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Abstract: Candida albicans (C. albicans) is a main cause of hospital-acquired fungal infections. Com-
bination therapy is promising as a novel anti-C. albicans strategy because of its better efficacy. Th-
easaponins are pentacyclic triterpenes in the Camellia genus with multiple biological activities. Our
previous studies prove that theasaponins display inhibitory activity against C. albicans. Ascorbic
acid (VC) is a vitamin found in many plants that shows potential in combination therapy. However,
whether VC enhances the activity of theasaponins remains unclear. In this study, the checkerboard
micro-dilution method was used to assess the effect of VC (0–80 mmol/L) on the anti-C. albicans effect
of theasaponins (0–1000 µg/mL). Then, the effects of theasaponins (31.25 µg/mL), VC (80 mmol/L),
and theasaponins (31.25 µg/mL) + VC (80 mmol/L) on C. albicans planktonic cells and different
stages of biofilm formation were assessed. Transcriptomic analysis was conducted to investigate the
molecular mechanisms. According to the results, VC enhanced the anti-planktonic and anti-biofilm
effect of theasaponins against C. albicans. The minimum inhibitory concentration of theasaponins
was significantly decreased and the fungicidal efficiency was increased with the addition of VC. VC
remarkably aggravated the suppression of theasaponins with regard to various virulence factors of
C. albicans, including adhesion, early biofilm formation, mature biofilm, cell surface hydrophobicity,
and phospholipase activity. Compared with the theasaponins or VC groups, the level of intracellular
reactive oxygen species was higher, while the levels of mitochondrial membrane potential and adeno-
sine triphosphate were lower in the combination group, suggesting more severe oxidative stress,
mitochondrial injury, and energy deficiency. Transcriptomic analysis revealed that the combination
predominantly suppressed the pathways of glycolysis, glycerophospholipid metabolism, glutathione
metabolism, and cysteine and methionine metabolism. This implied that energy deficiency and redox
imbalance were associated with the anti-C. albicans activity of the combination. These results prove
that VC enhances the inhibitory effect of theasaponins against C. albicans and that the combination
has the potential to be used as a topical antifungal therapy or disinfectant.

Keywords: Candida albicans; vitamin C (ascorbic acid); theasaponins; enhancement

1. Introduction

Fungal infections are a major cause of infectious disease-associated mortality around
the world [1]. Candida albicans (C. albicans) is one of the leading causative agents of systemic
fungal infections [2]. Azoles and polyenes are first-line anticandidal medications, but
their efficacy is under threat. More and more C. albicans strains acquire resistance to them,
and the spread of these resistant strains poses clinical challenges [3,4]. The application of
combinational agents is one of the most promising strategies to tackle the situation. The
combinational agents consist of two antifungal agents or one antifungal agent with an
adjunct agent [5]. Compared with the use of a single drug, the application of combinational
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agents causes greater stress for the survival of fungal cells by targeting multiple sites,
resulting in enhanced efficacy and retarded evolution of resistance [6]. Meanwhile, the
synergy between combinational agents lowers the dosage of each agent, thereby decreasing
toxicity and side effects [7]. At present, there is some research on the combination treatment
of C. albicans. The combination of anidulafungin and amphotericin B displayed stronger
activity than individual agents in Candida biofilm inhibition in vitro [8]. The combination of
fluconazole and ginkgolide B (a terpene lactone from the Ginkgo biloba leaf) had a synergistic
effect against C. albicans in planktonic and biofilm states [7].

Natural compounds are a source of antifungal agents. Theasaponins are pentacyclic
triterpenes in the Camellia genus, specifically accumulated in seeds and flowers. The content
of theasaponins in Camellia sinensis seeds ranges from 16.93% to 31.82%, depending on
the cultivar [9]. The structure of a typical theasaponin is composed of triterpenoid agly-
cone/sapogenin, sugar moiety, and organic acid moiety. About 70 types of theasaponins
have been identified. Among them, theasaponin E1, assamsaponin G, and assamsaponin A
are the most abundant ones, accounting for 28.2%, 13.4%, and 9.7% of the total theasaponins,
respectively [9]. Theasaponins are natural non-ionic surfactants and display inhibitory
activity against diverse fungal pathogens, such as the plant pathogen Valsa mali [10] and
the dermatophyte Trichophyton rubrum [11]. Our previous study confirms the effectiveness
of theasaponins on the inhibition of the conditional pathogen C. albicans [12]. However, the
working concentration range is close to the toxic concentration range [13]. It is necessary to
increase the safety without hampering the efficacy. The use of combinational agents is a
possible approach.

Ascorbic acid, also known as vitamin C (VC), is a water-soluble compound found
in fruits, vegetables, and medicinal plants. It is essential for the proper functioning of
animals and humans. It exhibits excellent antioxidant capacity and acts as a cofactor for
many enzymes, participating in normal metabolic processes and homeostasis, such as
iron absorption, epigenetic modifications, and collagen synthesis [14]. Several studies
indicate the potential of VC in combination with therapeutic agents. Shivavedi et al. [15]
proved that a metformin and VC combination ameliorated type 2 diabetes and comorbid
depression in rats. High-dose VC had synergy with many standard chemotherapies and
mitigated the side effects [16]. Antimalarials were prescribed with VC or other antioxidants
to attenuate malaria infection-induced oxidative stress on the host [17]. The outcomes of
VC with anticandidal agents vary. VC improved the efficacy and decreased the cytotoxicity
of amphotericin B by maintaining its molecular stability [18,19]. Conversely, it impaired
the susceptibility of C. albicans to ketoconazole, probably because the antioxidant activity
of VC compromised the ketoconazole-induced accumulation of reactive oxygen species
(ROS) [20].

Currently, the impact of VC on the anti-C. albicans activity of theasaponins remains
unclear. In this study, the checkerboard micro-dilution method was used to assess the
impact of VC on the susceptibility of C. albicans (ATCC 10231, a fluconazole-resistant strain)
to theasaponins and screened out the proper combination. The effects of the combination
and individual agent on the planktonic and biofilm C. albicans cells were evaluated and
compared. Transcriptomic analysis was conducted to explore the underlying mechanisms.
The results bring a new insight into the application of the combinational strategy to suppress
C. albicans.

2. Results and Discussion
2.1. VC Increases the Susceptibility of Planktonic C. albicans to Theasaponins

According to the combination susceptibility test (Table 1), the minimum inhibitory
concentration (MIC) of theasaponins against planktonic C. albicans was 125 µg/mL, which
was consistent with our previous study [12]. VC itself could not inhibit C. albicans at
the test concentrations, but it significantly increased the susceptibility of C. albicans to
theasaponins. When the concentrations of VC ranged from 10 to 40 mmol/L (mM), the
MIC of theasaponins dropped to 62.5 µg/mL. When the concentration of VC reached
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80 mM, the MIC of theasaponins further dropped to 31.25 µg/mL. The minimum fungicidal
concentration (MFC) of theasaponins against planktonic C. albicans was 125 µg/mL. When
the concentrations of VC ranged from 40 to 80 mM, the MFC of theasaponins dropped to
62.5 µg/mL.

Table 1. The susceptibility of Candida albicans (C. albicans) ATCC 10231 to theasaponins (SPs) and
ascorbic acid (VC).

SPs (µg/mL)
0 15.625 31.25 62.5 125 250 500 1000

VC (mM)

0 +/NT +/NT +/NT +/NT -/- -/- -/- -/-
1.25 +/NT +/NT +/NT +/NT -/- -/- -/- -/-
2.5 +/NT +/NT +/NT +/NT -/- -/- -/- -/-
5 +/NT +/NT +/NT +/NT -/- -/- -/- -/-

10 +/NT +/NT +/NT -/+ -/- -/- -/- -/-
20 +/NT +/NT +/NT -/+ -/- -/- -/- -/-
40 +/NT +/NT +/NT -/- -/- -/- -/- -/-
80 +/NT +/NT -/+ -/- -/- -/- -/- -/-

Data presented in each cell indicate the result of the determination of minimum inhibitory concentration/minimum
fungicidal concentration. “+” means visible growth of the fungus, while “-” means no visible growth of the
fungus. “NT” means not tested.

The time–kill curves (Figure 1) showed that 80 mM VC and 31.25 µg/mL theasaponins
individually had little inhibitory activity against the growth of planktonic C. albicans cells.
Their combination exhibited significantly enhanced inhibitory activity. The cell numbers
of the combination group continued decreasing during the initial 5 h, slightly increased
at 10 h, and remained steady ever after. After 24 h of incubation, the cell number of the
combination group was only half of that of the other three groups.
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The results proved that the addition of VC remarkably enhanced the antifungal
efficiency of theasaponins.

2.2. VC Enhances the Anti-Biofilm Effect of Theasaponins against C. albicans

As a dimorphic fungus, the ability to switch morphology and form biofilms is vital to
the pathogenesis of C. albicans [21]. The biofilm development usually requires 24–48 h and
includes a series of steps, such as adhesion, maturation, and dispersal [21]. At first, the yeast
cells adhere to the substrate and form a basal cell layer. Then, the cells undergo proliferation
and filamentation into hyphae. Later, the cells are embedded in the extracellular polymeric
substance matrix as the biofilm matures. Finally, non-adherent yeast cells are released from
the mature biofilm to initiate new biofilm formation or invade host tissues. Compared with
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planktonic cells, biofilm cells are more resistant to antifungal drugs, such as amphotericin B
and fluconazole [22]. Our previous study revealed that three theasaponin monomers, which
were theasaponin E1, theasaponin E2, and assamsaponin A, dose-dependently suppressed
the adhesion, biofilm formation, and mature biofilm against C. albicans [23]. As with other
antifungal drugs, the biofilm eradication concentration of theasaponin monomers was
much higher than the biofilm formation inhibitory concentration. Rege et al. [24] found
that incubation with VC for 48 h prevented the biofilm formation of C. albicans by 75%.
These findings showed that both theasaponins and VC had anti-biofilm activity. In this
study, the effect of the theasaponins and VC combination on different stages of biofilm
formation was investigated.

At the initial stage of biofilm formation (i.e., the adhesion stage), the VC and th-
easaponins individually significantly inhibited the metabolic activity of C. albicans cells,
according to the results of the XTT reduction assay (Figure 2A). Their combination showed
a stronger effect, reducing the metabolic activity of C. albicans cells by 90%. VC and
theasaponins individually had no inhibition effect on the biomass of C. albicans cells,
according to the results of the crystal violet staining assay, but their combination did
(Figure 2B). Microscopic observation revealed that the morphology of each group var-
ied (Figure 2C). In the control or theasaponins group, most of the cells grew either as
a budding yeast or in the filamentous pseudohyphal form. In the VC group, the ma-
jority of cells were in the filamentous pseudohyphal form and were much longer than
those in the control or theasaponins group, indicating that VC significantly promoted the
elongation of pseudohyphae. It was possible that VC impacted the septum formation or
microtubules. Further experiments, such as fluorescence confocal microscopy examina-
tion and electron microscopy examination, are needed to figure it out. Conversely, the
cells in the combination group remained as yeast. These results suggested that the com-
bination of VC and theasaponins displayed stronger inhibitory activity by disrupting the
morphological transition.

At the early stage of biofilm formation, the theasaponins alone reduced the metabolic
activity of C. albicans cells, while the VC could not (Figure 2A). The combination showed
a synergy in decreasing the metabolic activity. However, none of the treatments were
able to decrease the biomass (Figure 2B). The morphology of the cells in the VC or theas-
aponins group was similar to that in the control group and was mostly in the hyphal form
(Figure 2C). The cells in the combination group were in the unicellular or budding yeast
form, suggesting the potential role of the combination in early biofilm formation through
the disruption of hyphal development.

For mature biofilm, the theasaponins alone slightly lowered the metabolic activity
of C. albicans cells. When combined with VC, the inhibition was dramatically enhanced
(Figure 2A). Likewise, none of the treatments decreased the biomass (Figure 2B). Micro-
scopic examination showed that the structure of biofilm in the combination group was less
confluent than the other three groups (Figure 2C).

The above results demonstrated that the combination of VC and theasaponins effec-
tively inhibited the adhesion, morphological transition, hyphal development, and mature
biofilm of C. albicans. The inhibition was attenuated along with the maturity of the biofilm.
The saponins mainly displayed anti-biofilm activity by reducing the metabolic activity
rather than the biomass. The VC augmented the anti-metabolic activity of the theasaponins.
Despite the fact that VC promoted the elongation of pseudohyphae by itself, when com-
bined with theasaponins they cooperated to reduce the proportion of elongated cells. The
underlying mechanism still remains mysterious.
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Figure 2. SPs and VC inhibited the adhesion, early biofilm formation, and mature biofilm of C.
albicans. (A) Quantitative analysis of the XTT reduction assay; (B) quantitative analysis of the crystal
violet staining assay; (C) microscopic observations (100×). The data represent the average (±standard
deviation, SD) of six independent experiments. To assess the effect on the adhesion, C. albicans cells
were co-incubated with vehicle or agent(s) for 1.5 h. To assess the effect on the early biofilm formation,
C. albicans cells were incubated in the well plate for 1.5 h, and then treated with vehicle or agent(s) for
24 h. To assess the effect on the mature biofilm, C. albicans cells were incubated in the well plate for
24 h, and then treated with vehicle or agent(s) for 24 h. “**” above the column indicates significant
differences (p < 0.01); “*” indicates significant differences (p < 0.05); and “ns” indicates insignificant
differences (p ≥ 0.05). CK is short for the control group; SPs is short for the theasaponins group; VC
is short for the ascorbic acid group; and SPs + VC is short for the combination group.
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2.3. VC Aggravates Theasaponins-Induced Reduction in Cell Surface Hydrophobicity (CSH) and
Extracellular Phospholipase

In addition to anti-biofilm activity, the effects of the combination on the virulence
factors of C. albicans were also evaluated by measuring the CSH and extracellular phos-
pholipase. CSH refers to a cell’s affinity for a hydrophobic versus hydrophilic environ-
ment, which impacts virulence and biofilm formation [25]. Cells with higher CSH prefer
a hydrophobic environment. They adhere more readily to host tissue, possess higher
biofilm formation ability, and are more resistant to phagocytic killing, displaying stronger
pathogenicity [26]. Extracellular polysaccharides and components on the surface of the
cell wall, including mannoproteins, glucans, lipids, and chitin, are responsible for the
CSH of C. albicans [25]. According to the results, the CSH of C. albicans at the adhesion
stage was much lower compared with that in mature biofilm (Figure 3A). At the adhesion
stage, only the combination significantly decreased the CSH by 40%. It was consistent with
the microscopic observation that most of the cells in the combination group remained in
the yeast form (Figure 2C), implying that the combination suppressed the adhesion by
reducing CSH. For mature biofilm (Figure 3B), VC alone decreased the CSH by 19%, and
the combination decreased the CSH by 31%, suggesting that the combination was more
capable than the individual agent.
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Figure 3. Effect of SPs and VC on the cell surface hydrophobicity of C. albicans at the adhesion stage
(A) and mature biofilm (B). “**” above the column indicates significant differences (p < 0.01), and
“ns” indicates insignificant differences (p ≥ 0.05).

Extracellular phospholipase is one of the hydrolytic enzymes secreted during the
pathogenesis of C. albicans to enhance survival in the host [27]. The activity of phospho-
lipase was measured as the Pz value. A higher Pz value indicates a lower extracellular
phospholipase activity. Exposure to antifungal drugs, such as nystatin, amphotericin B,
caspofungin, and ketoconazole, significantly reduced the phospholipase activity of C. albi-
cans [28]. At the adhesion stage, only the combination significantly increased the Pz value
(Table 2). Likewise, for mature biofilm, only the combination significantly increased the Pz
value. Combined with the results in Section 2.3 and the previous study [29], it was deduced
that reduced metabolic activity and changes in cell surface structures might contribute to
the decrease in phospholipase activity.
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Table 2. Effect of SPs and VC on the extracellular phospholipase activity of C. albicans at the adhesion
stage and mature biofilm.

Adhesion Mature Biofilm

Pz Value Phospholipase
Activity Pz Value Phospholipase

Activity

Control 0.60 ± 0.02 Very high 0.53 ± 0.04 Very high
SPs 0.62 ± 0.01 Very high 0.56 ± 0.07 Very high
VC 0.56 ± 0.04 Very high 0.51 ± 0.03 Very high

SPs + VC 0.78 ± 0.05 ** High 0.74 ± 0.07 ** High
“**” indicates significant differences compared with the control group (p < 0.01).

These findings indicated that the combination hampered the adhesion and invasion
of C. albicans cells to weaken the pathogenicity by decreasing the CSH and extracellular
phospholipase activity.

2.4. VC Exacerbates the Oxidative Stress and Energy Metabolism Decline in Theasaponins-Treated
C. albicans Cells

The induction of intracellular oxidative stress is a pivotal molecular mechanism of
many antifungal medications. ROS are key signaling molecules which participate in
the process. At the test concentration, theasaponins alone significantly increased the
intracellular ROS level, while VC alone had no impact (Figure 4A). Although VC was
well known as an antioxidant, the intracellular ROS level in the combination group was
much higher than that in the theasaponins group. Avci et al. [30] found that 90 mM of
ascorbate killed C. albicans in a shaking culture, and the toxicity of ascorbate was attributed
to the generation of hydroxyl radicals via a Fenton reaction. It was speculated that the
combination of theasaponins and VC might also enhance the toxicity by inducing greater
oxidative stress via the triggering of the Fenton reaction, with theasaponins increasing the
substrate (e.g., H2O2) concentration and VC accelerating the regeneration of the catalyst
(e.g., Fe2+).
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The relationship between ROS and mitochondria is complex and bidirectional. Exces-
sive ROS can result in mitochondrial damage [31]. And mitochondrial dysfunction leads to
ROS generation. The mitochondrial membrane potential (MMP) is a reliable indicator of
mitochondrial health [32]. It is generated by proton pumps and forms the transmembrane
potential of hydrogen ions together with the proton gradient to control the mitochondrial
capacity of adenosine triphosphate (ATP) generation via oxidative phosphorylation [33].
The level of MMP is relatively stable under normal conditions. A reduction in MMP is
a hallmark of mitochondrial dysfunction, which relates to impaired bioenergetics and
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increased ROS generation [34]. At the test concentration, neither the theasaponins nor
VC alone significantly decreased MMP (Figure 4B). It is noteworthy that the treatment of
theasaponins alone induced intracellular ROS but did not reduce MMP, suggesting that
the low concentration of theasaponins did not severely damage the mitochondria and that
the extra ROS were probably not from the mitochondria. In any case, the combination of
theasaponins and VC effectively reduced MMP. The MMP level of the combination group
was 19.9% lower than that in the control group. It indicated that theasaponins and VC
coordinated to disrupt mitochondrial function.

As mitochondria are the main powerhouses that produce ATP, the intracellular ATP
level was monitored (Figure 4C). The theasaponins alone had no impact on the intracellular
ATP level; the VC dramatically increased the intracellular ATP level, while the combination
group had the lowest intracellular ATP level, which was 48.5% of that in the control
group. A previous study revealed that VC enhanced the activity of the mitochondrial
electron transport chain by mediating electrons from coenzyme Q to cytochrome c and
increased ATP production under normal conditions [35,36], which was consistent with
the current result. Under oxidative stress, the ascorbyl free radical was accumulated, and
it impaired mitochondrial respiration, probably by causing an arrest of the electron flow
between Complex III and Complex IV, resulting in decreased ATP production [37]. The
hypothesis might explain the significant decrease in ATP production in the combination
group. Another assumption was that the combination decreased ATP production in a
mitochondria-independent way. Despite the fact that the majority of ATP is generated
by mitochondria via oxidative phosphorylation, ATP is also synthesized in the cytosol
via glycolysis.

2.5. The Combination of VC and Theasaponins Modulates the Transcriptomic Profile,
Predominantly Targeting Energy Metabolism

To unveil the underlying mechanisms, transcriptomic analysis by RNA sequencing
was conducted. The Q20 of each piece of raw data was over 97%, indicating high accuracy
and reliability. A principal component analysis plot based on the differentially expressed
genes (DEGs) showed that the dots representing each group were isolated, suggesting
that the transcriptomic profile of each group was distinguishable (Figure 5A). And the
distance between the control group dots and the theasaponins group dots was the shortest,
indicating the high similarity in the transcriptomic profile of the two groups. Compared
with the control group, 58, 326, and 1319 DEGs were identified in the theasaponins group,
VC group, and the theasaponins+VC group, respectively (Figure 5B). Compared with the
theasaponins+VC group, 1057 and 878 DEGs were identified in the theasaponins group
and VC group, respectively. The hierarchical clustering analysis also demonstrated that the
transcriptomic profile of the combination group was more distinctive than that of the other
three groups, followed by the VC group (Figure 5C).

The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis (Figure 5D–F) re-
vealed that many DEGs between the control group and the combination group were
associated with glycolysis. Glycolysis is highly conserved among living organisms and
occurs in the cytosol of the cell without the use of oxygen. It is the metabolic pathway
that breaks down glucose into pyruvate and produces ATP and NADH [38]. Pyruvate
can be oxidized to acetyl-CoA and enter the tricarboxylic acid cycle to produce energy
in the presence of oxygen. Pyruvate can also serve as a key intermediate molecule in the
metabolisms of proteins, fats, and carbohydrates [39]. Compared with the control group,
the theasaponins or VC alone did not significantly downregulate the transcription of genes
related to the glycolysis process (Figure 6). In contrast, the combination dramatically inhib-
ited genes encoding glycolytic enzymes, including the rate-limiting enzymes glucokinase
and pyruvate kinase. The results were in accordance with the results in Section 2.4 and
implied that the combination might induce energy metabolism decline by targeting the
glycolysis process to inhibit C. albicans.
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It is noteworthy that the combination significantly inhibited glycerol-3-phosphate de-
hydrogenase [NAD(+)] (Figure 6), which catalyzes the formation of glycerol-3-phosphate in
the cytosol by converting the glycolysis intermediate dihydroxyacetone phosphate and oxi-
dizing nicotinamide adenine dinucleotide and is a key member in the glycerol-3-phosphate
shuttle [40]. The shuttle delivers cytosolic reducing equivalents into mitochondrial ox-
idative phosphorylation [41]. The high flux through cytosolic glycerol-3-phosphate dehy-
drogenase is required to maintain redox balance. It has been reported that the shuttle is
involved in the development and virulence of fungi [41,42]. The inhibition of the enzyme
might exacerbate energy deficiency and oxidative stress.
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over the purple dot indicates that the gene was significantly downregulated in the theasaponins–VC
combination group compared with the control group. Short names and corresponding full names are
listed as follows. CK—the control group; SPs—the theasaponins group; VC—the ascorbic acid group;
T—the combination group; G6P—glucose-6-phosphate; F6P—fructose-6-phosphate; F1,6BP—fructose-
1,6-bisphosphate; G3P—glyceraldehyde-3-phosphate; 1,3BPG—1,3-bisphosphoglycerate; 3PG—3-
phosphoglycerate; 2PG—2-phosphoglycerate; PP—phosphoenolpyruvate; DHAP—dihydroxyacetone
phosphate; GC3P—glycerol-3-phosphate; Acetyl CoA—acetyl-coenzyme A; TCA cycle—tricarboxylic
acid cycle; SAMet—S-adenosyl-methionine; SAHC—S-adenosyl-homocysteine; HCYS—homocysteine;
CYST—cystathionine; Cys—cysteine; GluCys—γ-glutamylcysteine; GSSG—glutathione disul-
fide; ATP—adenosine triphosphate; ADP—adenosine diphosphate; NAD+—nicotinamide ade-
nine dinucleotide; NADH—reduced nicotinamide adenine dinucleotide; NADPH—reduced
nicotinamide adenine dinucleotide phosphate; NADP—nicotinamide adenine dinucleotide phos-
phate; 6PP—6-phosphogluconolacone; GLK—glucokinase; PGI—glucose-6-phosphate isomerase;
PFK—phosphofructokinase; FBA—fructose-bisphosphate aldolase; TDH—glyceraldehyde-3-
phosphate dehydrogenase; PGK—phosphoglycerate kinase; GPM—phosphoglycerate mutase;
ENO—enolase; CDC—pyruvate kinase; TPI—triosephosphate isomerase; GPD—glycerol-3-phosphate
dehydrogenase [NAD(+)]; ADH—alcohol dehydrogenase; ALD—acetaldehyde dehydrogenase;
ACS—acetyl-coenzyme A synthetase; SAM—S-adenosylmethionine synthase; MT—methyltransferase;
SAH—S-adenosylhomocysteinase; CBS—cystathionine β-synthase; CSE—cystathionine γ-lyase;
GCS—γ-glutamylcysteine synthetase; GS—glutathione synthase; GST—glutathione S-transferase;
GPX—glutathione peroxidase; GLR—glutathione reductase; ZWF—glucose-6-phosphate 1-
dehydrogenase; PLB—phospholipase B; PLD—phospholipase D.
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In addition, pyruvate can undergo non-oxidative decarboxylation with the catalyza-
tion of pyruvate decarboxylase to produce acetaldehyde. On one hand, acetaldehyde is
converted by alcohol dehydrogenase 1 (ADH1) into ethanol at the end of glycolysis [43].
ADH1 locates on the cell wall surface and plays roles in biofilm formation, interactions
between different species, and the development of drug resistance [43]. It is regarded as a
potential target for the inhibiting of the fungal infection event [44]. The combination, but
not theasaponins or VC alone, significantly decreased the transcription of ADH1 (Figure 6).
It implied that the combination might lower the energy production and virulence of C.
albicans. On the other hand, acetaldehyde is oxidized by acetaldehyde dehydrogenase to
acetic acid; then, acetyl-CoA is generated by acetyl-coenzyme A synthetase (ACS). Acetyl-
CoA is a central intermediate for energy metabolism and biosynthetic pathways [45]. The
acs1-acs2 double mutant is not viable [46]. C. albicans strains depleted for ACS2 are unviable
in the presence of most carbon sources, including glucose, acetate, and ethanol [47]. The
combination remarkably suppressed the transcription of both ACS1 and ACS2 (Figure 6),
which might decrease the viability of C. albicans.

Energy deficiency profoundly affects metabolisms, especially the energy-requiring
ones. Among them, glutathione, cysteine, and methionine metabolisms are notable. Glu-
tathione is a tripeptide consisting of L-glutamate, cysteine, and glycine [48]. It is a potent
antioxidant which protects cells from oxidative damage and the toxicity of xenobiotics
and maintains redox homeostasis [49]. Glutathione is synthesized by the sequential ad-
dition of cysteine to glutamate followed by the addition of glycine, through continuous
two-step enzymatic reactions which depend on ATP [48]. The biosynthesis is determined
by the availability of the sulfur amino acid precursor, cysteine, and the activity of the
rate-limiting enzyme, γ-glutamylcysteine synthetase (GCS; also referred to as glutamate
cysteine ligase) [50]. An important source of cysteine is the conversion of methionine
via the transsulfuration pathway. With the catalyzation of S-adenosylmethionine syn-
thase (SAM; also referred to as methionine adenosyltransferase), S-adenosyl-methionine
(SAMet) is formed. Methyltransferase produces S-adenosyl-homocysteine (SAHC) from
SAMet. S-adenosylhomocysteinase (also known as S-adenosyl-homocysteine hydrolase,
SAH) catalyzes the reversible hydrolysis of SAHC to adenosine and homocysteine (HCYS).
Cystathionine β-synthase (CBS) synthesizes cystathionine by the condensation of HCYS
and serine. Thereafter, cystathionine is hydrolyzed by cystathionine γ-lyase (CSE) to gener-
ate cysteine [51]. The combination significantly suppressed the transcription of SAM and
SAH (Figure 6), two enzymes in the biosynthetic pathway of cysteine, which reduced the
availability of cysteine. Moreover, the combination effectively decreased the transcription
of GCS, which suppressed the biosynthesis of glutathione. The combination inhibited the
transcription of glutathione reductase (GLR), which blocked the regeneration of reduced
glutathione from oxidized glutathione [52]. Interestingly, the combination also inhibited
glutathione S-transferases, which at least partially disabled the detoxification function of
glutathione. The lack and inactivation of glutathione might lead to the overaccumulation
of intracellular ROS, which is in line with the result shown in Figure 4B, and finally injure
the cells.

Additionally, there were DEGs annotated to the glycerophospholipid metabolism
pathway, including several genes encoding lysophospholipase and phospholipases, such as
phospholipase B1 (PLB1), B5 (PLB5), and D1 (PLD1). C. albicans contains five putative phos-
pholipase B (PLB) genes, each of which encodes a PLB enzyme. PLB enzymes hydrolyze
acyl ester bonds in phospholipids and lysophospholipids and catalyze lysophospholipase-
transacylase reactions [53]. PLB enzymes are unnecessary for the normal growth and
morphology of C. albicans, but they are upregulated in conditions favoring filamentous
growth, suggesting their role in candidal virulence [54]. PLB1 is directly responsible for
the pathogenicity of C. albicans and participates in the early steps of host invasion [55].
PLD enzymes hydrolyze the terminal phosphodiester bond of membrane phospholipids
to release phosphatidic acid and catalyze a unique transphosphatidylation reaction using
primary alcohols as nucleophilic acceptors [54]. PLD1 is constitutively expressed during
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yeast growth and stimulated during dimorphic transition [56]. The Capld1 null mutants
show attenuated virulence in candidiasis models [57]. This suggests that PLD1 is a poten-
tial virulence determinant due to its role as an important regulator of the yeast to hyphae
transition in C. albicans. Theasaponins or VC alone did not significantly downregulate
the transcription of phospholipases, but the combination did. The results were consistent
with the results of the extracellular phospholipase activity (Table 2), implying that the
combination decreased the virulence of C. albicans by targeting phospholipases.

Deducing from the above results, it was speculated that the inhibitory mechanisms of
the combination were associated with the suppression of energy metabolism, the disability
of glutathione, and the reduction in phospholipases.

Learning from previous references, there are many other possible anticandidal mecha-
nisms worth attention. Pistoia et al. [58] found that all-trans retinoic acid induced plasma
membrane damage in C. albicans cells and exhibited excellent activity on the growth and
biofilm formation of C. albicans, indicating the plasma membrane as an important an-
ticandidal target. Our previous study demonstrated that two theasaponin monomers
increased the cell membrane permeability and disrupted the cell membrane integrity of
C. albicans cells [12]. Further experiments are needed to investigate whether VC enhances
the inhibitory activity of theasaponins by aggravating the plasma membrane damage of C.
albicans cells. Sánchez-Fresneda et al. [59] revealed that C. albicans cells rapidly increased
the endogenous synthesis of trehalose and D-arabitol under oxidative stress to counteract
environmental challenges. Our current results indicated that theasaponins alone or com-
bined with VC induced oxidative stress in C. albicans cells, but the effects on the synthesis
of trehalose and D-arabitol were not investigated. In a future study, the concentrations of
intracellular trehalose and other compatible solutes will be monitored to assess whether
theasaponins and VC display anticandidal activity by hindering the synthesis of these
defensive compounds.

3. Materials and Methods
3.1. Reagents

The Candida albicans strain (ATCC 10231) was purchased from Guangdong Microbial
Culture Collection Center (Guangzhou, China). The VC was purchased from Shanghai
Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). The theasaponins were
prepared according to our previously published method [12].

3.2. Combination Susceptibility Test

The checkerboard micro-dilution method was used to test the combination suscep-
tibility of theasaponins and VC in the Candida albicans strain (ATCC 10231) [60]. Serial
two-fold dilutions were prepared in broth for the theasaponins and VC, respectively. The
final concentrations of theasaponins ranged from 0 to 1000 µg/mL; the final concentra-
tions of VC ranged from 0 to 80 mM; and the final intensity of the C. albicans cells was
5 × 105 CFU/mL. The cells were cultured at 30 ◦C for 24 h. MIC was set as the lowest
concentration which inhibited the visible growth of C. albicans. For wells without visible
growth of C. albicans, 10 µL of cell culture from each well was plated onto yeast extract–
peptone–dextrose (YPD) agar and incubated overnight at 30 ◦C, respectively. MFC was
defined as the lowest concentration where no colony growth was observed.

3.3. Time-Kill Curves

C. albicans cells from a single colony were cultured in YPD liquid medium and grown
overnight at 30 ◦C in a shaking incubator at 200 rpm. The cell suspension was diluted to
the intensity of 5 × 105 CFU/mL and treated with vehicle (the control group), theasaponins
(31.25 µg/mL), VC (80 mM or 14.1 mg/mL), and theasaponins (31.25 µg/mL) + VC (80 mM),
respectively. The cells were grown at 30 ◦C in a shaking incubator at 200 rpm and sampled
at 0 h, 1 h, 2 h, 3 h, 4 h, 5 h, 10 h, and 24 h. Ten microliters of each sample was serially
diluted and spread onto YPD agar plates. After 24 h of incubation at 30 ◦C, the number
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of colonies was counted. The logarithm of the number of colonies counted (CFU)/mL is
plotted versus time to construct the time–kill curve.

3.4. Determination of Adhesion, Early Biofilm Formation, and Mature Biofilm

To assess the adhesion, C. albicans cells were suspended in RPMI 1640 medium
(2 × 106 CFU/mL) and treated with vehicle, theasaponins (31.25 µg/mL), VC (80 mM), and
theasaponins (31.25 µg/mL) + VC (80 mM), respectively. Two hundred microliters of each
mixture was added into a 96-well plate. After incubating at 37 ◦C for 1.5 h, non-adherent
cells were removed by washing the well with D-PBS twice.

To assess the early biofilm formation, a C. albicans cell suspension (2 × 106 CFU/mL
in RPMI 1640 medium, 100 µL/well) was added into a 96-well plate and incubated at
37 ◦C for 1.5 h. Non-adherent cells were removed by washing the well with D-PBS
twice. The remaining cells were treated with vehicle (RPMI 1640 medium), theasaponins
(31.25 µg/mL), VC (80 mM), and theasaponins (31.25 µg/mL) + VC (80 mM), respectively,
at 37 ◦C for 24 h.

To assess the mature biofilm, a C. albicans cell suspension (2 × 106 CFU/mL in RPMI
1640 medium, 100 µL/well) was added into a 96-well plate and incubated at 37 ◦C for 24 h.
Non-adherent cells were removed by washing the well with D-PBS twice. The remaining
cells were treated with vehicle (RPMI 1640 medium), theasaponins (31.25 µg/mL), VC
(80 mM), and theasaponins (31.25 µg/mL) + VC (80 mM), respectively, at 37 ◦C for 24 h.

The effects of theasaponins, VC, and theasaponins+VC on the adhesion, early biofilm
formation, and mature biofilm of C. albicans cells were evaluated in terms of metabolic
activity and biomass.

The metabolic activity was determined using the 2,3-bis-(2-methoxy-4-nitro-5-sulphenyl)
-(2H)-tetrazolium-5-carboxanilide (XTT) reduction assay. Adherent cells were stained with
XTT solution at 37 ◦C for 1 h in the dark, and the absorbance at 490 nm was measured
by a microplate reader (Synergy H1, BioTek Instruments, Inc., Winooski, VT, USA). The
metabolic activity was calculated as follows:

Metabolic activity (%) =
Atreatment − Ablank
Acontrol − Ablank

× 100%

The biomass was determined using the crystal violet staining assay [61]. Adherent
cells were air-dried for 45 min, stained with 100 µL of 0.5% crystal violet solution for 15 min,
washed with D-PBS to remove excess crystal violet, and then added to 100 µL of ethanol to
release the dyes from the cells. The absorbance at 570 nm was measured by a microplate
reader. The total biomass percentage was calculated as follows:

Total biomass (%) =
Atreatment − Ablank
Acontrol − Ablank

× 100%

3.5. Determination of CSH

To determine the CSH of adherent cells, a C. albicans cell suspension (1 × 107 CFU/mL in
RPMI 1640 medium) was added into a 6-well plate and treated with vehicle (RPMI
1640 medium), theasaponins (31.25 µg/mL), VC (80 mM), and theasaponins
(31.25 µg/mL) + VC (80 mM), respectively, for 90 min.

To determine the CSH of mature biofilm cells, a C. albicans cell suspension
(1 × 107 CFU/mL in RPMI 1640 medium) was added into a 6-well plate and incubated at
37 ◦C for 24 h. Then, the cells were treated with vehicle (RPMI 1640 medium), theasaponins
(31.25 µg/mL), VC (80 mM), and theasaponins (31.25 µg/mL) + VC (80 mM), respectively,
for 24 h.

After treatment, the cells were collected. Non-adherent cells were resuspended in the
cell culture medium, and the suspension was transferred into a centrifuge tube. A cell
scraper was used to scrape the adherent cells from the bottom of the well. The cells were
suspended in the cell culture medium and transferred into the previous centrifuge tube.
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The merged cell suspension was centrifuged at 3000× g for 5 min, washed using D-PBS
triple, and the suspension was diluted to an OD600 of 1.0. Then, 1.2 mL of cell suspension
was mixed with 0.3 mL of n-octane, vortexed for 3 min, and kept still for 30 min. The optical
density of the aqueous layer at 600 nm was measured using a microplate reader (Synergy
H1, BioTek Instruments, Inc., Winooski, VT, USA). The CSH% was calculated as follows:

CSH (%) =
ODcontrol − ODtreatment

ODcontrol
× 100%

where the ODcontrol represents the OD600 value of the cell suspension without the addition
of n-octane.

3.6. Determination of Extracellular Phospholipase Activity

To determine the extracellular phospholipase activity of the adherent cells, a C. al-
bicans cell suspension (1 × 105 CFU/mL in RPMI 1640 medium) was mixed with vehi-
cle (RPMI 1640 medium), theasaponins (31.25 µg/mL), VC (80 mM), and theasaponins
(31.25 µg/mL) + VC (80 mM), respectively.

To determine the extracellular phospholipase activity of the mature biofilm cells, a C.
albicans cell suspension (1 × 105 CFU/mL in RPMI 1640 medium) was incubated at 37 ◦C
for 24 h and then mixed with vehicle (RPMI 1640 medium), theasaponins (31.25 µg/mL),
VC (80 mM), and theasaponins (31.25 µg/mL) + VC (80 mM), respectively.

One microliter of the cell suspension mixture was evenly distributed onto egg yolk
emulsion agar and incubated at 37 ◦C for 4 days. The presence of sedimentation circles
around the colonies indicated the production of phospholipase by the C. albicans strain. The
diameter of the colony (d1) and the diameter of the precipitation zone (d2) were measured.
The extracellular phospholipase activity was calculated as the ratio of d1/d2 and expressed
as the Pz value. A higher Pz indicates a lower extracellular phospholipase activity. In
detail, Pz = 1 indicates no activity, 0.90 < Pz ≤ 0.99 indicates extremely low activity,
0.80 < Pz ≤ 0.89 indicates low activity, 0.70 < Pz ≤ 0.79 indicates high activity, and
Pz ≤ 0.69 indicates extremely high activity.

3.7. Determination of Intracellular ROS, MMP, and ATP Levels

A C. albicans cell suspension (1 × 107 CFU/mL) was treated with vehicle, theasaponins
(31.25 µg/mL), VC (80 mM), and theasaponins (31.25 µg/mL) + VC (80 mM), respectively,
at 30 ◦C for 2 h and washed twice with PBS before tests. The intracellular ROS, MMP, and
ATP levels were measured using corresponding commercial kits (Product Nos. S0033S,
C2006, and S0026, Beyotime Biotech, Shanghai, China), respectively, according to the manu-
facturer’s instructions. The viability of the cells was measured using a cell counting kit-8
(Product No. C0037, Beyotime Biotech, Shanghai, China). The ROS level is presented as a
percentage compared to the control group. The MMP level is expressed as the fluorescence
intensity ratio of JC-1 monomer to aggregate.

3.8. Transcriptome Analysis

A C. albicans cell suspension (1 × 107 CFU/mL) was treated with vehicle, theasaponins
(31.25 µg/mL), VC (80 mM), and theasaponins (31.25 µg/mL) + VC (80 mM), respectively,
at 30 ◦C for 2 h and washed twice with PBS.

Total RNA was extracted using a yeast RNA extraction kit (Aidlab Biotech, Beijing,
China). The concentration and quality of the RNA were monitored. The cDNA libraries
were constructed with an Illumina NovaSeq 6000 platform (Personalbio Technology, Shang-
hai, China) with paired-end reads. The clean reads were mapped to the C. albicans SC5314
genome sequence with HISAT2. DEGs between groups were screened out using the DESeq2
software (v 1.40.1), with |log2 fold change| > 1 and p-value < 0.05 as the criteria. Func-
tional annotation was conducted based on the KEGG (http://www.genome.ad.jp/kegg/,
accessed on 14 December 2023) databases.

http://www.genome.ad.jp/kegg/
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3.9. Statistical Analysis

All the data are presented as mean ± standard deviation from at least three indepen-
dent experiments. Statistical analysis was conducted with one-way ANOVA using SPSS
(Version 22.0) to determine significant differences (p < 0.05, p < 0.01). GraphPad Prism
(v9.4.1) was used to process the data and generate the figures.

4. Conclusions

VC not only sensitized the susceptibility of planktonic C. albicans to theasaponins,
but also inhibited the adhesion, early biofilm formation, and mature biofilm of C. albicans.
In addition, VC cooperated with theasaponins to attenuate the virulence of C. albicans by
reducing the CSH and phospholipase activity. The combination significantly suppressed
the transcription of genes encoding the enzymes involved in glycolysis and impaired
mitochondrial function, both of which led to energy metabolism decline, with the decrease
in intracellular ATP as a hallmark. Energy deficiency could further disrupt multiple
fundamental biological processes, leading to cell damage and even death. The combination
also elevated the intracellular ROS level, which was presumedly associated with the
reduced glutathione metabolism. It should be mentioned that the VC concentration of the
current combination is high, which limits the intravenous use. Novel drug delivery systems
may be applied to solve the problem. Taken together, our findings demonstrated the
enhancement of the anti-C. albicans activity of theasaponins by VC, providing evidence for
the use of the theasaponins–VC combination as a topical antifungal therapy or disinfectant.
More studies are needed to determine the detailed underlying molecular mechanisms.
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