~ International Journal of

7
Molecular Sciences ml\D\Py

Article

Modulation of the Oncogenic LINE-1 Regulatory Network in

Non-Small Cell

Abeer A. I. Hassanin 1'2(2 an

check for
updates

Citation: Hassanin, A.A.I.; Ramos,
K.S. Modulation of the Oncogenic
LINE-1 Regulatory Network in
Non-Small Cell Lung Cancer by
Exosomal miRNAs. Int. J. Mol. Sci.
2024, 25,10674. https://
doi.org/10.3390/ijms251910674

Academic Editor: Ida Daniela

Perrotta

Received: 14 September 2024
Revised: 26 September 2024
Accepted: 1 October 2024
Published: 3 October 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Lung Cancer by Exosomal miRNAs

d Kenneth S. Ramos 1'*

Center for Genomic and Precision Medicine, Texas Medical Center, Texas A&M Institute of Biosciences and
Technology, Houston, TX 77030, USA; ahassanin@tamu.edu

Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University,
Ismailia 41522, Egypt

Correspondence: kramos@tamu.edu

Abstract: Several microRNAs (miRNAs), including miR-221-5p, Let-7b-5p, miR-21-5p, miR-9-5p,
miR-126-3p, and miR-222-3p, were recently found to be enriched in circulating exosomes of patients
with non-small cell lung cancers (NSCLCs). These miRNAs distinguished cancer cases from controls
with high precision and were predicted to modulate the expression of genes within the oncogenic
LINE-1 regulatory network. To test this hypothesis, plasma exosomes from controls, early, and
late-stage NSCLC patients were co-cultured with non-tumorigenic lung epithelial cells for 72 h and
processed for measurements of gene expression. Exosomes from late-stage NSCLC patients markedly
increased the mRNA levels of LINE-1 ORF1 and ORF2, as well as the levels of target miRNAs in
naive recipient cells compared to saline or control exosomes. Late-stage exosomes also modulated
the expression of oncogenic targets within the LINE-1 regulatory network, namely, ICAM1, AGL,
RGS3, RGS13, VCAM1, and TGFf1. In sharp contrast, exosomes from controls or early-stage NSCLC
patients inhibited LINE-1 expression, along with many of the genetic targets within the LINE-1
regulatory network. Thus, late-stage NSCLC exosomes activate LINE-1 and miRNA-regulated
oncogenic signaling in non-tumorigenic, recipient lung bronchial epithelial cells. These findings raise
important questions regarding lung cancer progression and metastasis and open the door for the
exploration of new therapeutic interventions.

Keywords: plasma exosomes; LINE-1; microRNA profiles; oncogenic signaling; non-small cell
lung cancer

1. Introduction

Lung cancer continues to be the primary cause of cancer-related mortality in the
United States, accounting for approximately 1.8 million deaths in 2022 [1]. Non-small cell
lung cancers (NSCLCs) account for more than 85% of all lung cancer cases and are classified
by histological subtype into squamous cell lung cancers (SQCLCs), lung adenocarcinomas
(LUADs), adeno-squamous carcinomas, and large cell carcinomas [2—4]. Metastasis is a
significant contributor to mortality in patients with lung cancer, where exosomes and their
cargos, together with microenvironmental influences, play crucial roles in facilitating tumor
migration and invasion [5,6]. Recent evidence indicates that exosomes transport physio-
logically active components to distant sites and organs, therefore guiding metastasis by
creating metastatic pre-niches and promoting tumor development [7,8]. Cancer cells release
considerably larger numbers of exosomes than normal cells, with tumor-derived exosomes
transferring their RNA, miRNA, and protein cargos to recipient cells to modulate cellular
functions [6,9-11]. MicroRNAs are regarded as the most biologically active molecules due
to their gene regulatory functions [12].

MicroRNAs are small noncoding RNAs ranging in length from 17 to 24 nucleotides
that mediate post-transcriptional gene silencing by binding to the 3’ end of the target
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mRNA untranslated region (UTR) or to the open reading frame (ORF) region [13]. The
roles of miRNAs in cell proliferation, differentiation, migration, disease initiation, and
progression are among the most extensively studied biological processes. MicroRNAs
are frequently integrated into exosomes as signaling elements that play crucial functions
in regulatory control [14,15]. Numerous cancers including lung cancer have been linked
to altered profiles of miRNA expression, and exosomal miRNAs have been proposed as
noninvasive biomarkers for cancer diagnosis [16]. Due to their role in carcinogenesis, cancer
prognosis, and response to treatment, exosome-derived miRNAs may be more suitable
than mRNAs or proteins as cancer biomarkers [7].

A close link between LINE-1 and miRNAs was established in studies that identi-
fied miRNAs that share sequence homology with retrotransposons [17], or that contain
retrotransposon-related hairpin sequences [18]. Several human miRNAs originate from
LINE-1, Alu, or MIR elements [19], and 85% of all known miRNA target sites within the
genome overlap with LINE-1 and Alu elements [18]. However, little is known about how
LINE-1 interacts with functional noncoding RNAs in NSCLC. Therefore, the main aim of
the present study was to explore genetic interactions between genes within the LINE-1
regulatory network and eight exosomal miRNAs in lung cancer patients. We also examined
the impact of these functional interactions in modulating oncogenic signaling pathways
in naive recipient lung epithelial cells. Evidence is presented here that late-stage NSCLC
exosomes activate miRNA-regulated oncogenic signaling in non-tumorigenic, recipient
lung bronchial epithelial cells.

2. Results
2.1. Exosome Characterization

Concentrations and diameters of exosomes for each group are displayed in
Supplementary Figure S1(A1-A3). The exosomal identity of all preparations was con-
firmed by Western blotting detection of exosome protein markers including Alix, Flotillin-1,
and CD-9 (Supplementary Figure S1B).

2.2. Predicted Interactions between Genes within the LINE-1 Regulatory Network and
Exosomal miRNAs

The miRNet2.0 database identified nine genes within the LINE-1 regulatory network
as validated targets of exosomal miRNAs. These targets included Intercellular Adhesion
Molecule 1 ICAM1) (Figure 1A(A-1)), Amylo-1,6-glucosidase (AGL) (Figure 1B(B-1)), Pro-
tein kinase inhibitor alpha (PKIA) (Figure 1C(C-1)), RNA binding motif protein 39 (RBM39)
(Figure 1D(D-1)), Regulators of G-protein signaling 3 (RGS3) (Figure 1E(E-1)), Regulators
of G-protein signaling 13 (RGS13) (Figure 1F(F-1)), Vesicle-associated membrane protein 3
(VAMP3) (Figure 1G(G-1)), Vascular cell adhesion moleculel (VCAM1) (Figure 1H(H-1)),
and transforming growth factor-B1 (TGF31) (Figure 1I(I-1)). Pearson correlations for miR-
NAs and these genetic targets showed that ICAM1 positively correlated with miR-21-5p,
miR-221-3p, miR-146-5p, and miR-222-3p (Figure 1A(A-2,A-3)) and that AGL positively
correlated with Let-7b-5p (Figure 1B(B-2,B-3)). PKIA inversely correlated with miR-210-3p
(Figure 1C(C-2,C-3)) and RBM39 inversely correlated with miR-221-3p (Figure 1D(D-2,D-3)).
Both RGS3 (Figure 1E(E-2,E-3)) and VCAM1 (Figure 1H(H-2,H-3)) positively correlated with
miR-126-3p, RGS13 positively correlated with mir-146a-5p (Figure 1F(F-2,F-3)), VAMP3
positively correlated with Let-7b-5p miRNA (Figure 1G(G-2,G-3)) and TGF{1 positively
correlated with miR-21-5p and mir-146a-5p (Figure 1I(I-2,1-3)). Thus, functional interactions
may exist between exosomal miRNAs and genes within the LINE-1 genetic regulatory
network that influence oncogenic signaling in NSCLC.
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Figure 1. (A-1-1-1) Predicted genes within the LINE-1 regulatory network identified as validated
targets of plasma exosomal miRNAs and their correlation scatter plots. (A-1) ICAM1 was a validated
target for miR-21-5p, miR-146a-5p, miR-221-3p, and miR-222-3p ; (B-1) AGL was a validated target
for let-7b-5p; (C-1) PKIA was a validated target for miR-210-3p ; (D-1) RBM39 was a validated target
for miR-221-3p; (E-1) RGS3 was a validated target for miR-126-3p ; (F-1) RGS13 was a validated target
for miR-146a-5p; (G-1) VAMP3 was a validated target for Let-7b-5p; (H-1) VCAM1was a validated
factor for miR-126-3p; (I-1) TGF31 was a validated target for miR-21-5p and miR-146a-5p. Orange
circles identify LINE-1 network genes, orange stars identify exosomal miRs, and blue squares identify
regulatory miRNAs. (A-2-1-2) Scatter plots with Pearson correlation coefficients for the selected
miRNAs and their predicted target genes (two-tailed test of significance (0.05 level). (A-3-1-3) Tables
summarizing Pearson correlation coefficients of miRNAs and their predicted target genes.

2.3. miRNA-Regulated Oncogenic Signaling in Human Lung Bronchial Epithelial Cells

To determine if predicted relationships between exosomal miRNAs and genes within
the LINE-1 regulatory network translated into relevant functional interactions, plasma exo-
somes from OH subjects or early- and late-stage NSCLC patients matched for demographic
characteristics were co-cultured with the non-tumorigenic BEAS-2B lung bronchial epithe-
lial cell line for 72 h. BEAS-2B cells co-cultured with L-CAN exosomes exhibited high levels
of LINE-1 ORF1 (Figure 2A(A-1)) and ORF2 mRNAs (Figure 2A(A-2)), as well as increased
levels of exosomal miRNAs compared to PBS-treated cells, or exosomes from OH con-
trols. The levels of ICAM1 (Figure 2B(B-1)), AGL (Figure 2C(C-1)), RGS3 (Figure 2F(F-1)),
RGS13 (Figure 2G(G-1)), VCAM1 (Figure 2I(I-1)) and TGFp1 (Figure 2J(J-1)) mRNAs were
significantly upregulated in recipient cells. In contrast, PKIA (Figure 2D(D-1)), RPM39
(Figure 2E(E-1)), and VAMP3 (Figure 2H(H-1)) were either unchanged or slightly dimin-
ished following treatment with L-CAN exosomes. In sharp contrast, exosomes from OH
controls and E-CAN markedly inhibited LINE-1 mRNAs and the relative expression of
all genes within the LINE-1 genetic regulatory network (Figure 3A-]). Collectively, these
data show that the miRNA cargo of exosomes impacts regulatory control of the LINE-1
machinery in human bronchial epithelial cells, with late-stage NSCLC derived exosomes
activating miRNA-regulated oncogenic signaling in naive recipient cells.
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Figure 2. mRNA levels of LINE-1 and genes within its regulatory network along with their correlated
miRNAs molecules in naive BEAS-2B cells co-cultured with late-stage NSCLC plasma exosomes.
(A) Expression of LINE-1 ORF1 (A-1) and ORF2 mRNAs (A-2). (B) Expression of ICAM1 mRNA (B-1)
and four positively correlated miRNAs molecules (miR-21-5p, miR-221-3p, miR-146a-5p, and miR-
222-3p) (B-2). (C) Expression of AGL (C-1) and Let-7b-5p (C-2). (D) Inverse correlation between PKIA
mRNA (D-1) and miR-210-3p (D-2). (E) RBM39 gene (E-1) and miR-221-3p (E-2). (F) Expression of
RGS3 (F-1) and miR-126-3p (F-2). (G) Expression of RGS13 (G-1) and miR-146a-5p (G-2). (H) Negative
correlation between VAMP3 (H-1) and Let-7b-5p (H-2). (I) VCAM1 gene expression (I-1) and miR-
126-3p (I-2). (J) TGFp1 expression (J-1) and miR-21-5p and miR-146a-5p (J-2). PBS: BEAS-2B cells
co-cultured with PBS for 72h, OH: BEAS-2B cells co-cultured with plasma exosomes from ostensibly
healthy individuals for 72h, L-CAN: BEAS-2B cell co-cultured with plasma exosomes from late-stage
NSCLC patients for 72h. n = 3 independent experiments and six replicates per sample. * p < 0.05,
** p < 0.005, *** p < 0.001, *** p < 0.0001.
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Figure 3. mRNA levels of LINE-1 and genes within its regulatory network along with their correlated
miRNAs molecules in naive BEAS-2B cell co-cultured with early-stage NSCLC plasma exosomes.
(A) Expression of both LINE-1 ORF1 (A-1) and ORF2 mRNAs (A-2). (B) Expression of ICAM1 mRNA
(B-1) and four positively correlated miRNAs molecules (miR-21-5p, miR-221-3p, miR-146a-5p, and
miR-222-3p) (B-2). (C) Expression of AGL (C-1) and Let-7b-5p (C-2). (D) Downregulated expression
of the PKIA gene (D-1) and activation by miR-210-3p (D-2). (E) Expression of RBM39 gene (E-1) and
miR-221-3p miRNA (E-2). (F) Expression of RGS3 (F-1) and miR-126-3p (F-2). (G) Expression of
RGS13 (G-1) and miR-146a-5p (G-2). (H) Expression of VAMP3 (H-1) and Let-7b miRNA (H-2).
(I) Expression of VCAMI (I-1) and miR-126-3p miRNA (I-2). (J) TGF31 expression (J-1) and miRNAs
miR-21-5p and miR-146a-5p (J-2). PBS: BEAS-2B cells co-cultured with PBS for 72h to measure basal
gene expression, OH: BEAS-2B cells co-cultured with plasma exosomes from ostensibly healthy
individuals for 72 h, E-CAN: BEAS-2B cells co-cultured with plasma exosomes from early-stage
NSCLC patients for 72 h. n = 3 independent experiments and six replicates per sample. * p < 0.05,
** p <0.005, *** p < 0.001, **** p < 0.0001.

3. Discussion

miRNAs have gained considerable attention among the various exosome cargos due to
their involvement in signaling pathways that contribute to NSCLC proliferation, invasion,
and metastatic progression [20-22]. This is best exemplified by a recent demonstration
that the release of exosome-derived miRNAs to local and distant areas is involved in the
formation of tumor niches during metastasis [7]. Therefore, crucial steps toward future
development of clinically relevant interventions for the treatment of NSCLC should focus
on the identification of exosomal miRNAs and their roles in oncogenesis. In previous
studies we identified a panel of eight exosomal miRNAs in plasma-derived exosomes from
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patients with NSCLC [23]. In the present study, we extend these findings to investigate
the impact of NSCLC-associated miRNAs on oncogenic signaling in naive lung bronchial
epithelial cells, with a focus on genes within the LINE-1 regulatory network identified as
putative targets including, ICAM-1, AGL, VCAM1, VAMP3, RBM39, PKIA, and RGS.

Biological discretization of the LINE-1 genetic regulatory network identified adhesion,
inflammation, and cellular metabolism as key processes leading to disruption of epithelial-
to-mesenchymal (EMT) programming [24,25]. One of the most significant findings of the
present study was the functional linkage between ICAM-1 and miR-21-5p, miR-146a-5p,
miR-221-3p, and miR-222-3p. ICAMI is an immunoglobulin implicated in metastasis
via homophilic interactions that enhance circulating tumor cell cluster formation and
tumor-endothelial cell adhesion and migration [26]. Exosome-derived miR-21 upregulates
VEGF and promotes malignant transformation of human bronchial epithelium [27]. miR-
21 also stimulates Toll-like receptors TLR7 and TLR8 in immune cells to promote tumor
growth and metastasis [28]. Another exosomal miRNA, miR-146a-5p, has been linked to
NSCLC cell survival and migration by directly inhibiting the inhibitory functions of TRAF6
on cancer cell proliferation, migration, and resistance to apoptosis [29]. miR-221/222
regulate apoptosis and NSCLC tumorigenesis by targeting apoptotic peptidase activating
factor 1 [30]. Furthermore, miR-221/222 interact with the tumor suppressors PTEN and
TIMP3 to regulate TNF-regulated apoptosis, inflammation, and tumorigenesis. Thus,
multiple microRNAs present in the exosomes of NSCLC patients regulate key inflammatory,
proliferative, and apoptotic pathways through modulation of ICAM-1 function.

AGL was identified as a target of let-7b-5p, with loss of AGL expression associated
with FAK activation and acquisition of anchorage-independent growth of NSCLC cells [31].
Higher levels of Let-7b-5p were observed in late-stage patients compared to early stages,
suggesting that this miRNA may serve as a biomarker of disease progression. miR-210-3p
levels inversely correlated with the expression of PKIA, a protein implicated in G-protein
coupled Gs-cAMP signaling and deregulation of tumor growth [32]. miR-210-3p regulates
STATS3 signaling in lung cancer to mediate EMT and metastasis [33]. Interestingly, the
RBM39 gene was negatively correlated with miR-221-3p, with low levels of endogenous
RBM39 associated with marked increases in cell proliferation and migration [34]. miR-126
exerts dual regulatory effects on angiogenesis, with either positive or negative regulation
of endothelial progenitor cells and angiogenesis as a function of cell type and strand-
specific functions [35,36]. RGS3 inhibits the activity of miR-126-3p [37] and neutralizes the
antiproliferative effects of TGF-f3 in cancer cells [38].

Let-7b-5p targets VAMP3, while miR-126-3p targets VCAM1. VAMP3 is involved in
the regulation of integrins and cellular trafficking and migration [39-41]. Of interest is the
role of VAMP3 in delivery of microvesicular cargos through interactions with tetraspanin
CD9 and regulation of MT1-MMP distribution in microvesicles [42]. The CEBPD transcrip-
tion factor enhances cancer resistance through VAMP3-mediated autophagy activation,
increasing PD-L1 levels and suppressing CD8+ T-cell-mediated immune response [43].
A crucial member of the immunoglobulin superfamily, VCAMI triggers EMT and pro-
motes adherence to the endothelium and formation of pseudopodia and invadopodia [44].
TGFf1 has been identified as a confirmed target of both miR-21-5p and miR-146a-5p [45],
with overexpression of oncogenic miR-21 in NSCLC cells involving decreased TGF31 and
aberrant cell proliferation [46].

Human cells direct the loading of exosomes to selectively sort molecules into popu-
lations of varying molecular enrichment [47]. These exosomes, in turn, can transfer their
contents to recipient cells to modulate their function [37,48], as shown previously with
exosomal miR-146a, which mediates target gene repression and reprogramming of the
cellular response to endotoxin after being taken up by recipient dendritic cells [49]. Also,
exosomal miR-21 regulates the invasion and metastasis of tumors by targeting multiple
tumor /metastasis suppressor genes in recipient cells [50], while miR-221/222 promotes
angiogenesis in recipient endothelial cells by downregulating c-KIT, p27, and TIMP3 [51,52].
The selective loading of exosomes and transfer of exosomal contents is consistent with our
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observation that L-CAN exosomes activated genes within the oncogenic LINE-1 regulatory
network in recipient cells, while E-CAN and control OH exosomes elicited a marked LINE-1
inhibitory response. Thus, exosomal loading and transfer likely play significant roles in
NSCLC and provide new venues for therapeutic intervention, especially during the later
stages of malignancy. Our findings are consistent with previous work establishing the
involvement of exosomal miRNAs in angiogenesis and carcinogenesis of the lung [27,53,54].

4. Material and Methods
4.1. Identification of miRNA-Regulated Targets within the LINE-1 Genetic Regulatory Network

Putative targeting of genes within the LINE-1 regulatory network by exosomal miR-
NAs was evaluated using the miRNet 2.0 web-based platform [55]. Pearson correlations
between miRNAs and their genetic targets in tumor and normal tissues of TCGA projects
were retrieved from the CancerMIRNome online database of miRNome profiles of human
cancer (http:/ /bioinfo.jialab-ucr.org/CancerMIRNome/ accessed on 5 September 2023).

4.2. Exosome Isolation and Characterization

Plasma samples from ostensibly healthy (OH) individuals, early-stage NSCLC (E-CAN),
and late-stage NSCLC (L-CAN) patients with similar demographic characteristics were
acquired from Precision for Medicine (Norton, MA, USA). The commercial provider ob-
tained all necessary consents prior to the collection, de-identification, and distribution
of the samples. Exosomes were isolated using the exoEasy Maxi Kit (Qiagen, MD, USA;
catalog number: 76064). Briefly, plasma samples were centrifuged at 16,000 x g for 10 min
to exclude remaining cells, debris, apoptotic bodies, and nuclei, and the resulting super-
natant was collected for extraction of exosomes. Physical characterization of exosomes was
conducted using the Nanosight instrument (NTA), followed by Western blotting to identify
exosomal protein markers (Alix, Flotillin-1, and CD-9).

4.3. Cell Culture

The non-tumorigenic human bronchial epithelial cell line BEAS-2B was purchased
from ATCC (Manassas, VA, USA) and cultured in LHC-9 Medium (1 x) (ThermoFisher
Scientific, Waltham, MA, USA). Cells were seeded on 6-well plates and maintained in
culture media containing 10% fetal bovine serum, 100 units/mL penicillin, and 100 pg/mL
streptomycin. Cultures were maintained at 37 °C in a 5% CO, and 95% air environment and
used after reaching confluence. All cell line batches used in the study were confirmed to
be mycoplasma-free using the MycoAlert Mycoplasma Detection Kit (Lonza, Walkersville,
MD, USA, Catalog: LT07-318).

4.4. Co-Culture Experiments

Plasma exosomes from OH controls, E-CAN, or L-CAN were added to BEAS-2B
cultures for 72 h at an estimated ratio of 20:1. Sterile phosphate-buffer saline (PBS) was
used as a vehicle control.

4.5. RNA Isolation, cDNA Synthesis and Realtime-PCR

Total RNA was extracted using the TRIzol Reagent (ThermoFisher Scientific, Waltham,
MA, USA) following standard procedures. Total RNA was rinsed with 1 mL of precooled
70% ethanol, centrifuged at 12,000 x g for 5 min at 4 °C, and dissolved in DEPC-treated
water. The Reverse Transcription System (Promega, Madison, WI, USA) was used for
cDNA synthesis. Briefly, the samples were incubated at 42 °C for 15 min. followed by
heating at 95 °C for 5 min, and incubation at 4 °C for 5 min. Real-time PCR was performed
for LINE-1 ORF1 and ORF2 mRNAs, as well as target genes within the LINE-1 regulatory
network (ICAM1, AGL, PKIA, RBM39, RGS3, RGS13, VAMP3, VCAM]1, and TGFf1). We
also measured the cellular levels of miR-21-5p, miR-126-3p, miR-210-3p, miR-221-3p, Let-
7b-5p, miR-146a-5p, and miR-222-3p using CFX96 Touch Real-Time PCR Detection System
(Biorad, Hercules, CA, USA). The PCR conditions for ICAM1, AGL, PKIA, RBM39, VAMP3,
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and VCAM]I, along with all the examined miRNAs, were as follows: 95 °C for 10 min,
followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min. The PCR conditions for RGS3
and RGS13 also included an initial denaturation of 6 min at 94 °C followed by amplification
for 40 cycles, denaturation at 94 °C for 1 min, annealing at 52 °C for 1 min, and extension
at 72 °C for 1.5 min. For TGFf31, the PCR conditions included an initial denaturation at
94 °C for 2 min followed by 34 cycles of denaturation at 94 °C for 15 s, annealing at 58
°C for 30 s, elongation at 72 °C for 1 min, and a final elongation at 72 °C for 7 min. Each
reaction was carried out three times and the calculation of fold changes performed using
the 244¢t technique, where Ct is the threshold cycle.

4.6. Statistical Analyses

Statistical analyses were performed using GraphPad Prism, version 9.5.0 (GraphPad
Software, San Diego, CA, USA). The ANOVA and Tukey’s HSD test were employed
to evaluate differences among groups. A significance threshold of p < 0.05 established
statistical significance and p < 0.01 high statistical significance.

5. Conclusions

Collectively, our findings add to the current knowledge base by showing that late-stage
NSCLC exosomes transfer their miRNA cargos to naive lung bronchial epithelial cells where
they hijack the cellular machinery to disrupt control of key cellular functions and alter genes
within the oncogenic LINE-1 regulatory network. Thus, cancer-derived exosomal miRNAs
may contribute to the progression of NSCLC and play important roles during the later stages of
malignant progression. Functional assays to assess the phenotypic and signaling consequences
of miRNA-mediated modulation of LINE-1 and its oncogenic targets will be needed to define
the cellular consequences of exosomal transfer. These experiments can provide mechanistic
insights into how exosomal miRNAs influence NSCLC progression and metastasis.

Supplementary Materials: The following supporting information can be downloaded at: https:
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