MicroRNA Inhibiting Atheroprotective Proteins in Patients with Unstable Angina Comparing to Chronic Coronary Syndrome
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics
2.2. MicroRNA Expression Levels—The Main Comparison between Study Groups
2.3. MicroRNA Expression Levels—Additional Comparison: Only Men Considered
2.4. MicroRNA Expression Levels—Another Approach: Patients with Left Main and Proximal LAD
3. Materials and Methods
3.1. Study microRNAs
3.2. Study Population
3.3. Eligibility Criteria
3.4. Blood Samples
3.5. Micro-RNA
3.6. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.A.; Hashim, M.J.; Mustafa, H.; Baniyas, M.Y.; Al Suwaidi, S.; AlKatheeri, R.; Alblooshi, F.M.K.; Almatrooshi, M.; Alzaabi, M.E.H.; Al Darmaki, R.S.; et al. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus 2020, 12, e9349. [Google Scholar] [CrossRef] [PubMed]
- Smitherman, T.C. Unstable angina pectoris: The first half century: Natural history, pathophysiology, and treatment. Am. J. Med. Sci. 1986, 292, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, G.; Serino, F.; Esposito, G. Cardiovascular mortality in patients with acute and chronic coronary syndrome: Insights from the clinical evidence on ticagrelor. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 2524–2542. [Google Scholar] [CrossRef]
- Deckers, J.W. Classification of myocardial infarction and unstable angina: A re-assessment. Int. J. Cardiol. 2013, 167, 2387–2390. [Google Scholar] [CrossRef] [PubMed]
- Katz, D.; Gavin, M.C. Stable Ischemic Heart Disease. Ann. Intern. Med. 2019, 171, ITC17–ITC32. [Google Scholar] [CrossRef] [PubMed]
- Bentzon, J.F.; Otsuka, F.; Virmani, R.; Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 2014, 114, 1852–1866. [Google Scholar] [CrossRef]
- Jebari-Benslaiman, S.; Galicia-Garcia, U.; Larrea-Sebal, A.; Olaetxea, J.R.; Alloza, I.; Vandenbroeck, K.; Benito-Vicente, A.; Martin, C. Pathophysiology of Atherosclerosis. Int. J. Mol. Sci. 2022, 23, 3346. [Google Scholar] [CrossRef]
- Badimon, L.; Vilahur, G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J. Intern. Med. 2014, 276, 618–632. [Google Scholar] [CrossRef] [PubMed]
- Silvestre-Roig, C.; de Winther, M.P.; Weber, C.; Daemen, M.J.; Lutgens, E.; Soehnlein, O. Atherosclerotic plaque destabilization: Mechanisms, models, and therapeutic strategies. Circ. Res. 2014, 114, 214–226. [Google Scholar] [CrossRef]
- Gimbrone, M.A., Jr.; Garcia-Cardena, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef]
- Han, X.; Boisvert, W.A. Interleukin-10 protects against atherosclerosis by modulating multiple atherogenic macrophage function. Thromb. Haemost. 2015, 113, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Cipollone, F.; Fazia, M.; Mincione, G.; Iezzi, A.; Pini, B.; Cuccurullo, C.; Ucchino, S.; Spigonardo, F.; Di Nisio, M.; Cuccurullo, F.; et al. Increased expression of transforming growth factor-beta1 as a stabilizing factor in human atherosclerotic plaques. Stroke 2004, 35, 2253–2257. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Thorp, E.B.; Doran, A.C.; Sansbury, B.E.; Daemen, M.J.; Dorweiler, B.; Spite, M.; Fredman, G.; Tabas, I. MerTK receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis. J. Clin. Investig. 2017, 127, 564–568. [Google Scholar] [CrossRef]
- Dabravolski, S.A.; Sukhorukov, V.N.; Kalmykov, V.A.; Grechko, A.V.; Shakhpazyan, N.K.; Orekhov, A.N. The Role of KLF2 in the Regulation of Atherosclerosis Development and Potential Use of KLF2-Targeted Therapy. Biomedicines 2022, 10, 254. [Google Scholar] [CrossRef] [PubMed]
- Kotlyarov, S.; Kotlyarova, A. Participation of Kruppel-like Factors in Atherogenesis. Metabolites 2023, 13, 448. [Google Scholar] [CrossRef]
- Li, Z.; Martin, M.; Zhang, J.; Huang, H.Y.; Bai, L.; Zhang, J.; Kang, J.; He, M.; Li, J.; Maurya, M.R.; et al. Kruppel-Like Factor 4 Regulation of Cholesterol-25-Hydroxylase and Liver X Receptor Mitigates Atherosclerosis Susceptibility. Circulation 2017, 136, 1315–1330. [Google Scholar] [CrossRef]
- Niu, N.; Xu, S.; Xu, Y.; Little, P.J.; Jin, Z.G. Targeting Mechanosensitive Transcription Factors in Atherosclerosis. Trends Pharmacol. Sci. 2019, 40, 253–266. [Google Scholar] [CrossRef]
- Hammond, S.M. An overview of microRNAs. Adv. Drug Deliv. Rev. 2015, 87, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Colpani, O.; Spinetti, G. MicroRNAs orchestrating senescence of endothelial and vascular smooth muscle cells. Vasc. Biol. 2019, 1, H75–H81. [Google Scholar] [CrossRef]
- Wojciechowska, A.; Braniewska, A.; Kozar-Kaminska, K. MicroRNA in cardiovascular biology and disease. Adv. Clin. Exp. Med. 2017, 26, 865–874. [Google Scholar] [CrossRef]
- Gangwar, R.S.; Rajagopalan, S.; Natarajan, R.; Deiuliis, J.A. Noncoding RNAs in Cardiovascular Disease: Pathological Relevance and Emerging Role as Biomarkers and Therapeutics. Am. J. Hypertens 2018, 31, 150–165. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.H.; Shrestha, S.; Yang, C.D.; Chang, N.W.; Lin, Y.L.; Liao, K.W.; Huang, W.C.; Sun, T.H.; Tu, S.J.; Lee, W.H.; et al. miRTarBase update 2018: A resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018, 46, D296–D302. [Google Scholar] [CrossRef] [PubMed]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef] [PubMed]
- Collet, J.P.; Thiele, H.; Barbato, E.; Barthelemy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef] [PubMed]
- Stevens, P.E.; Levin, A.; Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group, M. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 2013, 158, 825–830. [Google Scholar] [CrossRef]
- American Diabetes, A. Standards of Medical Care in Diabetes-2018 Abridged for Primary Care Providers. Clin. Diabetes 2018, 36, 14–37. [Google Scholar] [CrossRef]
- Li, X.; Lyu, L.; Yang, W.; Pan, J.; Dong, M.; Zhang, M.; Zhang, P. Identification of Flow-Limiting Coronary Stenosis With PCS: A New Cost-Effective Index Derived From the Product of Corrected TIMI Frame Count and Percent Diameter Stenosis. Front. Cardiovasc. Med. 2021, 8, 718935. [Google Scholar] [CrossRef]
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. EuroIntervention 2019, 14, 1435–1534. [Google Scholar] [CrossRef]
- Li, S.; Sun, Y.N.; Zhou, Y.T.; Zhang, C.L.; Lu, F.; Liu, J.; Shang, X.M. Screening and identification of microRNA involved in unstable angina using gene-chip analysis. Exp. Ther. Med. 2016, 12, 2716–2722. [Google Scholar] [CrossRef]
- D’Alessandra, Y.; Carena, M.C.; Spazzafumo, L.; Martinelli, F.; Bassetti, B.; Devanna, P.; Rubino, M.; Marenzi, G.; Colombo, G.I.; Achilli, F.; et al. Diagnostic potential of plasmatic MicroRNA signatures in stable and unstable angina. PLoS ONE 2013, 8, e80345. [Google Scholar] [CrossRef]
- Shalaby, S.M.; El-Shal, A.S.; Shoukry, A.; Khedr, M.H.; Abdelraheim, N. Serum miRNA-499 and miRNA-210: A potential role in early diagnosis of acute coronary syndrome. IUBMB Life 2016, 68, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Ke-Gang, J.; Zhi-Wei, L.; Xin, Z.; Jing, W.; Ping, S.; Xue-Jing, H.; Hong-Xia, T.; Xin, T.; Xiao-Cheng, L. Evaluating Diagnostic and Prognostic Value of Plasma miRNA133a in Acute Chest Pain Patients Undergoing Coronary Angiography. Medicine 2016, 95, e3412. [Google Scholar] [CrossRef]
- Zeller, T.; Keller, T.; Ojeda, F.; Reichlin, T.; Twerenbold, R.; Tzikas, S.; Wild, P.S.; Reiter, M.; Czyz, E.; Lackner, K.J.; et al. Assessment of microRNAs in patients with unstable angina pectoris. Eur. Heart J. 2014, 35, 2106–2114. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Lin, Y.; Yan, W.; Sun, Z.; Jiang, Z.; Shen, B.; Jiang, X.; Shi, J. Novel Biomarker MicroRNAs for Subtyping of Acute Coronary Syndrome: A Bioinformatics Approach. Biomed. Res. Int. 2016, 2016, 4618323. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Xu, J.F.; Song, M.; Zhang, L.; Li, Y.H.; Han, L.; Tang, M.X.; Zhang, W.; Zhong, M.; Wang, Z.H. Associations of Circulating microRNA-221 and 222 With the Severity of Coronary Artery Lesions in Acute Coronary Syndrome Patients. Angiology 2022, 73, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Masoodi Khabar, P.; Ghydari, M.E.; Vazifeh Shiran, N.; Shirazy, M.; Hamidpour, M. Platelet MicroRNA-484 as a Novel Diagnostic Biomarker for Acute Coronary Syndrome. Lab. Med. 2023, 54, 256–261. [Google Scholar] [CrossRef]
- Navickas, R.; Gal, D.; Laucevicius, A.; Taparauskaite, A.; Zdanyte, M.; Holvoet, P. Identifying circulating microRNAs as biomarkers of cardiovascular disease: A systematic review. Cardiovasc. Res. 2016, 111, 322–337. [Google Scholar] [CrossRef]
- Elgebaly, S.A.; Todd, R.; Kreutzer, D.L.; Christenson, R.; El-Khazragy, N.; Arafa, R.K.; Rabie, M.A.; Mohamed, A.F.; Ahmed, L.A.; El Sayed, N.S. Nourin-Associated miRNAs: Novel Inflammatory Monitoring Markers for Cyclocreatine Phosphate Therapy in Heart Failure. Int. J. Mol. Sci. 2021, 22, 3575. [Google Scholar] [CrossRef]
- Cui, Y.; Song, J.; Li, S.; Lee, C.; Zhang, F.; Chen, H. Plasmatic MicroRNA Signatures in Elderly People with Stable and Unstable Angina. Int. Heart J. 2018, 59, 43–50. [Google Scholar] [CrossRef]
- Tang, Y.; Fan, W.; Zou, B.; Yan, W.; Hou, Y.; Kwabena Agyare, O.; Jiang, Z.; Qu, S. TGF-beta signaling and microRNA cross-talk regulates abdominal aortic aneurysm progression. Clin. Chim. Acta 2021, 515, 90–95. [Google Scholar] [CrossRef]
- Huang, P. Potential new therapeutic targets: Association of microRNA with atherosclerotic plaque stability. Int. J. Immunopathol. Pharmacol. 2023, 37, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kitahara, S.; Kataoka, Y.; Sugane, H.; Otsuka, F.; Asaumi, Y.; Noguchi, T.; Yasuda, S. In vivo imaging of vulnerable plaque with intravascular modalities: Its advantages and limitations. Cardiovasc. Diagn. Ther. 2020, 10, 1461–1479. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Kang, S.J.; Yoon, S.H.; Ahn, J.M.; Park, D.W.; Lee, S.W.; Kim, Y.H.; Lee, C.W.; Park, S.W.; Nakazawa, G.; et al. Plaque composition and morphologic characteristics in significant left main bifurcation disease; virtual histology intravascular ultrasound study. Coron. Artery Dis. 2016, 27, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Yoon, Y.E.; Lee, W.; Choi, H.M.; Park, J.B.; Kim, H.L.; Park, H.E.; Lee, S.P.; Kim, H.K.; Choi, S.Y.; et al. Prognosis of anatomic coronary artery disease without myocardial ischemia: Coronary computed tomography angiography detects high-risk patients even in cases of negative single-photon emission computed tomography findings. J. Cardiol. 2018, 72, 162–169. [Google Scholar] [CrossRef]
- Ramadan, R.; Boden, W.E.; Kinlay, S. Management of Left Main Coronary Artery Disease. J. Am. Heart Assoc. 2018, 7, e008151. [Google Scholar] [CrossRef]
- Mao, Q.Q.; Chen, J.J.; Xu, W.J.; Zhao, X.Z.; Sun, X.; Zhong, L. miR-92a-3p promotes the proliferation and invasion of gastric cancer cells by targeting KLF2. J. Biol. Regul. Homeost. Agents 2020, 34, 1333–1341. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Hu, X.; Tian, G.G.; Ma, W.; Pei, X.; Wang, Y.; Wu, J. MicroRNA-10b regulates the renewal of spermatogonial stem cells through Kruppel-like factor 4. Cell Biochem. Funct. 2017, 35, 184–191. [Google Scholar] [CrossRef]
- Saenz-Pipaon, G.; Martinez-Aguilar, E.; Orbe, J.; Gonzalez Miqueo, A.; Fernandez-Alonso, L.; Paramo, J.A.; Roncal, C. The Role of Circulating Biomarkers in Peripheral Arterial Disease. Int. J. Mol. Sci. 2021, 22, 3601. [Google Scholar] [CrossRef]
UA Patients (n = 14) | CCS Patients (n = 38) | HV (n = 10) | p Significance * | |
---|---|---|---|---|
Age [years] | 62 ± 8 | 71 ± 11 | 39 ± 10 | Significant between
|
Sex (woman) ** | 3 (21.43%) | 18 (47.4%) | 6 (60%) | NS (p = 0.13) |
Hypertension ** | 11 (84.6%) | 30 (81.1%) | NA | NS (p = 0.78) |
Hyperlipidemia ** | 9 (69.2%) | 26 (68.4%) | NA | NS (p = 0.99) |
Active smoker ** | 7 (53.9%) | 7 (18.4%) | NA | Significant (p = 0.013) |
Previous smoker ** | 4 (30.8%) | 9 (23.7%) | NA | NS (p = 0.61) |
CAD or PAD ** | 5 (35.7%) | 6 (15.8%) | NA | NS (p = 0.12) |
Baseline statin use ** | 5 (30.8%) | 16 (42.1%) | NA | NS (p = 0.47) |
Baseline arrythmia ** | 0 (0%) | 6 (15.8%) | NA | NS (p = 0.13) |
BMI [kg/m2] | 29.5 ± 4.9 | 25.8 ± 4.0 | 24.0 ± 3.6 |
|
TC [mg/dL] | 196.5 [129–224] | 150.5 [130–190] | 183.5 [173–203] | NS (p = 0.18) |
LDL [mg/dL] | 93.5 [62–132.5] | 78 [61–108] | 97 [89–117] | NS (p = 0.25) |
HDL [mg/dL] | 37.8 ± 3.9 | 51.3 ± 11.6 | 65.1 ± 10.5 | Significant between
|
TG [mg/dL] | 142.5 [94–187] | 103 [80–138] | 76.5 [67–110] |
|
eGFR [mL/min/1.73 m2] | 74.1 ± 17.5 | 66.1 ± 18.7 | 99.5 [90–113] |
|
Hgb [g/dL] | 14.9 ± 1.7 | 13.7 ± 1.4 | 13.9 ± 1.5 |
|
PLT [number] | 243 ± 64 | 228 ± 71 | 241 ± 61 | NS (p = 0.73) |
TSH [μIU/mL] | 1.41 [0.929–2.39] | 1.39 [0.848–2.42] | 1.34 [0.641–2.06] | NS (p = 0.80) |
AspAT [U/L] | 24 [19.5–26.5] | 25 [21–30] | NA | NS (p = 0.30) |
AlAT [U/L] | 35 [24–52] | 24 [17–29] | NA | Significant (p = 0.008) |
APTT [s] | 30.1 ± 3.6 | 29.4 ± 3.6 | NA | NS (p = 0.57) |
NEXT STEP AFTER CORONARY ANGIOGRAPHY | ||||
Indications for invasive treatment *** | 12 (85.7%) | 20 (52.6%) | NA | Significant (p = 0.03) |
microRNAs | Fold Change in UA Group (n = 14) * | Fold Change in CCS Group (n = 38) * | Fold Change in HV Group (n = 10) * | p ** |
---|---|---|---|---|
Hsa-miR-92a-3p | 82.55 [53.41–151.53] | 70.42 [42.69–109.82] | 66.82 [31.77–85.81] | NS (0.389) |
Hsa-miR-10b-5p | 0.097 [0.062–0.177] | 0.058 [0.036–0.120] | 0.085 [0.057–0.124] | 0.073 (Kruskal-Wallis test) *** |
Hsa-miR-126-3p | 60.75 ± 47.07 | 48.18 ± 23.72 | 50.48 ± 25.69 | NS (0.427) |
Hsa-miR-98-5p | 0.031 [0.012–0.074] | 0.024 [0.012–0.047] | 0.013 [0.006–0.020] | NS (0.339) |
Hsa-miR-29b-3p | 0.794 [0.629–1.257] | 0.792 [0.584–1.159] | 0.925 [0.734–1.799] | NS (0.395) |
microRNAs | Fold Change in UA Males (n = 11) * | Fold Change in CCS Males (n = 22) * | p ** |
---|---|---|---|
Hsa-miR-92a-3p | 87.85 [38.28–192.54] | 60.72 [41.78–97.93] | NS (0.418) |
Hsa-miR-10b-5p | 0.104 [0.06–0.187] | 0.049 [0.034–0.078] | 0.014 ** |
Hsa-miR-126-3p | 62.52 ± 53.32 | 49.17 ± 24.11 | NS (0.444) |
Hsa-miR-98-5p | 0.027 [0.013–0.067] | 0.024 [0.018–0.047] | NS (0.887) |
Hsa-miR-29b-3p | 0.784 [0.629–1.847] | 0.845 [0.484–1.5] | NS (0.955) |
microRNAs | Fold Change in ”UA and LM/proxLAD” (n = 29) * | Fold Change in ”CCS Other” (n = 25) * | Fold Change in HV (n = 10) * | p ** |
---|---|---|---|---|
Hsa-miR-92a-3p | 92.64 [62.86–151.53] | 54.74 [38.73–74.80] | 66.82 [31.77–85.81] | 0.0178 *** |
Hsa-miR-10b-5p | 0.104 [0.062–0.169] | 0.046 [0.029–0.074] | 0.085 [0.057–0.124] | 0.0089 *** |
Hsa-miR-126-3p | 45.15 [32.77–65.8] | 48.79 [28.92–61.77] | 43.2 [30.75–60.15] | NS (0.84) |
Hsa-miR-98-5p | 0.03 [0.012–0.074] | 0.024 [0.014–0.04] | 0.013 [0.006–0.020] | NS (0.239) |
Hsa-miR-29b-3p | 0.805 [0.629–1.257] | 0.795 [0.612–1.245] | 0.925 [0.734–1.799] | NS (0.551) |
mRNA of the Protein | Corresponding Downregulating microRNA |
---|---|
IL10 | Hsa-miR-98-5p (abbrev. miR-98) |
MerTK | Hsa-miR-126-3p (abbrev. miR-126) |
TGFβ1 and TGFβ3 | Hsa-miR-29b-3p (abbrev. miR-29b) |
KLF2 | Hsa-miR-92a-3p (abbrev. miR-92a) |
KLF4 | Hsa-miR-10b-5p (abbrev. miR-10b) |
Exclusion Criteria for Chronic Coronary Syndrome (CCS) Patients |
---|
|
Exclusion criteria for unstable angina (UA) patients |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowara, M.; Kopka, M.; Kopka, K.; Głowczyńska, R.; Mitrzak, K.; Kim, D.-a.; Sadowski, K.A.; Cudnoch-Jędrzejewska, A. MicroRNA Inhibiting Atheroprotective Proteins in Patients with Unstable Angina Comparing to Chronic Coronary Syndrome. Int. J. Mol. Sci. 2024, 25, 10621. https://doi.org/10.3390/ijms251910621
Kowara M, Kopka M, Kopka K, Głowczyńska R, Mitrzak K, Kim D-a, Sadowski KA, Cudnoch-Jędrzejewska A. MicroRNA Inhibiting Atheroprotective Proteins in Patients with Unstable Angina Comparing to Chronic Coronary Syndrome. International Journal of Molecular Sciences. 2024; 25(19):10621. https://doi.org/10.3390/ijms251910621
Chicago/Turabian StyleKowara, Michał, Michał Kopka, Karolina Kopka, Renata Głowczyńska, Karolina Mitrzak, Dan-ae Kim, Karol Artur Sadowski, and Agnieszka Cudnoch-Jędrzejewska. 2024. "MicroRNA Inhibiting Atheroprotective Proteins in Patients with Unstable Angina Comparing to Chronic Coronary Syndrome" International Journal of Molecular Sciences 25, no. 19: 10621. https://doi.org/10.3390/ijms251910621
APA StyleKowara, M., Kopka, M., Kopka, K., Głowczyńska, R., Mitrzak, K., Kim, D. -a., Sadowski, K. A., & Cudnoch-Jędrzejewska, A. (2024). MicroRNA Inhibiting Atheroprotective Proteins in Patients with Unstable Angina Comparing to Chronic Coronary Syndrome. International Journal of Molecular Sciences, 25(19), 10621. https://doi.org/10.3390/ijms251910621