidification of the apical surface fluid, which compromises the effectiveness of
antibacterial defenses [26]. Thirdly, the reduced bicarbonate secretion impairs the release
and expansion of mucins from goblet cells and submucosal glands [24,26]. Although the im-
portance of these alterations is not fully understood, the overall outcome is that the airways
of CF patients become obstructed with thick mucus and are colonized by opportunistic
bacteria like Pseudomonas aeruginosa, triggering a severe inflammatory response. This
ultimately leads to progressive, irreversible structural lung damage and a decline in lung
function [15]. In addition to CFTR, airway epithelial cells possess a range of ion, solute, and
water transporters that are differentially distributed along the apicobasal axis. Channels
for sodium, chloride, calcium, and potassium play essential roles in maintaining lung
homeostasis (Figure 2) [23,27]. The importance of these channels is underlined by the fact
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that disruptions in epithelial ion transport, which alter fluid composition, are implicated in
various human diseases [23].
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Figure 2. Simplified model of epithelial cells showing the organization of apical ion channels and
receptors. TRPV4: transient receptor potential vanilloid 4 is expressed in ciliated cells, where it func-
tions as a mechanosensory and chemosensory channel [23,27]. CaCC: Ca2+-dependent Cl− channel,
ENac: epithelial sodium channels, BK: big conductance Ca2+ activated K+ channels, TMEM16A: Ca2+

activated Cl− channels. CFTR: cystic fibrosis transmembrane conductance regulator.

More than two decades ago, functional studies uncovered that airway epithelial cells
possess an additional mechanism for chloride secretion that operates independently of
CFTR [28]. When cells were stimulated with calcium agonists such as UTP or ATP, both
in vitro and in vivo (using nasal epithelia), there was a significant increase in chloride
transport. This response was believed to be due to the calcium-dependent activation of
a chloride channel distinct from CFTR, as it was also observed in patients with cystic
fibrosis [29]. The discovery of this alternative chloride channel in airway epithelial cells
led to clinical studies exploring the stimulation of calcium-dependent chloride secretion
through the aerosol administration of denufosol [28]. Potassium channels also play a crucial
role in various essential lung functions, including oxygen sensing, inflammatory responses,
chloride transport enhancement, and respiratory epithelium repair [30]. The basolateral
potassium channel also regulates sodium absorption, and a reduction in sodium absorp-
tion in the lungs has been associated with improvements in muco-obstructive diseases.
These ion channels and transporters are crucial for transepithelial ion transport and play
significant roles in lung function. This includes members of the TRP family [27,31,32].

3. TRP Channels in Cystic Fibrosis

The transient receptor potential (TRP) multigene superfamily channels were originally
discovered in Drosophila as phototransduction proteins. This action led to the identification
of a large family of proteins (Figure 3) [33,34]. There are 28 mammalian TRP channels, which
are divided into seven subfamilies: TRPA (ankyrin), TRPM (melastatin), TRPC (canonical),
TRPV (vanilloid), TRPP (polycystin), TRPML (mucolipin), and TRPN (NOMPC-like). The
latter is found only in invertebrates and fish [17,35,36].
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TRP channels are involved in a variety of sensory responses, such as heat, cold, pain,
stress, vision, and taste, and can be triggered by numerous stimuli. Their primary presence
on the cell surface, interaction with various physiological signaling pathways, and distinc-
tive structure make TRP channels probable for drug targets. This involvement suggests
their potential to treat a broad spectrum of diseases [37]. TRP ion channels are broadly
expressed in various tissues and cell types and are involved in diverse physiological pro-
cesses, such as the sensation of different stimuli or ion homeostasis [38]. TRP channels are
nonselective cation channels, only a few are highly Ca2+-selective, and some are permeable
for Mg2+ ions. The TRP channel family can be activated by different mechanisms, from
ligand binding, voltage, and changes in temperature to covalent modifications of nucle-
ophilic residues [34]. When TRP channels are activated, they cause the cellular membrane
to depolarize, subsequently triggering voltage-dependent ion channels and alterations
in intracellular Ca2+ levels. Consequently, TRP channels are essential for functioning in
intracellular organelles such as endosomes and lysosomes [39]. TRP gene mutation has
been linked to various pathological states, including pain, skeletal dysplasia, lung dis-
eases, and neurodegenerative disorders [40,41]. Targeting the TRP channels may offer new
therapeutic approaches for related diseases [28].

In lung diseases, TRPA1, TRPC4, TRPC6, TRPM2, TRPM8, TRPV1, and TRPV4 are the
TRP channels most abundantly expressed in lung tissues (Figure 3) [36]. TRP channels play
a crucial role in maintaining cellular ion homeostasis, particularly for Ca2+ and Na+ that
are vital for various functions in respiratory tract cells. Additionally, TRP channels may
help detect and defend against harmful substances in inhaled air [42]. Many TRP channels
are present in immune cells, where they regulate functions such as cytokine expression,
migration, and phagocytic activity [12]. In the epithelial layer, the expression of TRP
channels is significant in the pathogenesis of inflammatory disorders, primarily through
the control of chemokine and cytokine expression and release. TRPA1 channels, for example,
were found to modulate the inflammatory response in CF bronchial epithelia exposed to
planktonic bacteria or mucopurulent material, mimicking P. aeruginosa infection [12,43].
TRPC6 channels in respiratory diseases are also involved in various cell types, such as
macrophages, neutrophils, and smooth muscle cells. In CF human airway epithelial cells,
TRPC6-mediated Ca2+ influx was significantly increased compared to non-CF cells when
exposed to a diacylglycerol analog that activates TRPC6, highlighting the significance of
these channels in CF [44].
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4. TRPV4 Channel’s Structure and Functions

The TRPV4 cation channel, a member of the transient receptor potential (TRP) vanil-
loid subfamily, plays a crucial role in cell volume homeostasis [45], medium viscosity
regulation [46], and the modulation of ciliary beat frequency [47]. The TRPV family, in-
volving TRPV1 through TRPV6, consists of polymodal channels that can sense thermal,
acidic, mechanical stress, and osmotic stimuli (Table 1) [48]. TRPV4 channels respond
to various stimuli and are activated by heat, mechanical stimuli, hypo-osmolarity, and
arachidonic acid metabolites [49]. Activation of TRPV4 increases intracellular calcium
levels, which enhances ciliary beat frequency [50]. This mechanism can help alleviate
obstructive pulmonary diseases, highlighting the potential of TRPV4 as a therapeutic target
in cystic fibrosis [10].

Table 1. TRPV gene family.

TRPV Human Chromosomal
Location Tissue Distribution Physiological Roles Reference

TRPV1 17p13.2
Brain, kidney, bladder, skin,

pancreas, lung macrophages,
epithelial cells, T-lymphocytes

Sensing heat, pain,
and inflammation [40,51–55]

TRPV2 17p11.2 Heart, lung, spleen,
stomach, intestine

Sensing high temperatures
and mechanical stimuli [37,56,57]

TRPV3 17p13.3 Epithelial cells, skin, tongue,
nose, hair follicles

Sensing warm temperatures and
being involved in hair growth [40,58,59]

TRPV4 12q24.11

Kidney, bladder, liver, blood
vessels, lungs (airway

smooth muscle, epithelial
cells, fibroblasts, and

macrophages)

Sensing osmotic pressure,
mechanical stress, and heat,

maintaining organ homeostasis,
including in the lungs

[8,10,13,50,54,60]

TRPV5 7q34 Kidney, placenta Calcium homeostasis [37,61]

TRPV6 7q34 Intestine, kidney, placenta Calcium absorption and
homeostasis [53,61,62]

4.1. Molecular Structure of TRPV4

Structural insights gained from cryo-EM and X-ray studies have significantly en-
hanced our understanding of TRPV4 channel mechanisms [63]. In the human TRPV4
homotetramer, each subunit consists of 871 residues and is organized into two distinct
layers [64]. The bottom layer, known as the cytoplasmic layer, includes the protein’s
amino- and carboxyl-terminal regions [63]. The top layer, or transmembrane region,
consists of six helices (Figure 4). The first four α-helices (S1–S4) form a voltage sensor-
like domain (VSLD), similar to those found in other tetrameric voltage-gated ion chan-
nels (VGICs) [65], while the cation-permeable pore is located between S5 and S6 [49].
Figure 4 depicts a subunit of the TRPV4 channel, highlighting key structural features [66].
The N-terminus comprises six ankyrin repeat domains and a proline-rich domain (PRD)
that is vital for the channel’s mechanosensitive functions [67]. The C-terminus includes
calmodulin-binding domains necessary for Ca2+-dependent activation and a PDZ domain
(PSD95/SAP90-Discs-large-Zonula-occludentes-1), which likely facilitates interactions with
PDZ-domain proteins. TRPV4 is activated within a temperature range of 24 to 42 ◦C [68]
and functions as a nonselective cation channel, exhibiting a permeability sequence of
Ca2+ > Mg2+ > K+ ≈ Cs+ ≈ Rb+ > Na+ > Li+ [13]. The cryo-electron microscopy (cryo-EM)
structures [69] of human transient receptor potential vanilloid 4 (hTRPV4) have provided
valuable insights into the architecture and function of this ion channel (Figure 5). Co-
crystallization and crystal soaking techniques have been employed to examine TRPV4
in complexes with various ions, including Cs+ and Ba2+ [63]. These studies have high-
lighted the structural features of TRPV channels, demonstrating the importance of using
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complementary methods to explore ligand interactions [70]. Comparisons between the
cryo-EM structures of TRPV4 and other TRP channels have revealed both similarities and
unique features [71]. Cryo-EM has emerged as a powerful technique for high-resolution
visualization of TRPV4 channels, offering valuable insights into ion permeation, ligand
binding, and gating mechanisms, which will be further explained in the following sections.
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4.2. Physiological Roles of TRPV4 in Respiratory Epithelium

Over the past two decades, extensive research has been conducted on TRPV4 channels
across a variety of diseases, with a particular emphasis on their role in the respiratory
system. TRPV4 has emerged as a promising therapeutic target, offering significant potential
for the development of novel treatments [72]. TRPV4 is an ion channel essential for several
physiological processes, including the maintenance of the alveoli–capillary barrier [72–74],
osmolarity sensing [75], chronic rhinosinusitis, thermoregulation [76], and mechanosen-
sation in the vascular endothelium [72]. Its expression is notably upregulated in severe
respiratory and cardiovascular conditions such as pulmonary hypertension, cystic fibrosis,
asthma, and chronic obstructive pulmonary disease (COPD) [77]. TRPV4 is expressed in
various lung tissues, such as pulmonary artery smooth muscle cells (PASMCs) [78], vas-
cular endothelium, tracheal airway epithelial cells [79], and bronchial epithelial cilia [80].
TRPV4 plays a vital role in controlling pulmonary blood flow, ensuring fluid balance, and
modulating immune responses, all of which are crucial for proper respiratory function [72].
The activation of TRPV4 is crucial in regulating respiration, primarily through the indirect
stimulation of bronchopulmonary sensory neurons [81]. Research also suggests that TRPV4
channels play a key role in maintaining the lung alveoli–capillary barrier, which is linked to
lung edema and injury. This barrier is essential for gas exchange, controlling permeability,
clearing fluids, and protecting against infections [77]. This can highlight the critical role of
TRPV4 in respiratory physiology and its potential as a therapeutic target in the treatment
of lung diseases (see Table 2).

Table 2. Main physiological roles of TRPV4 in respiratory epithelium.

Respiratory Cell Type TRPV4 Channel Role References

Pulmonary artery smooth muscle
cells (PASMCs) Regulates pulmonary blood flow and vascular tone [82,83]

Tracheal epithelial cells Modulates immune response, mucus secretion, and inflammatory
cytokine release [72,84]

Bronchial epithelial cells Mechanotransduction, regulation of calcium signaling,
and modulation of inflammatory responses [85,86]

Cilia of bronchial epithelial cells Regulates ciliary beat frequency and mechanosensation [10,87]

Bronchopulmonary sensory neurons Indirectly modulates respiration through sensory neuron activation [81]

Alveolar epithelial cells
Contributes to the alveoli–capillary barrier function, maintains
epithelial barrier integrity, prevents edema formation, and regulates
fluid balance

[49,77]

TRPV4 serves multiple physiological roles in the respiratory epithelium, including
TRPV4 regulating calcium levels in respiratory epithelial cells and impacting key processes
like ciliary beat frequency, which is crucial for clearing mucus and debris from the air-
ways [50,85]. Its activation also promotes nitric oxide (NO) production in response to
bacterial lipopolysaccharides (LPSs), which helps reduce inflammation and supports bron-
chodilation [86,88]. TRPV4 is vital for maintaining the alveolar epithelial barrier, preventing
lung edema, and is involved in inflammatory signaling pathways.

These functions highlight the importance of TRPV4 in respiratory health and its
potential as a therapeutic target in various pulmonary diseases.

5. TRPV4 Modulation in CF

Cystic fibrosis, the most common inherited disease affecting respiratory cilia, is caused
by mutations in the CFTR gene, leading to impaired electrolyte balance and severe res-
piratory complications, including mucociliary dysfunction and eventually respiratory
failure [15,89,90]. Despite the critical role of cilia in CF pathology, molecular studies of
ciliated cells in human airways remain limited [17]. CF is characterized by impaired mu-
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cociliary clearance due to thick, dehydrated mucus that cilia cannot effectively clear from
the airways, leading to recurrent infections and, eventually, respiratory failure [15,91]. This
pathology results from the dysfunction of the CFTR chloride channel, which disrupts ion
balance by reducing Cl- secretion and increasing Na+ absorption through the epithelial
sodium channel (ENaC), resulting in the dehydration of the ASL and production of vis-
cous mucus [17,90,92]. Multiple studies have explored potential therapeutic strategies for
CF, including restoring CFTR function [93], blocking ENaC [94–96], and reducing mucus
viscosity [97]. Here, we present the various effects of TRPV4 modulation in CF.

5.1. TRPV4 and CBF Regulations

TRPV4 channels, expressed in the ciliated respiratory epithelium, are particularly im-
portant in regulating CBF, a key factor in mucociliary transport [98]. In CF epithelial cells,
TRPV4-dependent calcium influx is reduced in response to hypotonic conditions [84,99].
Although airway surface dehydration is the primary cause of impaired mucociliary clear-
ance in CF, enhancing CBF via TRPV4 activation is emerging as a potential therapeutic
strategy [79,88]. Notably, tracheal epithelial cells lacking TRPV4 show decreased CBF in
response to specific stimuli, suggesting that TRPV4 activation may improve mucociliary
clearance [80]. However, its impact on CF outcomes requires further investigation.

5.2. TRPV4’s Role in Restoring the Regulatory Volume Decrease (RVD) Process

Regulation of cell volume is critical for maintaining cellular homeostasis. In hypo-
tonic environments, cells swell due to osmosis, but many vertebrate cells counter this
through a process known as regulatory volume decrease (RVD). TRPV4 may be involved
in osmoregulation by responding to hypotonic stimuli with Ca2+ conductance. Becker
et al. have shown that TRPV4 activation can restore the regulatory volume decrease (RVD)
process [45], which is compromised in CF airways. To investigate TRPV4’s role in volume
regulation, a TRPV4-EGFP fusion protein was expressed in CHO cells that normally lack
TRPV4 and cannot undergo RVD in hypotonic conditions [45]. Fluorescence imaging con-
firmed that TRPV4 localized to the cell membrane. Expression of TRPV4 enabled CHO cells
to perform typical RVD following hypo-osmolarity-induced swelling. This RVD response
was significantly reduced by in a Ca2+-free environment, indicating that TRPV4 directly
contributes to RVD [45].

5.3. TRPV4 Modulates Inflammatory Responses in CF

TRPV4 activation has been linked to the modulation of inflammatory responses in CF,
potentially contributing to both therapeutic effects and inflammatory complications [43,84].
Using both cellular and animal models, Henry et al. found that epithelial TRPV4 plays a
key role in triggering the production of major proinflammatory mediators and recruiting
neutrophils in lung tissues [100]. Additionally, they discovered that TRPV4-dependent
signaling is disrupted in a CF environment. TRPV4 activation in epithelial cells triggers the
secretion of proinflammatory cytokines and lipid mediators, such as IL-8 and prostaglandin
E2, particularly in response to bacterial endotoxins [100,101]. This inflammatory response
is further increased when CFTR function is inhibited, highlighting the complex role of
TRPV4 in CF pathology [84].

5.4. TRPV4 Activates CFTR Channels in CF Airway Epithelia

TRPV4 channels are found in the airways, specifically in smooth muscles, the alveolar
wall, lung tissue, and lungs. TRPV4 channels respond to stimuli such as moderate heat,
hypotonic stress, phorbol esters, and arachidonic acid metabolites, increasing intracellular
calcium levels and influencing mucociliary function and inflammation [102–104]. TRPV4
stimulation increased intracellular Ca2+, which activated CFTR channels in bronchial ep-
ithelial cells under normal physiological conditions [105]. 4α-phorbol esters have been
demonstrated to activate TRPV4, leading to increases in intracellular Ca2+ levels, which
in turn affects the activity of other ion channels, including CFTR [72,99]. This interaction
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between TRPV4 and CFTR is significant in various physiological processes, particularly
in epithelial cells, where the regulation of Na+ and Cl- transport is crucial [23,103]. It was
also found that activating the TRPV4 by GSK1016790A produced concentration-dependent
calcium responses in TRPV4-expressing HEK293 and 16HBE cells, and the TRPV4 antag-
onist HC067047 caused a rightward shift of the GSK1016790A concentration–response
curves [50]. These findings suggest that TRPV4 channels play a crucial role in regulating
intracellular calcium levels, which in turn modulates CFTR channel activity in airway
epithelial cells. This mechanism could have significant implications for understanding and
potentially treating cystic fibrosis.

6. Pharmacological Modulators of TRPV4

Over the past decade, TRPV4 has emerged as a promising pharmacological target, with
significant progress in developing potent and selective modulators. Understanding the
druggability of TRPV4 channels and their ligands is essential for developing therapies in
various medical fields such as oncology, cardiovascular diseases, and respiratory diseases.
Although TRPV4 shows promising therapeutic potential, its druggability depends on the
development of specific and effective ligands [41]. While biophysical and biochemical
studies have advanced our understanding of TRPV4’s gating mechanisms and modula-
tors [11,106,107], more structural studies are needed to clarify modulator binding sites,
mutations, and functional changes [108]. Recently, a human TRPV4 structure has shown
that certain compounds bind in a common region, the vanilloid pocket, located within
a cytosol-facing cavity between the S1–S4 helices and the TRP box (Figure 5) [109,110].
The hTRPV4 cavity is primarily composed of aromatic and polar residues, with polar
side chains concentrated near the top of the transmembrane helix and aromatic rings
centrally positioned [64]. This arrangement allows various ligands, both agonists and
antagonists, to enter and stably bind within the cavity [69]. The identification of selective
and potent TRPV4 antagonists has enhanced our understanding of the functions of TRPV4
and was crucial for advancing therapies targeting this channel [111]. The first synthetic
TRPV4-selective agonist identified was 4α-PDD, which has shown efficacy in activating
TRPV4 without triggering protein kinase C (PKC) activity, a common side effect in related
compounds (Table 3) [112]. Site-directed mutagenesis experiments suggested that 4α-PDD
binds within a pocket between the S3 and S4 helices, with key residues Y556, L584, W586,
Y591, and R594 playing crucial roles in TRPV4 gating dependent on 4α-PDD [113]. Ad-
vances in TRPV4 structural studies reveal that the agonist shares the same binding site as
4α-PDD [114]. GSK1016790A, a highly potent and selective activator, effectively induces
TRPV4-mediated calcium influx and enhances ciliary activity in airway epithelial cells [115].
GSK1016790A is also extensively used in pharmacological research to explore TRPV4 acti-
vation [116]. Endogenous activators, including oxidative metabolites of arachidonic acid
like 5,6-epoxyeicosatrienoic acid, further demonstrate TRPV4’s therapeutic potential [117].
RN-1734 was found to be selective for TRPV4 and could thus be a valuable pharmacological
tool for TRPV4 studies [106].

Recent cryo-EM structures suggest that these agonists share the same ligand-binding
site as synthetic antagonists [69]. In recent years, several TRPV4 inhibitors have been devel-
oped, including HC-067047, RN-1734, RN-9893, GSK2193874, PF-05214030, GSK2798745,
and GSK3491943 (Table 3) [118]. The structure shows that the HC-067047 molecule is
positioned within the vanilloid pocket, surrounded by residues shared with the agonists
4α-PDD and GSK1016790A [69]. Functional assays further confirmed the importance of
these residues for HC-067047 binding, as alanine substitutions at these sites significantly
reduced the compound’s inhibitory effect [69]. GSK2798745 is the first TRPV4 inhibitor
to undergo clinical trial evaluation aimed at treating pulmonary edema associated with
congestive heart failure [119]. Early-phase trials have shown that GSK2798745 is safe and
well-tolerated in humans [119,120]. The variability in efficacy among different TRPV4
modulators, such as the lower potency of 4α-PDD compared to GSK1016790A, highlights
the importance of continual research on new compounds, and research into the pharmacoki-
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netics, safety, and efficacy of these modulators will be crucial in translating these findings
into clinical practice. As this review highlights the complex role of TRPV4 activation in
CF, some studies highlight the potential benefits of TRPV4 activation [80–83], while others
suggest that inhibiting TRPV4 could significantly reduce lung inflammation [100]. Their
evidence indicates that TRPV4 exacerbates the inflammatory response in CF, contributing
to tissue damage via dysregulated signaling pathways. One study mentions that TRPV4’s
dual role in mechanosensation and immune regulation, termed “mechanoimmunology”,
implicates it in both barrier function and immune responses [121]. This intersection of
mechanical and immune functions could provide new therapeutic insights for managing
CF, though the full extent of TRPV4’s involvement is yet to be understood.

Table 3. Small molecules of TRPV4.

Activators Chemical Structure Species pEC50 (µM) Remarks References
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8.7
7.7

A potent and selective TRPV4
activator induces Ca2+ influx [113,122,123]

4α-PDD
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Human 6.5
Known to activate TRPV4;
it increases the ciliary
beat frequency

[72,123,124]

RN-1747

1 
 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

Human
Mouse
Rat

6.1
5.4
5.4

Selective TRPV4 agonist [106,123]

Inhibitors Chemical Structure Species IC50 (nM) Remarks References

GSK2798745

1 
 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

Human
Rat

1.8
1.6

A potent inhibitor and selective
and orally active TRPV4
ion channel

[119,120,125]

HC-067047
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Human
Rat
Mouse

48
133
17

A potent and selective
TRPV4 inhibitor [126]

GSK2193874

1 
 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

Human
Rat

40
2

A potent, orally active,
and selective TRPV4 blocker [127]

PF-05214030

 

2 

 
 
 

 

Human
Rat

4
27 A TRPV4 inhibitor [118,128]

7. Conclusions and Future Perspectives

TRPV4 channels play a crucial physiological role in the airway epithelium, particularly
in CBF regulation and mucus clearance, which are essential processes for maintaining
healthy lung function. However, current research on the specific modulation of TRPV4
in airway epithelial cells remains limited. In this review, we combined current research
on TRPV4 channel modulation and its impact on the regulation of CBF in the airway
epithelium. This offers valuable insights into mucus clearance mechanisms in CF and
highlights the potential of TRPV4 as a therapeutic target for enhancing airway clearance
in CF patients. Given the potential effects, further studies are necessary to fully elucidate
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the role of TRPV4 in airway physiology and its therapeutic potential. This could guide
new treatments aimed at enhancing airway clearance and improving the quality of life for
patients with cystic fibrosis.
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