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Abstract: Body conformation traits are linked to the health, longevity, reproductivity, and production
performance of cattle. These traits are also crucial for herd selection and developing new breeds. This
study utilized pedigree information and phenotypic (1185 records) and genomic (The resequencing
of 496 Xinjiang Brown cattle generated approximately 74.9 billion reads.) data of Xinjiang Brown
cattle to estimate the genetic parameters, perform factor analysis, and conduct a genome-wide
association study (GWAS) for these traits. Our results indicated that most traits exhibit moderate
to high heritability. The principal factors, which explained 59.12% of the total variance, effectively
represented body frame, muscularity, rump, feet and legs, and mammary system traits. Their
heritability estimates range from 0.17 to 0.73, with genetic correlations ranging from −0.53 to 0.33.
The GWAS identified 102 significant SNPs associated with 12 body conformation traits. A few of the
SNPs were located near previously reported genes and quantitative trait loci (QTLs), while others
were novel. The key candidate genes such as LCORL, NCAPG, and FAM184B were annotated within
500 Kb upstream and downstream of the significant SNPs. Therefore, factor analysis can be used to
simplify multidimensional conformation traits into new variables, thus reducing the computational
burden. The identified candidate genes from GWAS can be incorporated into the genomic selection
of Xinjiang Brown cattle, enhancing the reliability of breeding programs.

Keywords: Xinjiang Brown cattle; body conformation traits; genome-wide association study; quanti-
tative trait loci

1. Introduction

The breeding industry of Xinjiang Brown cattle accounts for a large proportion of
the local economic development as well as farmers’ and herders’ income. In 2023, the
population of Xinjiang Brown cattle reached 2 million. The development of Xinjiang Brown
cattle, a dual-purpose breed, is challenged by the limited scale of linear type traits evalu-
ation, incomplete genetic evaluation systems, and underutilization of genomic breeding
technologies. The Xinjiang conformation evaluation method integrates linear scoring from
dairy breeds and specific conformation traits from beef breeds. Most countries employ
a 9-point scoring system for conformation traits, with the German Brown cattle system
encompassing 25 traits across five categories: body frame, muscularity, rump, feet and legs,
and mammary system. The latest Chinese dual-purpose cattle total performance index
allocates 10% to conformation traits, highlighting their importance in breeding. Conforma-
tion traits, while non-productive, are correlated with economically significant traits, such
as milk yield [1], reproductive performance [2], health [3], economic efficiency [4], and
longevity [5]. Therefore, selecting for body size traits can accelerate genetic progress in
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other economic traits. Body size appearance identification is also indispensable for selection
and breeding [6], where assessors analyze identification data to determine herd defects and
formulate selection and mating plans [7,8].

Genetic parameters of body size traits are important for formulating and implementing
breeding plans. There are phenotypic and genetic correlations among body conformation
traits [9]. For example, Mazza et al. found strong correlations between rear udder height
and width [10], while Wang Dan et al. detected a significant correlation between the body
structure traits of Xinjiang Brown cattle [11]. The correlations between body size traits
indicate redundant information among traits, and reducing the analysis of highly correlated
traits is a concern for breeders because, in breeding selection, the highly correlated traits can
be selected indirectly from the remaining highly correlated traits by selecting one of them.
Principal component analysis (PCA) and factor analysis can explore relationships among
traits by reducing data dimensions with minimal information loss [12]. These methods
can transform the linear combination of original variables into composite variables using
variable weights obtained from the correlation matrix of the original data [13].

Genetic analysis of complex traits, such as body conformation in cattle, is a challenging
problem in animal genetic breeding. Due to its recent advances and affordability, rese-
quencing technology has become essential for identifying the loci associated with complex
traits in cattle. A genome-wide association study (GWAS), based on linkage disequilib-
rium, identifies molecular markers associated with phenotypic variations in complex traits
by screening thousands of high-density molecular markers within a population. GWAS
has been successfully applied in animal breeding [14–18]. Zhou Jinghang et al. reported
12 SNPs associated with milk production and reproductive performance in Xinjiang Brown
cattle in 2019 [19]. Globally, the selection indices in countries such as the USA, Canada,
Australia, and Europe include body conformation traits as breeding targets [20]. The ge-
netic evaluation models can be continuously optimized by adding SNPs associated with
breeding target traits identified through GWAS. Currently, genomic genetic evaluation for
dual-purpose cattle in China is still underdeveloped, and molecular markers related to
body size traits need to be investigated.

The evaluation method of body conformation traits of Xinjiang Brown Cattle (dual-
purpose breed) is formed by absorbing the linear scoring method of Chinese Holstein cattle
(dairy breed), referring to the “code of practice of type classification in Chinese Holstein”,
and introducing the special body size evaluation method of meat breeds. However, these
details have been scarcely researched. Given the need to explain different biological
meanings and avoid redundant information among body conformation traits, this study
aims to estimate and compare the genetic parameters of Xinjiang Brown cattle using factor
analysis. A GWAS was also conducted on body conformation traits based on whole-genome
resequencing data. This research provides a scientific basis for the selection and breeding
of Xinjiang Brown cattle.

2. Results
2.1. Descriptive Statistics, Variance Components, and Heritability Estimates of Body Size Traits

Table 1 lists the descriptive statistics, variance components, and heritability estimates
of body conformation traits in Xinjiang Brown cattle. The top three body conformation
traits with the highest coefficients of variation were rump angle, udder depth, and central
ligament, indicating large individual differences in their phenotypic values. The heritability
estimates of the body conformation traits ranged from 0.01 to 0.59. Front teat diameter
and udder balance showed low heritability, while other body conformation traits exhibited
medium to high heritability.
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Table 1. Descriptive statistics, results of variance components and heritability of body conformation
traits in Xinjiang Brown cattle.

Trait N AVG Std σ2
a σ2

p h2 ± SE

Stature (cm) 1185 139.47 6.54 20.05 13.62 0.59 ± 0.07
Body depth (cm) 1185 76.89 6.98 16.25 22.28 0.42 ± 0.07
Chest width (cm) 1185 25.45 4.62 4.07 14.26 0.22 ± 0.07

Withers width (cm) 1185 16.81 4.22 4.21 12.84 0.25 ± 0.06
Hind leg half circumference

(cm) 1185 40.52 5.06 6.13 22.69 0.27 ± 0.07

Rear leg height (cm) 1185 76.56 6.23 16.50 36.18 0.46 ± 0.07
Rib and bone (points) 1185 6.34 1.23 0.33 1.42 0.24 ± 0.07

Rump length (cm) 1185 52.06 3.81 5.86 12.89 0.45 ± 0.08
Rump width (cm) 1185 21.74 3.14 4.15 9.84 0.42 ± 0.08
Rump angle (cm) 1185 6.44 3.89 6.61 14.71 0.45 ± 0.07
Heel depth (cm) 1185 4.23 1.40 0.96 1.73 0.55 ± 0.06

Foot angle (points) 1185 5.03 1.06 0.44 1.09 0.40 ± 0.07
Rear legs side view (points) 1185 4.97 1.06 0.29 1.13 0.25 ± 0.07

Bone quality (points) 1185 6.11 0.87 0.27 0.68 0.40 ± 0.07
Rear legs rear view (points) 1185 5.48 1.11 0.29 1.21 0.24 ± 0.07

Rear udder height (cm) 1185 24.79 5.00 6.77 23.68 0.29 ± 0.08
Rear udder width (cm) 1185 11.80 2.96 3.25 6.74 0.48 ± 0.07

Median suspensory (cm) 1185 3.16 1.72 0.96 2.88 0.33 ± 0.07
Udder depth (cm) 1185 10.32 5.80 6.65 23.91 0.28 ± 0.07

Fore udder length (cm) 1185 16.80 4.49 2.92 14.50 0.20 ± 0.07
Front teat length (cm) 1185 5.32 1.60 0.83 2.48 0.33 ± 0.08

Front teat diameter (cm) 1185 2.62 0.58 0.03 0.30 0.09 ± 0.05
Fore udder attachment

(points) 1185 5.31 1.53 0.37 2.25 0.16 ± 0.06

Rear udder length (points) 1185 4.68 1.47 0.23 1.74 0.13 ± 0.06
Udder balance (points) 1185 4.85 0.74 0.004 0.53 0.01 ± 0.03

Fore teat placement (points) 1185 4.26 1.05 0.27 1.07 0.25 ± 0.06
Rear teat placement (points) 1185 5.20 1.05 0.34 1.08 0.31 ± 0.07

Note: N is number of data; AVG is average value; STD is standard deviation; σ2
a is additive variance; σ2

p is
phenotypic variance; h2 is heritability; SE is standard error.

2.2. Factor Analysis Result

Table 2 lists the eigenvalues and proportions of phenotypic variance explained by
each factor in the Xinjiang Brown cattle. Eight latent factors with eigenvalues > 1 explained
59.12% of the information, with the first factor (F1) accounting for the largest proportion of
total variance at 16.14%. Figure 1 shows the factor loadings obtained using the varimax
rotation method. In F1, rump height (0.69), body depth (0.67), and rump width (0.67) had
high loadings, reflecting the body frame and rump information. In F2, foot angle (0.64) and
heel depth (0.63) had high loadings, reflecting the limb and hoof information. F3, indicating
udder length information, had high loadings for the lengths of the front (0.71) and rear
(0.76) udders. F4, reflecting teat position information, had high loadings for the front (0.82)
and rear (0.81) teat positions. F5 mainly reflected muscle development information, with
loadings of 0.62 and 0.85 for rear leg girth and withers width, respectively. F6, mainly
reflecting teat size information, had high loadings for front teat diameter (0.76) and front
teat length (0.81). F7 and F8 mainly reflected udder traits.
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Table 2. Eigenvalues, proportional variance, and cumulative variance explained by factor analysis of
the phenotypic values of body conformation traits in Xinjiang Brown cattle.

Factor
Xinjiang Brown Cattle

EV PV CV

F1 4.36 16.14 16.14
F2 2.68 9.91 26.04
F3 1.88 6.96 33.01
F4 1.82 6.74 39.75
F5 1.59 5.89 45.64
F6 1.38 5.12 50.76
F7 1.23 4.57 55.33
F8 1.02 3.79 59.12

Note: EV is eigenvalue; PV is proportional variance; CV is cumulative variance.
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Figure 1. Rank correlation coefficients between the estimated breeding values for each body confor-
mation trait and the estimated breeding values for factor scores for Xinjiang Brown cattle.Note: ST is
stature; BD is body depth; CW is chest width; WW is wither width; HLHC is half of leg circumstance;
RLH is rear leg height; RAB is rib and bone; RL is rump length; RA is rump angle; HD is heel depth;
FA is feet angle; RLSV is rear leg side view; RUH is rear udder height; RUW is rear udder width; MS
is medium; UD is udder depth; FUL is fore udder length; FTL is fore teat length; FTD is fore teat
diameter; FUA is fore udder attachment; RUL is rear udder length; UB is udder balance; FTP is fore
teat placement; RTP is rear teat placement; DC is dairy character; and LS is loin strength. Red means
that the correlation coefficient is greater than 0.3, and the darker the color, the greater the correlation
coefficient; blue means that the correlation coefficient is less than 0.3, and the darker the color, the
smaller the correlation coefficient.

2.3. Heritability and Genetic Correlation of Factor Scores

Table 3 shows the variance component and heritability estimate for all eight factors in
Xinjiang Brown cattle, with the latter ranging from 0.17 (F6) to 0.73 (F2), all being medium
to high heritability traits (h2 > 0.1).
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Table 3. Results of variance components and heritability estimates for each factor in Xinjiang
Brown cattle.

Factor
Xinjiang Brown Cattle

σ2
a σ2

p h2 ± SE

F1 0.39 0.83 0.47 ± 0.08
F2 0.66 0.91 0.73 ± 0.06
F3 0.23 0.73 0.32 ± 0.07
F4 0.28 0.97 0.29 ± 0.06
F5 0.24 0.95 0.25 ± 0.06
F6 0.15 0.92 0.17 ± 0.06
F7 0.44 0.92 0.48 ± 0.07
F8 0.20 0.91 0.23 ± 0.07

Note: σ2
a is additive variance; σ2

p is phenotypic variance; h2 is heritability; SE is standard error.

2.4. Rank Correlation between Estimated Breeding Values of Body Conformation Traits and
Factor Scores

Figure 1 shows the rank correlation coefficients between the estimated breeding
values (EBVs) of body conformation traits and factor scores in Xinjiang Brown cattle.
Notably, the rank correlation coefficients have similar patterns to the factor loadings of
body conformation traits in Figure 2. The results indicate that the EBVs of F1 had high
positive correlations with the EBVs of two body frame traits and two rump traits. The
EBVs of F2 in Xinjiang Brown cattle had high correlations with those of two feet and legs
traits, showing similar research results to Figure 2. Other factors in this study showed
similar results; for example, the correlations for the EBVs of F3 were similar to the loading
coefficients of body conformation traits in Figure 2. Similar results were observed in F3, F4,
F5, F6, F7, and F8.
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Figure 2. Factor loading coefficients of body conformation traits for Xinjiang Brown cattle. Note: ST is
stature; BD is body depth; CW is chest width; WW is wither width; HLHC is half of leg circumstance;
RLH is rear leg height; RAB is rib and bone; RL is rump length; RA is rump angle; HD is heel depth;
FA is feet angle; RLSV is rear leg side view; RUH is rear udder height; RUW is rear udder width; MS
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is medium; UD is udder depth; FUL is fore udder length; FTL is fore teat length; FTD is fore teat
diameter; FUA is fore udder attachment; RUL is rear udder length; UB is udder balance; FTP is fore
teat placement; RTP is rear teat placement; DC is dairy character; and LS is loin strength. Red means
that the correlation coefficient is greater than 0.3, and the darker the color, the greater the correlation
coefficient; blue means that the correlation coefficient is less than 0.3, and the darker the color, the
smaller the correlation coefficient.

Figure 3 shows the first three principal components, accounting for 11.89%, 8.23%, and
5.93% of the total variance, respectively. By comparing the first three principal components
(PCs), individuals from farm 1 (black) and farm 2 (red) could be distinguished. Although
the 496 individuals came from different farms, some overlaps existed among farms, such
as between farm 3 (blue) and farms 1 (black) and 2 (red), and between farm 3 (green) and
farms 5 (purple) and 6 (yellow). The PCA results of 496 lactating Xinjiang Brown cattle
showed some genetic connections and distances among the farms.
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Figure 3. Population structure map showing the first three principal components of Xinjiang
Brown cattle.

2.5. Population Analysis of Body Conformation Traits

Figure 4 shows that the GWAS of body conformation traits based on the single-
trait mixed linear model in GEMMA v0.98.5 software had no systemic bias. The model
considered population effects and kinship, so the PCs were not included in the model.
Additionally, the genomic inflation factors of body conformation traits in Xinjiang Brown
cattle ranged from 0.859 to 1.022, indicating no significant genomic inflation.

2.6. QTL Mapping of Body Conformation Traits in Xinjiang Brown Cattle
2.6.1. QTL Mapping of Body Conformation Traits

GWAS analysis of body conformation traits (stature, body depth, chest width) in
Xinjiang Brown cattle identified 142, 0, and 2 significant SNPs. SNPs significantly associated
with rump height and chest width were located on chromosomes 3 and 6 (Figure 5) and
chromosome 6 (Figure 6), respectively.

The SNP with the lowest p-value within each locus was defined as the lead (Table 4).
According to the annotation by ANNOVAR software, the most significant locus for rump
height was located on chromosome 6, with six leading SNPs in the intronic regions of the
LAP3, MED28, LCORL, and NCAPG genes and one leading SNP upstream and downstream
of IBSP and TRNAA-CGC, explaining 9%–11.3% of the phenotypic variance. The most
significant locus for chest width was on chromosome 3, with the leading SNP in the intronic
region of NOS1AP, explaining 9.1% of the phenotypic variance.
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Figure 4. Quantile–quantile (QQ) plot of GWAS analysis for body conformation traits of Xinjiang
Brown cattle. Note: ST is stature; CW is chest width; BD is body depth; WW is wither width; HLHC
is half of leg circumstance; RLH is rear leg height; RAB is rib and bone; RL is rump length; RW is
rump width; RA is rump angle; FA is rump angle; RLSV is rear leg side view; BQ is bone quality; and
RLRV is rear leg rear view.
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Figure 5. Manhattan plots of body frame traits (stature, body depth, and chest width) in Xinjiang
Brown cattle. Note: ST is stature of body frame traits, BD is body depth of body frame traits and CW
is chest width body frame traits. Different colors represent different chromosomes, and the number
on the horizontal coordinate is the chromosome number.

2.6.2. QTL Mapping of Muscle Development Traits

GWAS analysis of muscle development traits in Xinjiang Brown cattle identified 13, 21,
707, and 0 significant SNPs. The significantly associated SNPs were located on chromosome
1 (Figure 6) for withers width and chromosomes 3, 5, 8, 11, 12, 13, 14, 18, 19, and 21 (Figure 6)
for rear leg girth. The SNPs for rear leg height were on all chromosomes except 27 and
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28, with the most significant SNPs (118) on chromosome 1 and strong signals observed on
chromosome 13 (Figure 6).

Table 4. Descriptive summary of GWAS results for body frame traits in Xinjiang Brown cattle.

Traits Chromosome Leading SNP Position (bp) Candidate Gene Distance (bp) p-Value PVE

ST 6 37,156,064 LAP3 within 5.17 × 10−13 0.113
ST 6 37,083,116 IBSP; TRNAA-CGC 189,261; 35,190 8.96 × 10−13 0.111
ST 6 37,178,336 FAM184B 2739 1.10 × 10−12 0.110
ST 6 37,173,382 MED28 within 4.37 × 10−12 0.104
ST 6 37,526,812 LCORL within 6.32 × 10−11 0.092
ST 6 37,316,093 NCAPG within 1.21 × 10−10 0.090

CW 3 7,396,186 NOS1AP within 5.85 × 10−12 0.091
CW 6 107,343,143 - - 6.89 × 10−10 0.074

Note: ST is stature of body frame traits; CW is chest width body frame traits; and PVE is the proportion of
phenotypic variation of body frame traits explained by SNP.

The SNP with the lowest p-value within each locus was defined as the leading SNP
(Table 5). According to the annotation by ANNOVAR software, the most significant
locus for withers width was located on chromosome 1, with leading SNPs upstream and
downstream of DPPA4 and TRNAE-UUC, explaining 11.6% of the phenotypic variance. The
most significant locus for rear leg girth was located on chromosome 13, with two leading
SNPs upstream and downstream of CDH4, CDH26, LOC112449365, and BTBD3, explaining
8.6% and 7.6% of the phenotypic variance, respectively. The 51 leading SNPs significantly
associated with rear leg height explained 6.9% to 17.1% of the phenotypic variance, with
the most significant SNPs upstream and downstream of SYT13 and LOC112441655.

Table 5. Descriptive summary of GWAS results for muscularity traits in Xinjiang Brown cattle.

Traits Chromosome Leading SNP
Position (bp) Candidate Gene Distance (bp) p-Value PVE

WW 1 55,232,433 TRNAE-UUC 130,076 5.08 × 10−15 0.116
HLHC 13 56,406,710 CDH26 136,548 2.26 × 10−11 0.086
HLHC 13 4,980,813 BTBD3 460,810 4.17 × 10−10 0.076
RLH 15 75,555,654 SYT13; LOC112441655 215,956; 110,178 5.84 × 10−22 0.171
RLH 1 138,331,308 CPNE4 within 2.89 × 10−19 0.150
RLH 13 31,113,024 RSU1 within 6.30 × 10−19 0.147
RLH 8 111,522,169 LOC107133158; MYT1L 41,739; 144,213 1.75 × 10−18 0.144
RLH 13 23,276,492 DNAJC1; TRNAN-GUU 127,664; 67,644 1.06 × 10−16 0.130
RLH 1 124,804,486 C1H3orf58 61,606 1.34 × 10−16 0.129
RLH 13 6,103,499 LOC107133022; SPTLC3 332,139; 495,947 7.75 × 10−16 0.123
RLH 15 59,958,836 - - 2.39 × 10−15 0.119
RLH 23 46,221,522 OFCC1 within 2.37 × 10−15 0.119
RLH 1 119,678,994 AGTR1 157,693 3.97 × 10−15 0.117
RLH 1 123,789,868 - - 6.31 × 10−14 0.107
RLH 9 65,139,247 TBX18; CEP162 449,486; 31,139 1.02 × 10−13 0.106
RLH 8 111,303,902 EIPR1 134,290 1.48 × 10−13 0.104
RLH 4 17,840,320 - - 1.61 × 10−13 0.104
RLH 13 24,864,358 KIAA1217 within 3.32 × 10−13 0.102
RLH 11 56,062,392 CTNNA2 within 4.51 × 10−13 0.100
RLH 1 140,514,230 DSCAM within 5.52 × 10−13 0.100
RLH 9 65,891,078 THEMIS within 6.42 × 10−13 0.099
RLH 12 81,171,137 - - 8.14 × 10−13 0.098
RLH 2 109,054,387 - - 9.41 × 10−13 0.098
RLH 1 114,421,449 LOC100299503; RAP2B 46,289; 132,996 1.50 × 10−12 0.096
RLH 1 96,976,406 SLC7A14; CLDN11 1,663; 23,553 1.61 × 10−12 0.096
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Table 5. Cont.

Traits Chromosome Leading SNP
Position (bp) Candidate Gene Distance (bp) p-Value PVE

RLH 11 88,683,898 ID2; LOC107132953 73,732; 438,273 2.55 × 10−12 0.094
RLH 13 31,901,223 ST8SIA6; HACD1 5,214; 155,236 2.62 × 10−12 0.094
RLH 1 48,448,033 - - 4.33 × 10−12 0.092
RLH 15 57,328,966 ANO3 within 4.32 × 10−12 0.092
RLH 11 56,624,752 REG3G; REG3A 15,039; 92,048 5.34 × 10−12 0.092
RLH 9 67,321,559 LAMA2 within 6.82 × 10−12 0.091
RLH 6 101,641,411 PTPN13 within 6.92 × 10−12 0.091
RLH 15 81,168,554 CTNND1; LOC101905743 155,927; 28,840 7.43 × 10−12 0.090
RLH 7 100,724,011 - - 9.06 × 10−12 0.090
RLH 21 9,397,972 - - 1.37 × 10−11 0.088
RLH 4 93,221,222 AHCYL2 within 2.26 × 10−11 0.086

RLH 15 80,292,897 LOC538839;
TRNAG-UCC 38,975; 37,581 3.27 × 10−11 0.085

RLH 6 94,004,701 PAQR3; NAA11 326,894; 25,528 3.45 × 10−11 0.085
RLH 29 4,556,310 LOC112444871 93,571 4.05 × 10−11 0.084
RLH 20 60,499,302 - - 4.09 × 10−11 0.084
RLH 10 95,382,534 - - 4.28 × 10−11 0.084
RLH 12 11,810,266 VWA8 within 4.42 × 10−11 0.084
RLH 17 31,137,557 - - 4.40 × 10−11 0.084
RLH 15 67,951,958 - - 4.98 × 10−11 0.084
RLH 3 111,827,535 CSMD2 within 6.44 × 10−11 0.083
RLH 15 65,795,201 SLC1A2 within 1.98 × 10−10 0.078
RLH 10 4,554,455 TMED7; CDO1 83,142; 105,267 2.26 × 10−10 0.078
RLH 4 112,604,658 KRBA1; ZNF467 17,660; 9,721 2.66 × 10−10 0.077
RLH 11 51,254,398 - - 7.67 × 10−10 0.074
RLH 17 36,293,976 FSTL5 within 9.66 × 10−10 0.073
RLH 4 99,573,605 FAM180A; LUZP6 27,538; 174,805 1.01 × 10−9 0.073
RLH 4 94,507,456 TSGA13; KLF14 39,240; 13,682 1.06 × 10−9 0.072
RLH 1 132,107,446 TRNAG-CCC; IL20RB 446,839; 59,937 1.40 × 10−9 0.071
RLH 2 111,640,369 KCNE4; SCG2 425,040; 128,519 2.42 × 10−9 0.069

Note: WW is wither width of muscularity traits; HLHC is half of leg circumstance of muscularity traits; RLH
is rear leg height of muscularity traits; and PVE is the proportion of phenotypic variation of muscularity traits
explained by SNP.
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Figure 6. Manhattan plots of muscularity traits (wither width, half of leg circumstance, rear leg
height, and rib and bone) in Xinjiang Brown cattle. Note: WW is wither width; HLHC is half of leg
circumstance; RLH is rear leg height; and RAB is rib and bone. Different colors represent different
chromosomes, and the number on the horizontal coordinate is the chromosome number.

2.6.3. QTL Mapping of Rump Traits

GWAS analysis of rump traits in Xinjiang Brown cattle identified 216, 81, and 0
significant SNPs. The SNPs significantly associated with rump length were distributed
on all chromosomes except 18, 19, 25, 28, and 29, with the most significant SNPs on
chromosome 24 (98) and strong signals on chromosome 24 (Figure 7). SNPs significantly
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associated with rump width were distributed on all chromosomes except 10, 13, 16, 17, 18,
20, 21, 25, and 29, with the most significant SNPs on chromosome 7 (17) (Figure 7).
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jiang Brown cattle. Note: RL is rump length; RW is rump width; and RA is rump angle. Differ-
ent colors represent different chromosomes, and the number on the horizontal coordinate is the
chromosome number.

The SNP with the lowest p-value within each locus was considered the lead (Table 6).
According to the annotation by ANNOVAR software, the most significant locus for rump
length was located on chromosome 24, with three leading SNPs upstream and downstream
of LOC112444152, TRNAC-GCA, TRNAK-UUU, and CDH7, explaining 10.6% to 14.7%
of the phenotypic variance. The most significant locus for rump width was located on
chromosome 23, with the leading SNP in the intronic region of OFCC1, explaining 12.6% of
the phenotypic variance.
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Table 6. Descriptive summary of GWAS results for rump traits in Xinjiang Brown cattle.

Traits Chromosome Leading SNP
Position (bp) Candidate Gene Distance (bp) p-Value PVE

RL 24 14,476,249 LOC112444152;
TRNAC-GCA 154,623; 310,450 7.13 × 10−19 0.147

RL 24 15,816,993 TRNAK-UUU 1,486,023 6.94 × 10−16 0.123
RL 22 24,594,726 CNTN4; CNTN6 314,747; 348,640 7.88 × 10−14 0.107
RL 24 11,685,839 CDH7 757,611 9.51 × 10−14 0.106
RL 1 43,127,665 DCBLD2 Within; 8.44 × 10−13 0.098
RL 27 9,412,286 - - 9.53 × 10−13 0.098
RL 11 92,037,253 LOC525099 198,207 2.85 × 10−12 0.094
RL 7 37,062,050 SEMA6A 254,929 3.24 × 10−12 0.093
RL 16 63,035,090 CACNA1E; ZNF648 85,495; 134,485 5.31 × 10−12 0.092
RL 5 24,082,338 CEP83 within 1.90 × 10−11 0.087
RL 1 13,348,848 - - 2.55 × 10−11 0.086
RL 23 3,921,483 DST; COL21A1 153,438; 104,699 3.74 × 10−10 0.076
RW 23 46,200,692 OFCC1 within 3.17 × 10−16 0.126
RW 7 70,019,926 EBF1 264,327 7.08 × 10−12 0.091

Note: RL is rump length; RW is rump width and PVE is proportion of variance in phenotype explained by SNP.

2.6.4. QTL Mapping of Limb Traits

GWAS analysis of limb traits in Xinjiang Brown cattle identified 0, 0, 21, and 11
significant SNPs (p < 3.18 × 10−9). SNPs significantly associated with hock texture were
distributed on chromosomes 8, 11, 18, 22, and 26, with the most significant SNPs on
chromosome 26 (11) (Figure 8). SNPs significantly associated with the rear view of the
rear legs were distributed on chromosomes 2 and 3, with the most significant SNPs on
chromosome 3 (10) (Figure 9).

The SNP with the lowest p-value within each locus was considered the leading SNP
(Table 7). According to the annotation by ANNOVAR software, the most significant locus for
hock texture was located on chromosome 8, with the leading SNP in the intronic region of
ABCA1, explaining 9.7% of the phenotypic variance. Two leading SNPs on chromosome 26
were upstream and downstream of ADRA2A, GPAM, MKI67, and MGMT, explaining 8.8%
and 7.7% of the phenotypic variance, respectively. Another leading SNP on chromosome 26
was in the intronic region of KNDC1, explaining 7% of the phenotypic variance. For the rear
view of the rear legs, the leading SNP on chromosome 3 was upstream and downstream of
KCNN3 and ADAR.

Table 7. Descriptive summary of GWAS results for feet and leg traits in Xinjiang Brown cattle.

Traits Chromosome Leading SNP
Position (bp) Candidate Gene Distance (bp) p-Value PVE

BQ 8 94,701,622 ABCA1 within 1.02 × 10−12 0.097
BQ 26 31,905,369 ADRA2A 315,371 1.27 × 10−11 0.088
BQ 26 48,348,379 MGMT 470,290 2.70 × 10−10 0.077
BQ 26 50,656,701 KNDC1 within 2.05 × 10−9 0.070

RLRV 3 15,899,137 KCNN3; ADAR 3997; 45,742 1.12 × 10−9 0.072

Note: BQ is bone quality; RLRV is rear leg rear view; and PVE is proportion of variance in phenotype explained
by SNP.

2.6.5. QTL Mapping of Udder Traits

GWAS analysis of udder traits in Xinjiang Brown cattle identified 1, 325, and 4 signifi-
cant SNPs for rear udder length, front teat length, and rear teat position, respectively. The
significantly associated SNPs were located on chromosome 24 for rear udder length and on
all chromosomes except 3, 12, and 19, with the most significant SNPs on chromosome 7
for front teat length (Figure 9). SNPs significantly associated with rear teat position were
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distributed on chromosomes 1 and 7, with three significant SNPs on chromosome 1 and
one on chromosome 7.

The SNP with the lowest p-value within each locus was defined as the lead (Table 8).
According to the annotation by ANNOVAR software, the most significant locus for rear
udder length was located on chromosome 24, with the leading SNP upstream of DLGAP1,
explaining 7.1% of the phenotypic variance. For front teat length, two leading SNPs with
strong signals on chromosome 7 were upstream and downstream of RGMB and CHD1,
explaining 12.0% and 11.4% of the phenotypic variance, respectively. Another leading SNP
was in the intronic region of FBXL17. For the rear teat position trait, two leading SNPs on
chromosomes 7 and 1 were upstream and downstream of ELL2, PCSK1, and CADM2.
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Figure 8. Manhattan plots of rump traits (feet angle, rear leg side view, bone quality, and rear leg rear
view) in Xinjiang Brown cattle. Note: FA is feet angle; RLSV is rear leg side view; BQ is bone quality;
and RLRV is rear leg rear view. Different colors represent different chromosomes, and the number on
the horizontal coordinate is the chromosome number.

Table 8. Descriptive summary of GWAS results for udder traits in Xinjiang Brown cattle.

Traits Chromosome Leading SNP
Position (bp) Candidate Gene Distance (bp) p-Value PVE

RUL 24 37,881,063 DLGAP1 4567 1.97 × 10−9 0.071
FTL 7 97,778,551 RGMB 228,107 1.60 × 10−15 0.120
FTL 7 98,389,255 CHD1 234,752; 1.03 × 10−14 0.114
FTL 6 7,951,064 LOC526064; TRAM1L1 80,971; 322,188 7.91 × 10−14 0.107
FTL 4 37,920,167 PCLO; CACNA2D1 77,791; 233,071 1.07 × 10−12 0.097
FTL 28 32,737,766 KCNMA1 within 1.54 × 10−12 0.096
FTL 2 60,780,813 TRNAC-GCA; CXCR4 65,918; 469,336 1.66 × 10−12 0.096
FTL 2 19,033,714 PDE11A within 4.26 × 10−12 0.092
FTL 21 9,202,570 ARRDC4 453,612 1.03 × 10−11 0.089
FTL 7 107,467,422 FBXL17 within 1.26 × 10−11 0.088
FTL 5 100,589,449 LOC112446744; OVOS2 60,780; 90,536 2.13 × 10−11 0.087
FTL 2 39,424,814 TRNAC-ACA; GPD2 121,972; 222,653 5.40 × 10−11 0.083
FTL 4 21,149,728 ARL4A 382,191 6.51 × 10−11 0.083
FTL 9 73,967,273 PDE7B within 1.49 × 10−10 0.080
FTL 17 964,943 CPE; MIR2285J-1 243,497; 400,878 1.89 × 10−10 0.079
FTL 2 14,998,986 CERKL within 5.34 × 10−10 0.075
FTL 10 93,577,847 LOC112448582 200,597 7.33 × 10−10 0.074
FTL 13 83,115,519 TRNAG-GCC; CBLN4 173,774; 135,360 1.46 × 10−9 0.071
FTL 4 74,525,760 CFAP69; GTPBP10 22,464; 7241 2.41 × 10−9 0.069
RTP 7 95,405,216 ELL2; PCSK1 18,652; 341,087 1.25 × 10−9 0.072
RTP 1 34,175,889 CADM2 73,138 2.23 × 10−9 0.070

Note: RUL is rear udder length; FTL is fore teat length; RTP is rear teat placement; and PVE is proportion of
variance in phenotype explained by SNP.
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Figure 9. Manhattan plots of udder traits (rear udder length, fore teat length, and rear teat placement)
in Xinjiang Brown cattle. Note: RUL is rear udder length; FTL is fore teat length; and RTP is rear
teat placement. Different colors represent different chromosomes, and the number on the horizontal
coordinate is the chromosome number.

3. Materials and Methods
3.1. Data Source and Processing

The body conformation data for Xinjiang Brown cattle were collected from nine core
breeding farms in Xinjiang from July 2018 to July 2022. A total of 27 body size traits were
measured, including 17 measurable traits and 10 scored traits (1–9 points). The specific
assessment parts are shown in Figure 10. Scored traits were assessed by two certified
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Chinese dairy cattle body size assessors (certificate numbers: DAC-TY-083, DAC-TY-019).
A total of 1816 lactating Xinjiang Brown cows were assessed, with abnormal records
excluded based on the principle of “mean ± 3 standard deviations” and cows without
pedigree records removed. Finally, the data from 1185 lactating Xinjiang Brown cows were
further analyzed. The pedigree records of Xinjiang Brown cattle consisted of 186 bulls
and 2067 cows, checked and sorted using the chkPed() function of ASReml v4.2 software
(VSNC, Asian-Pacific region, UK).
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Figure 10. Description and measurement sites of 27 body conformation traits. Note: 1. stature (cm);
2. body depth (cm); 3. chest width (cm); 4. withers width (cm); 5. hind leg half circumference (cm);
6. rear leg height (cm); 7. rib and bone (points); 8. rump length (cm); 9. rump width (cm); 10. rump
angle (cm); 11. heel depth (cm); 12. foot angle (points); 13. rear legs side view (points); 14. bone
quality (points); 15. rear legs rear view (points); 16. rear udder height (cm); 17. rear udder width (cm);
18. median suspensory (cm); 19. udder depth (cm); 20. fore udder length (cm); 21. front teat length
(cm); 22. front teat diameter (cm); 23. fore udder attachment (points); 24. rear udder length (points);
25. udder balance (points); 26. fore teat placement (points); and 27. rear teat placement (points).

3.2. Blood Sample Collection and Whole-Genome Resequencing

Blood samples (10 mL) were collected from the tail vein of the test animals and the
anticoagulated whole blood was stored at −20 ◦C for genomic testing. Genomic DNA
was extracted from 496 Xinjiang Brown cattle and sequenced using the MGISEQ-2000
platform by BGI (MGI Tech, Shenzhen, China). The resequencing of 496 Xinjiang Brown
cattle generated approximately 74.9 billion reads, with an average sequencing depth of
8.04× and an average alignment rate of 99.87%.

3.3. Read Alignment and SNP Detection

The raw reads from the resequencing data of 496 Xinjiang Brown cattle were first
quality-controlled using Trimmomatic v0.40 software (http://USADELLAB.org) [21]. Clean
reads were aligned to the ARS-UCD1.2 reference genome using the MEME module of BWA
v0.7.17 software [22] with default parameters. Duplicate reads were removed using the
Sortsam and MarkDuplicates modules of Picard v2.25.5 software to reduce PCR amplifica-
tion bias. Base quality score recalibration was performed using the BaseRecalibrator and
PrintReads modules of GATK. The SNPs were detected using the HaplotypeCaller, Com-
bineGVCFs, GenotypeGVCFs, and SelectVariants modules of GATK v3.8 [23]. Low-quality
SNPs were filtered using the VariantFiltration module with the following parameters:
QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum < −12.5, ReadPosRankSum < −8.0, and

http://USADELLAB.org
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SOR > 3.0. SNPs were aligned to the ARS-UCD1.2 reference genome, and functional an-
notation of filtered SNPs was performed using ANNOVAR software [24]. SNPs were
excluded based on the following criteria: (1) individual genotype call rate < 90%, (2) single
SNP genotype call rate < 90%, (3) significant deviation from Hardy–Weinberg equilib-
rium (p < 10−6), (4) minor allele frequency (MAF) < 0.05, and (5) unknown chromosome or
genome information. A total of 15,700,670 SNPs were retained in Xinjiang Brown cattle.

3.4. Statistical Analysis
3.4.1. Estimation of Genetic Parameters

Using ASReml v4.2 software, the variance components of 27 body conformation traits,
the PCs, and factors were estimated using the average information restricted maximum
likelihood method in an animal model. The model used was:

Y = Xβ + Za + e

where Y represents the observed vector of 27 body conformation traits, β is the fixed effects
vector including farm effect (9 levels), days in milk effect (9 levels: 10–40 days, 41–80 days,
81–120 days, 121–160 days, 161–200 days, 201–240 days, 241–280 days, 281–320 days,
>320 days), and parity effect (4 levels: 1st parity, 2nd parity, 3rd parity, ≥4th parity), a is
the additive genetic effect vector, e is the random residual, and X and Z are the incidence
matrices for fixed and random effects, respectively.

A two-trait animal model was constructed using PCs and factor scores as cap Y to
estimate their genetic correlations. The two-trait animal model matrix form is:[

y1
y2

]
=

[
X1 0
0 X2

][
b1
b2

]
+

[
Z1 0
0 Z2

][
g1
g2

]
+

[
e1
e2

]
where y1 and y2 are the observed values of each factor and principal component, b1 and
b2 are the fixed effects vectors, with fixed effects consistent, g1 and g2 are the additive
genetic effects vectors, e1 and e2 are the random residuals, and X1, X2, Z1, and Z2 are the
corresponding incidence matrices.

The estimated variance components were used to calculate the genetic parameters [25]:

Heritability : h2 =
σ2

a
σ2

a + σ2
e

; Genetic correlation : rA =
Cov

(
ai, aj

)√
σ2

i σ2
j

where h2 is heritability, σ2
a is additive genetic variance, σ2

e is residual variance, and
Cov

(
ai, aj

)
is the additive genetic covariance between two traits.

3.4.2. Factor Analysis

Factor analysis was conducted using the FACTOR procedure in SAS v9.1 software,
which synthesizes the information contained in a set of n observed variables by seeking
a set of new variables, known as common latent factors. The varimax rotation method
was used to maintain the orthogonality of extracted factors, retaining only factors with
eigenvalues ≥1 [26]. Factor loadings of each body conformation trait were observed to
interpret analysis results biologically. Standardized factor scores were calculated for each
cow to facilitate the analysis of common factors as analysis variables instead of the original
variables before dimension reduction.

As described previously [27], the factor analysis model is expressed as:

yn = bn1X1 + bn2X2 + · · · bnpXp + en

where yn is the nth original variable, bnp is the loading of each variable n on each factor,
xp is the pth common factor of the nth variable, and en reflects the specific factor of the
nth variable.
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3.4.3. Genome-Wide Association Study

Haplotype inference and missing allele imputation for GWAS analysis were performed
using the method described in BEAGLE v4.1 software [28], which included a total of
15,700,670 SNPs for Xinjiang Brown cattle.

Here, GWAS analysis for 27 body conformation traits of Xinjiang Brown cattle was
conducted using the single-trait mixed linear model in GEMMA v0.98.5 software [29]. The
GWAS model is:

y = Wα + Xβ + Kµ + ε

where Y represents the observed vector of 27 body conformation traits, W is the covariant
matrix, including farm effect (9 levels), days in milk effect (9 levels: 10–40 days, 41–80 days,
81–120 days, 121–160 days, 161–200 days, 201–240 days, 241–280 days, 281–320 days,
>320 days), and parity effect (4 levels: 1st parity, 2nd parity, 3rd parity, ≥4th parity), α is
the covariant vector, X is the marker genotype, β is the marker genotype effect; K is the
genetic relationship coefficient matrix, µ is the genetic relationship coefficient effect, and ε
is the random residual vector.

Bonferroni correction was applied to multiple hypothesis testing, setting the signif-
icance threshold p-value at 3.18 × 10−9. GWAS visualization was performed using the
CMplot package in R v4.4.1 software.

To further determine the genetic effects of significant SNPs, the proportion of pheno-
typic variance explained by significant SNPs was calculated using the formula reported by
Shim et al. [30]:

PVE =
2β̂2MAF(1 − MAF)

2β̂2MAF(1 − MAF) + [se(β̂)]
2
2NMAF(1 − MAF)

where β̂2 is the effect size of the SNP marker, MAF is the minor allele frequency, se
(

β̂
)

is
the residual variance, and N is the sample size for GWAS analysis.

Genomic inflation factor λ was calculated using R v4.4.1 software, converting asso-
ciation test statistics p-values to χ2, and dividing the median χ2 statistic by the expected
median of the χ2

1 distribution (0.4549).
After completing the GWAS analysis, linkage disequilibrium among significant SNPs

was calculated, and the critical value for associated loci was defined. The LD is denoted
by R2 (R2 = D2

P(A1)P(A2)P(B1)P(B2)
, D = P(A1B1) − P(A1)P(B1)). Loci with fewer than

three significant SNPs were excluded from further analysis to reduce false-positive signals.
The SNP with the smallest p-value within each locus was defined as the leading SNP.
Functional annotation of SNPs related to body size traits was performed using ANNOVAR
software [24] based on the ARS-UCD1.2 reference genome. Candidate genes within a
500 Kb range upstream and downstream of significant SNPs were considered for further
analysis [30].

4. Discussion
4.1. Estimation of Genetic Parameters for Body Size Traits and Factor Scores

The rump height of lactating Xinjiang Brown cattle was similar to that of Swiss Brown
cattle (139 cm) [31], whereas the body depth was similar to that of Slovenian Brown cattle
(76.20 cm) [32]. The rump length and width were higher than those of Slovenian Brown
cattle (48.40 cm and 17.59 cm, respectively) [32]. These two body conformation traits had
medium to high heritability, but chest width had low heritability. Several studies have
reported lower heritability for chest width compared with rump height and body depth [33].
Rump traits showed higher heritability, consistent with studies on Italian Brown cattle [34],
while most feet and legs traits have been reported to have low to medium heritability [33,35].
This study analyzed more body conformation traits than previous studies in different cattle
breeds [36,37], somewhat increasing the data dimension. Generally, cows with deep and
tall bodies and wide and large udders are better milk producers [31,38]. Body conformation
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traits with high loadings in F1 are usually associated with milk production performance,
consistent with the findings of Kern et al. [38]. Thus, F1 can be included in selection indices
to improve milk production performance.

In this study, the rank correlation results between the EBVs of body conformation
traits and the factor scores exhibited patterns similar to those of the factor loadings of body
conformation traits. Mazza S et al. reported similar results in two dual-purpose cattle
breeds [39]. This further indicates the consistency of using factor score phenotypes for
genetic evaluation of body conformation parts. Although factor analysis can eliminate
redundant information in correlated variables, it is ambiguous in explaining single traits.
When conducting genetic selection for multiple traits in a population, the factor score can
effectively eliminate redundancy among traits of interest under genetic selection.

4.2. QTL for Body Frame Traits

Body frame traits include stature, body depth, and chest width. In this study, LCORL
and NCAPG were significantly associated with stature in Xinjiang Brown cattle. An Bings-
ing et al. reported a significant association between LAP3, which regulates hormone
secretion levels and protein maturation [40], and stature in Wagyu cattle [41]. Additionally,
LAP3 and FAN184B have been reported to be significantly associated with bone weight in
beef cattle [42,43]. Shen Jiafei et al. found that IBSP is significantly associated with the ear
margin area in Brahman and Yunling cattle [44]. LCORL encodes a transcription factor that
may function in spermatogenesis in the testes [45], while NCAPG encodes a non-histone
chromatin-associated protein G in mammals, which is part of the condensin I complex
involved in chromatin compression and regulation, especially during mitosis [46]. LCORL
and NCAPG are key genes affecting height in many species, such as horses [18], cattle [47],
and dogs [48]. LCORL and NCAPG have been identified as height-related loci in European,
Japanese, and African populations [49–52]. However, due to the proximity of LCORL and
NCAPG and high linkage disequilibrium among SNPs in these regions, it is still uncertain
which gene has a greater impact on height, requiring further verification.

4.3. QTL for Muscle Development Traits

Candidate genes related to muscle development traits include CPNE4, RUS1, DNAJC1-
TBX18, REG3G, AHCYL2, FSTL5, NPFFR2, and FAT3, which have been reported to be
associated with growth, muscle development, body size, and meat performance. CPNE4
is a gene related to glycogen content, regulating muscle glycogen content by affecting
glucose metabolism and being associated with growth performance, body size, muscle,
and skeletal development in cattle [53–55]. RUS1 was shown to influence weaning weight
in sheep [56]. DNAJC1 was reported to have pleiotropy in weaning and yearling weight
in Angus beef cattle [57]. However, TBX18 has not been previously found to be related
to body size traits. However, a recent study showed an association between TBX18 and
growth performance in Simmental dual-purpose cattle [58]. Additionally, TBX18 is related
to obesity in humans and mice [59,60]. Lee et al. reported that TBX18 regulates processes
related to skeletal muscle metabolism, affecting body size in animals [61]. Studies on
Nellore cattle showed that REG3G is associated with growth performance [62], while
AHCYL2 is related to carcass backfat thickness [63]. In a study on Limousin and Jersey
cattle crossbreeds, Novianti et al. reported that FSTL5 on bovine chromosome 17 is a key
gene affecting muscle development [64]. While NPFFR2 was shown to be significantly
associated with the udder morphology traits of German Simmental cattle [65], it was
significantly associated with withers width in this study. Regarding meat performance,
Riley et al. found that the FAT3 gene is related to beef palatability [66].

4.4. QTL for Rump Traits

EBF1, NSMCE2, TASOR, NEDD4, and PGF, associated with rump traits in Xinjiang
Brown cattle, are related to cattle reproduction and rump traits. Cole et al. reported that
EBF1 affects rump width and calving ease in Holstein cattle [67]. Rump width has been
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used as an indirect selection trait for calving ease. The bovine QTL database search results
also showed that EBF1 is associated with rump width and calving ease. In this study, this
gene was associated with rump traits in Xinjiang Brown cattle, making it a candidate gene
for rump trait selection. Moreover, in addition to affecting rump width in dairy cattle [67],
NEDD4 is also related to the eye muscle area in beef cattle. Cao et al. demonstrated
that NEDD4 deficiency reduces IGF-1 and insulin signaling in knockout mice [68]. PGF,
a member of the vascular endothelial growth factor family, is related to early embryo
development in yaks [69]. In a study on German Holstein cattle, PGF was shown to be
associated with calving ease and stillbirth [70].

4.5. QTL for Feet and Legs Traits

In the GWAS study of feet and legs traits in Xinjiang Brown cattle, six candidate
genes were annotated, with MGMT being noteworthy for its association with body size,
reproduction, and longevity traits, including overall body score, rear legs, rear view, limb
score, and hoof angle. The loci associated with MGMT showed the most significant effect
on limb traits [67]. Recent studies have reported that GATB is related to white-line disease
in dairy cattle [71]. The white line is a soft keratinized area at the junction of the hoof sole
and wall. Pérez-Cabal et al. indicated that foot angle significantly influences the incidence
of white-line disease [72], with higher linear scores and larger angles being associated
with a lower disease incidence. Other candidate genes identified in this study have not
been reported in limb-related traits but are considered important candidate genes in cattle
behavior and milk production traits. Michenet et al. [73] found that ADRA2 is associated
with maternal protective behavior in cows and encodes an adrenergic receptor related to
various behavioral traits in humans, mice, and rats [74]. Hence, this might be a candidate
gene affecting cattle behavior.

4.6. QTL for Udder Traits

Various GWAS reports on udder traits in different cattle populations have identified
several candidate loci and genes [65,75–77]. However, studies identifying genomic regions
related to udder traits are inconsistent, including this one. These differences in identified
genomic regions are possibly influenced by statistical methods and population differences.
Although candidate genes annotated to leading SNPs associated with udder traits in this
study have been rarely reported, significant SNPs discovered were adjacent to previously
reported SNP loci. For example, SNP rs441400818 on BTA7 and rs380411477 on BTA17
were close to the SNPs rs29023522 and rs42313276 associated with teat length reported
by Cole et al., with annotated genes including RGMB, CHD1, CPE, and MSMO1. The
SNP rs109736435 on BTA7 was close to the SNP rs110574421 associated with teat position,
annotated to ELL2 and PCSK1 [67]. An Animal QTLdb database search indicated that
CHD1, CPE, and ELL2 are related to a productive life, overall body score, and somatic cell
score, directly associated with teat length and position [78,79].

5. Conclusions

Most body conformation traits and factor scores in Xinjiang Brown cattle were medium
to highly heritable. The rank correlation results between the estimated breeding values of
body conformation traits and the factor scores exhibited patterns similar to those of the
factor loadings of body conformation traits, suggesting that the factor scores should be
included in selection indices. Using latent factors in body conformation trait evaluation
can simplify multidimensional body conformation traits into new variables, reducing the
computational burden of analyzing large datasets. In Xinjiang Brown cattle, 102 leading
SNPs were significantly associated with 12 body conformation traits. Some SNPs were
located within or near previously reported genes and QTL regions, whereas others were
newly discovered. These significant SNPs identified through GWAS can be included in
future genomic genetic evaluation models to continuously optimize these models and
provide a scientific basis for the selection and breeding of Xinjiang Brown cattle.
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