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Abstract: Kidney dysfunction leads to the retention of metabolites within the blood that are not
effectively cleared with conventional hemodialysis. Magnetic nanoparticle (MNP)-based absorbents
have inherent properties that make them amenable to capturing toxins in the blood, notably a
large surface area that can be chemically modified to enhance toxin capture and the ability to be
easily collected from the blood using an external magnetic field. Cyclodextrins (CDs) present a
chemical structure that facilitates the binding of small molecules. However, the hemocompatibility of
MNPs modified with films composed of different native types of CDs (α, β, or γ) has not yet been
investigated, which is information crucial to the potential clinical application of MNPs to supplement
hemodialysis. To this end, films of α-, β-, or γ-CDs were formed on MNPs and characterized. The
impact of these films on the adsorbed protein structure, composition of key adsorbed proteins, and
clotting kinetics were evaluated. It was found that modified MNPs did not significantly affect the
secondary structure of some proteins (albumin, lysozyme, α-lactalbumin). The adsorbed proteome
from platelet-poor human plasma was evaluated as a function of film properties. Compared to
non-modified nanoparticles, CD-modified MNPs exhibited a significant decrease in the adsorbed
protein per surface area of MNPs. The immunoblot results showed variations in the adsorption
levels of C3, fibrinogen, antithrombin, Factor XI, and plasminogen across CD-modified MNPs. The
hemocompatibility experiments showed that CD-modified MNPs are compatible with human whole
blood, with no significant impact on platelet activation, hemolysis, or hemostasis.

Keywords: chronic kidney disease; uremic toxin; adsorbent; cyclodextrin; magnetic nanoparticle;
protein adsorption; hemocompatibility

1. Introduction

Kidney disease is a global health issue that impacts more than 800 million people
worldwide and contributes to global mortality, with a significant rise in associated fatal-
ities over the last two decades [1]. A progressive and irreversible deterioration in kid-
ney function leads to the build-up of metabolites—including biologically active uremic
toxins—in the blood. Uremic toxicity, the result of accumulated uremic toxins, con-
tributes to increased mortality and reduced quality of life in those with chronic kidney
disease via damage to several organ systems [2]. Conventional, membrane-based
hemodialysis targets the removal of low molecular weight compounds, including some
uremic toxins, but is inefficient in eliminating those strongly bound by proteins. These
protein-bound uremic toxins significantly contribute to the pathophysiology of kidney
disease and other co-morbidities [1,3]. Adsorbent surfaces are thought to be a means
to clear uremic toxins from the blood, which may also lead to wearable devices that
potentially improve patient quality of life and treatment efficacy [4,5].
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Cyclodextrins (CDs) have a hydrophilic outer surface and a relatively hydrophobic
inner pocket that facilitates the binding of a diverse range of compounds. The differ-
ence in cavity volumes between the three native types of CDs (α-CD, 174 Å3; β-CD,
262 Å3; γ-CD, 427 Å3) may affect both the binding capacity and profile of adsorbed
uremic toxins, and the hemocompatibility of the materials [6–8]. Additionally, some
CDs have been shown not to trigger an immune response on their own [9]. Magnetic
nanoparticles (MNPs) are widely used in biomedical applications due to their rela-
tively good biocompatibility, maneuverability induced by external magnetic fields,
and ease of surface modification [10]. MNPs coated with β-CD (β-MNPs) were used
as absorbents for removing diazepam from blood [11]. MNP recovery was accom-
plished using an external magnetic field, while the β-CD film improved the overall
biocompatibility and hemocompatibility [11]. Studies have demonstrated that β-MNPs
do not exhibit any significant toxicity at the cellular level [12]. In addition to whole
blood component interactions, understanding how CD-modified MNPs interact with
blood proteins is crucial, as nanoparticles can induce conformational changes in pro-
tein structures, exposing occult epitopes and potentially triggering biological signals.
Moreover, non-specific protein adsorption at the blood–material interface can initiate
deleterious host responses, including activating the immune response and coagulation
cascade [13]. The formation of blood clots involves a complex series of interconnected
events, including the absorption of proteins, the enzymatic conversion of proteins for
coagulation and complement system activation, and the adhesion and activation of
platelets [13–16]. The effect that CD-modified MNPs have on overall protein–surface
interactions, enzymatic action leading to the activation of coagulation and complement
cascades, and platelet activation has yet to be delineated.

Applying CD-modified MNPs for the adsorption of uremic toxins in the blood
necessitates an understanding of the effect their physicochemical properties may have
on blood cells and hemostasis. To this end, CD films were formed on MNPs (Fe3O4)
via co-precipitation and characterized using thermogravimetric analysis (TGA), trans-
mission electron microscopy (TEM), dynamic light scattering (DLS), and surface zeta
potential measurements. The adsorbed protein secondary structure as a function of
the CD type was assessed using circular dichroism for human serum albumin (HSA),
α-lactalbumin, and lysozyme (Scheme 1), where HSA and α-lactalbumin have a similar
charge but differ in size to provide insights into size-related effects. Also, lysozyme
and α-lactalbumin have a similar size but different charge [17]. Additionally, the
adsorption-induced changes in HSA structure was studied by monitoring the changes
in tryptophan fluorescence in the presence of MNPs [18]. The total adsorbed amount
of plasma proteins and adsorbed proteins to MNPs from platelet-poor plasma were
evaluated using the BCA assay and immunoblots. To evaluate platelet function and
the general hemocompatibility of all MNP systems, MNPs were incubated with whole
blood and platelet activation and responsiveness (flow cytometry), clot formation
(rotational thromoboelastometry), hemolysis (spectrophotometry), and complete blood
counts were determined as a function of coating type. Through a deeper understand-
ing of the interaction between plasma proteins, blood cells, and MNPs coated with
α-, β-, and γ-CD, it is possible to evaluate their hemocompatibility and potential for
adsorbing toxins from the blood.
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Scheme 1. A schematic representation of the study. MNPs were functionalized with different types 
of CDs, including α-, β-, and γ-CD. A range of characterization techniques was employed, including 
TEM, DLS, TGA, and surface zeta potential measurements. Fluorescence spectroscopy and circular 
dichroism were utilized to study the interactions between proteins and the modified surfaces. The 
binding of human plasma proteins to CD-coated MNPs was evaluated, and hemocompatibility with 
human whole blood was assessed. 

2. Results and Discussion 
2.1. Magnetic Nanoparticle Properties 

In solution, MNPs are prone to aggregation, which has been previously shown to be 
influenced by size, charge, and morphology [19]. Using DLS, it was observed that bare, α-
, β-, and γ-MNPs decreased in diameter from ~301 nm (PI: ~23) to ~94 nm (PI: ~0.14), 99 
nm (PI: ~0.18), and 90 nm (PI: 0.19), respectively (Figure 1, Table 1). As observed previ-
ously, bare MNPs can form aggregates of 200–340 nm in diameter, and CD coatings inhibit 
MNP aggregation to form smaller more uniform clusters (ranging from ~94 to 170 nm in 
diameter) than bare MNPs [20,21]. It has previously been shown that coating MNPs with 
β-CD leads to the formation of smaller particles (dia. ~7.8 nm in diameter) compared to 
bare particles (~9.2 nm in diameter) [21]. Here, TEM micrographs showed a trend toward 
reduced particle sizes upon CD coating. In the case of bare particles, the grain size ranged 
from ~7 to ~15 nm. Conversely, CD-coated particles slightly shifted towards smaller grain 
sizes, ranging between ~6 and ~12 nm (Figure 1, Table 1). These findings support the pre-
viously observed role of CDs in augmenting particle properties for biomedical applica-
tions, which, in conjunction with citrate anions, reduce particle size and improve the uni-
formity of particles [21]. 

Table 1. Summary of size and zeta potential measurements. DLS and zeta potential measurements, 
n = 3. TEM data represent n = 100. 

MNP Type Cluster Size via DLS (nm) 
Polydispersity Index 

(PI) Particle Diameter via TEM (nm) 
Zeta Potential 

(mV) 
Bare 301 ± 23 0.65 ± 0.22 11.36 ± 2.30 5.0 ± 0.2 a 
α-MNP 94.4 ± 0.7 0.14 ± 0.02 8.69 ± 1.81 −24 ± 1.9 b 
β-MNP 99.2 ± 0.7 0.18 ± 0.03 8.50 ± 1.51 −22 ± 0.6 c 
γ-MNP 90.1 ± 0.1 0.19 ± 0.01 7.69 ± 1.37 −22 ± 0.5 d 

a is statistically different from b, c, and d as analyzed via one-way ANOVA (p < 0.001). Data represent 
mean ± 1 SD, n ≥ 3. 

Scheme 1. A schematic representation of the study. MNPs were functionalized with different types
of CDs, including α-, β-, and γ-CD. A range of characterization techniques was employed, including
TEM, DLS, TGA, and surface zeta potential measurements. Fluorescence spectroscopy and circular
dichroism were utilized to study the interactions between proteins and the modified surfaces. The
binding of human plasma proteins to CD-coated MNPs was evaluated, and hemocompatibility with
human whole blood was assessed.

2. Results and Discussion
2.1. Magnetic Nanoparticle Properties

In solution, MNPs are prone to aggregation, which has been previously shown to
be influenced by size, charge, and morphology [19]. Using DLS, it was observed that
bare, α-, β-, and γ-MNPs decreased in diameter from ~301 nm (PI: ~23) to ~94 nm (PI:
~0.14), 99 nm (PI: ~0.18), and 90 nm (PI: 0.19), respectively (Figure 1, Table 1). As observed
previously, bare MNPs can form aggregates of 200–340 nm in diameter, and CD coatings
inhibit MNP aggregation to form smaller more uniform clusters (ranging from ~94 to
170 nm in diameter) than bare MNPs [20,21]. It has previously been shown that coating
MNPs with β-CD leads to the formation of smaller particles (dia. ~7.8 nm in diameter)
compared to bare particles (~9.2 nm in diameter) [21]. Here, TEM micrographs showed
a trend toward reduced particle sizes upon CD coating. In the case of bare particles, the
grain size ranged from ~7 to ~15 nm. Conversely, CD-coated particles slightly shifted
towards smaller grain sizes, ranging between ~6 and ~12 nm (Figure 1, Table 1). These
findings support the previously observed role of CDs in augmenting particle properties for
biomedical applications, which, in conjunction with citrate anions, reduce particle size and
improve the uniformity of particles [21].

Table 1. Summary of size and zeta potential measurements. DLS and zeta potential measurements,
n = 3. TEM data represent n = 100.

MNP Type Cluster Size via
DLS (nm)

Polydispersity
Index (PI)

Particle
Diameter via

TEM (nm)

Zeta Potential
(mV)

Bare 301 ± 23 0.65 ± 0.22 11.36 ± 2.30 5.0 ± 0.2 a

α-MNP 94.4 ± 0.7 0.14 ± 0.02 8.69 ± 1.81 −24 ± 1.9 b

β-MNP 99.2 ± 0.7 0.18 ± 0.03 8.50 ± 1.51 −22 ± 0.6 c

γ-MNP 90.1 ± 0.1 0.19 ± 0.01 7.69 ± 1.37 −22 ± 0.5 d

a is statistically different from b, c, and d as analyzed via one-way ANOVA (p < 0.001). Data represent mean ± 1 SD,
n ≥ 3.
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Figure 1. Representative MNP properties as characterized using TEM and DLS. (A) TEM micro-
graphs of bare and coated MNPs. (B) Histogram representing the distribution of individual particle 
sizes obtained from TEM micrographs (n = 100 particles). (C) The size distribution of magnetic par-
ticle clusters was determined using DLS measurements (average diameter, n = 3). 

The zeta potential for bare MNPs was 5 ± 0.2 mV, a value commonly associated with 
not being colloidally stable [20]. The modified MNPs had negative zeta potentials: α-
MNP, −24 ± 1.9 mV; β-MNP, −22 ± 0.6 mV; and γ-MNP, −22 ± 0.5 mV (Table 1). This trend 
towards significantly negative zeta potential values has been previously observed, where 
the zeta potential of bare MNPs measured −2.82 mV, while citrate-coated β-MNPs exhib-
ited a value of −33.8 mV [21]. Moreover, the modified MNP zeta potentials likely under-
score why these MNPs showed a lower degree of aggregation [22]. 

2.2. Film Hydration and Weight Loss 
The CD film was further characterized using TGA, where a mass reduction observed 

for temperatures: (i) less than 100 °C was attributed to the release of bulk water; (ii) be-
tween 100 and 200 °C from the loss of vicinal water; and (iii) between 200 and 380 °C from 
the cleavage of C−O and C−C bonds. All modified MNPs systems showed a greater total 

Figure 1. Representative MNP properties as characterized using TEM and DLS. (A) TEM micrographs
of bare and coated MNPs. (B) Histogram representing the distribution of individual particle sizes
obtained from TEM micrographs (n = 100 particles). (C) The size distribution of magnetic particle
clusters was determined using DLS measurements (average diameter, n = 3).

The zeta potential for bare MNPs was 5 ± 0.2 mV, a value commonly associated
with not being colloidally stable [20]. The modified MNPs had negative zeta potentials:
α-MNP, −24 ± 1.9 mV; β-MNP, −22 ± 0.6 mV; and γ-MNP, −22 ± 0.5 mV (Table 1). This
trend towards significantly negative zeta potential values has been previously observed,
where the zeta potential of bare MNPs measured −2.82 mV, while citrate-coated β-MNPs
exhibited a value of −33.8 mV [21]. Moreover, the modified MNP zeta potentials likely
underscore why these MNPs showed a lower degree of aggregation [22].

2.2. Film Hydration and Weight Loss

The CD film was further characterized using TGA, where a mass reduction observed
for temperatures: (i) less than 100 ◦C was attributed to the release of bulk water; (ii) between
100 and 200 ◦C from the loss of vicinal water; and (iii) between 200 and 380 ◦C from the
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cleavage of C−O and C−C bonds. All modified MNPs systems showed a greater total
mass loss than the bare control due to the thermal decomposition of the CD film: bare
(3.8 wt.%) < α-CD (6.9 wt.% total, 3.1 wt.% due to CD) < β-CD (7.5 wt.% total, 3.7 wt.% due
to CD) < γ-CD (11.2 wt.% total, 7.4 wt.% due to CD). This increasing trend corresponds to
the increased number of glucose subunits, with α having six, β having seven, and γ having
eight (Figure 2). CDs feature primary and secondary hydroxyl groups. These hydroxyl
groups have the capacity to form hydrogen bonds with water molecules and other polar
compounds. The hydrogen bonding capability increases from α- to γ-CDs due to the
rising number of hydrogen bond donors and acceptors. The hydrogen bonding capacity
is determined by the octanol/water partition coefficient (LogPO/W), where an increase
in the number of hydrogen bond donors and acceptors correlates with a more negative
LogP value. This trend has been observed in native CDs, with α-CD displaying a logP
value of −12.7, β-CD at −14.82, and γ-CD at −16.93 [23]. Additionally, water molecules
are present within the CD cavity, which can be displaced by hydrophobic guest molecules.
Consequently, the variation in hydration level could be linked to the difference in cavity
size, which also increases from α- to γ-CDs [24].
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Figure 2. Representative thermograms of bare and CD-modified MNPs. The mass loss of the bare
MNPs was 3.8 wt.%. In contrast, the α-, β-, and γ-MNPs had total mass losses of 6.9, 7.5, and
11.2 wt.%, respectively.

2.3. Effect of Coating on Adsorbed Protein Secondary Structure

The influence of surface chemistry for α-, β-, and γ-MNPs and bare MNPs on the struc-
tural characteristics of a subset of adsorbed proteins (i.e., lysozyme, HSA, or α-lactalbumin)
was assessed (Table 2). Modified MNPs showed minimal impact on the secondary structure
of HSA and α-lactalbumin (Figure 3B,C). However, in the case of lysozyme, a reduction
of 2.1~2.3% in helix content and an increase of 0.1~0.4% in β-sheet content was observed
compared to the native protein reference (Figure 3A). When examining HSA, both the mod-
ified and bare MNPs caused slight changes of less than 1% in the secondary structure of the
protein. The α- and β-MNPs led to a slight increase in helix content by 0.1~0.3%, while the
γ-MNPs resulted in a decrease of 0.6% in helix content. The γ-MNP surfaces induced a 0.6%
increase in random coil content, whereas other engineered surface modifications caused
less than 0.1% change in random coil content (Figure 3B). The conformational changes
induced by the coated surfaces in α-lactalbumin were less than 1% compared to the control.
Notably, γ-MNPs induced the most significant conformational changes in α-lactalbumin,
reducing the helix content by 0.8% (Figure 3C). Previous studies using HSA incubated
only with α-, β-, and γ-CD molecules have demonstrated that CDs do not penetrate the
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protein structure but rather interact with the protein’s surface. Importantly, this interaction
does not noticeably alter the protein’s secondary structure, as determined using circular
dichroism [25].

Figure 3. Circular dichroism spectra of protein-MNP. (A) Lysozyme, (B) HSA, and (C) α-lactalbumin
in the presence of bare, α-, β-, and γ-MNP. All measurements are repeated three times.

Table 2. Representative results for the effect of bare, α-, β-, and γ-MNP on the secondary structure
of α-lactalbumin, human serum albumin, and lysozyme. The unit is in percentage (%) and data
represents mean ± 1 SD, n = 3.

MNP Type Helix β-Sheet β-Turn Random Coil

Lysozyme

Blank 32.7 ± 0.1 8.1 ± 0.0 18.1 ± 0.0 28.5 ± 0.2
α- 30.6 ± 0.0 8.2 ± 0.2 18.1 ± 0.0 28.9 ± 0.0
β- 30.6 ± 0.2 8.2 ± 0.2 18.1 ± 0.0 28.9 ± 0.0
γ- 30.4 ± 0.1 8.5 ± 0.0 17.8 ± 0.1 30.2 ± 0.3

Bare 32.7 ± 0.3 8.1 ± 0.1 18.1 ± 0.0 28.5 ± 0.1

Human
serum

albumin

Blank 70.9 ± 0.0 4.1 ± 0.2 12.6 ± 0.1 12.2 ± 0.0
α- 71.2 ± 0.1 4.1 ± 0.3 12.5 ± 0.2 12.1 ± 0.1
β- 71.0 ± 0.0 4.1 ± 0.2 12.5 ± 0.1 12.3 ± 0.0
γ- 70.3 ± 0.0 4.3 ± 0.1 12.8 ± 0.0 12.8 ± 0.3

Bare 71.4 ± 0.1 4.1 ± 0.0 12.5 ± 0.2 12.1 ± 0.1

α-
Lactalbumin

Blank 32.3 ± 0.2 20.8 ± 0.1 18.0 ± 0.0 28.9 ± 0.1
α- 32.6 ± 0.0 20.3 ± 0.0 17.9 ± 0.1 29.3 ± 0.2
β- 32.6 ± 0.1 20.3 ± 0.2 17.9 ± 0.1 29.3 ± 0.1
γ- 31.5 ± 0.2 21.1 ± 0.3 17.9 ± 0.1 29.4 ± 0.2

Bare 32.3 ± 0.2 20.8 ± 0.1 18.0 ± 0.0 28.9 ± 0.0
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2.4. Effect of Coating on Adsorbed HSA Tertiary Structure

Tertiary structural changes in HSA result in changes to the tryptophan microenviron-
ment that alter its fluorescence [26]. Previous work has shown that the intrinsic fluorescence
intensity of the tryptophan residue in HSA is reduced upon adsorption to MNPs and that
the extent of this change is likely dependent upon the surface chemistry of particles [20].
Using a similar experiment, the number of protein binding sites (n) and the binding con-
stant (Ka) for bare and modified MNPs was determined (Figure 4). Notably, β-MNPs
exhibited the fewest (n = 1.08) and α-MNP showed the highest (n = 1.36) number of binding
sites. Bare MNPs had a binding site count of n = 1.19, with a slight increase observed with
γ-CD-coated ones, showing n = 1.21. No substantial variations were observed in binding
affinity towards HSA: bare, α-, β-, and γ-MNPs had ka values of 0.037, 0.049, and 0.039,
respectively (Figure 4B).Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 8 of 23 

 

 

 
Figure 4. The interaction of HSA with bare and modified MNPs was investigated by quenching the 
intrinsic fluorescence of HSA in the presence of varied concentrations of nanoparticles. (A) Fluores-
cence emission spectra were generated by titrating the HSA solution with increasing concentrations 

Figure 4. The interaction of HSA with bare and modified MNPs was investigated by quenching the
intrinsic fluorescence of HSA in the presence of varied concentrations of nanoparticles. (A) Fluores-
cence emission spectra were generated by titrating the HSA solution with increasing concentrations
of MNPs (0, 10, 20, 30, 40, 50, 60, and 70 µg/mL). (B) The plot yielded the number of binding sites
(n) and the binding constant (Ka), with data derived from the logarithmic relationship log [(F0 − F)/
(F − Fs)] vs. log [S]. Here, RFU stands for relative fluorescence units, [S] represents the concentration
of MNPs, F0 corresponds to the relative fluorescence intensity (F) of the protein solution without
MNPs, and Fs indicates the relative fluorescence intensity of the protein when fully saturated with
MNPs. Data represent mean ± 1 SD, n ≥ 3.
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2.5. Total Adsorbed Protein

Detergent-compatible BCA assay was employed to quantify the adsorbed amount of
plasma proteins eluted from MNPs upon incubation in platelet-poor plasma (Figure 5).
When considering the adsorption to these systems, the constant mass of MNPs was used to
normalize the system. Without correcting for differences in surface area between samples,
it was observed that more protein (p < 0.001) was eluted from modified versus bare
MNPs: bare −0.10 µg/µL, α-MNP and β-MNP −0.17 µg/µL, and γ-MNP −0.24 µg/µL
(Figure 5A). In prior studies on MNPs grafted with poly(β-CD), a notable decrease (p < 0.05)
in plasma protein adsorption compared to bare MNPs was observed, where the plasma
proteins eluted from bare and poly(β-CD)-grafted MNPs were measured at 0.3 µg/µL and
0.26 µg/µL, respectively [27]. When accounting for surface area differences between these
systems, it was apparent that bare MNPs adsorbed more protein than the modified systems
(Figure 5B). Given that α-, β- and γ-MNP have similar accessible surface area, it seems the
coating properties affect protein adsorption. The difference in adsorbed protein may arise
from the larger hydrophobic cavity in γ-CD compared to α- or β-CD and the difference in
the number of glucose subunits [28].
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Figure 5. Representative BCA assay results illustrating adsorbed protein quantities. (A). Ad-
sorbed protein concentration (µg/µL). (B). Adsorbed protein per surface area (µg/mm2). Statis-
tical analysis was conducted using one-way ANOVA, followed by a post hoc Tukey’s HSD test.
Where * and ** indicate statistical significance of p < 0.001 and p < 0.05, respectively. The data are the
mean ± 1 SD, n ≥ 3.

2.6. Coating Effect on Coagulation

Coagulation was assessed in whole blood through rotational thromboelastometry
(ROTEM) using an extrinsic pathway clot initiator (EXTEM) (Figure 6). The results demon-
strated a decrease in the clotting time for bare, α-, and γ-MNPs, indicating more rapid
fibrin polymerization. Although not statistically significant due to the small sample size
used for these preliminary hemocompatibility experiments, the trend for γ-MNP is clear,
and it neared statistical significance when compared with the control (p = 0.097). However,
β-MNP did not have this effect of reducing clotting time in two of the three donors in
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this set of experiments. The reason for this discrepancy in results in two of the donors is
unclear. Previous work characterizing β-CD/MPC films on MNPs [27] showed a decrease
in clotting time compared to control. That said, the β-CD/MPC films are formed via living
polymerization and are very different in composition and structure than these physically
anchored films.
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Figure 6. The presence of MNPs reduces clotting time driven by plasma proteins. Clotting time in
whole blood as measured by rotational thromboelastometry (ROTEM) with extrinsic activation. Data
on the left side of the dotted line represents controls conducted and published by our group [27].
Results were compared across groups with repeated measures ANOVA to compare differences within
biological replicates across groups, and paired t-tests were used for pairwise comparisons to the
water control (* p < 0.05). Comparisons not shown were not statistically significant.

2.7. Quantification of Plasma Proteins Adsorption

Immunoblot band intensities for plasma proteins eluted from all MNP systems were
quantified using a 13-step grayscale system (Figure S1) for experiments that used consistent
amounts of loaded protein and color development times (Table 3).

Albumin (66.5 kDa) is the most prevalent protein in plasma (35–50 g/L) and binds
various metabolic compounds, lipids, and drugs [28]. Albumin adsorption can influence
subsequent protein–surface interactions and coagulation processes [29,30]. In general,
albumin has a higher affinity for hydrophobic surfaces, and as previously demonstrated,
the incorporation of β-CD into hydroxyapatite nanoparticles has been shown to enhance
albumin adsorption to that surface [31]. In this study, all MNPs, including bare, α-, β-,
and γ-MNP, had a similar and relatively high amount (~9 scale) of eluted albumin. No
trend in intensity was observed with CD modification. Previous immunoblot studies have
demonstrated a slight reduction in albumin adsorption levels on β-CD-grafted MNPs in
comparison to bare particles, albeit with relatively high intensity values observed for both
unmodified and modified MNPs [27].
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Table 3. Heat map illustrating the relative intensities of immunoblot of plasma proteins absorbed to
different MNP types. Intensity levels are indicated as follows: 0: no band, 1 to 3: very low, 4 to 5:
relatively low, 6 to 7: moderate, 8 to 9: relatively high, 10 to 11: high, and 12 indicating maximum
intensity on the grayscale.

MNP Type

Plasma
Proteins

Fragment
Size (kDa) Bare α-CD β-CD γ-CD

Albumin 66 9 9 8 9 0
1 to 3

Immune
response-

related

C3
4 to 5
6 to 7

Whole C3 187 4 4 3 3 8 to 9
α chain 115 6 5 3 3 10 to 11
β chain 70 9 9 8 8 12

Activation fragment 42 6 6 6 6
IgG

Heavy chain 55 6 6 6 6
Light chain 27 9 9 8 8
Transferrin 77 9 9 8 8
Vitronectin 54 8 9 9 9

α1 antitrypsin 54 6 7 7 7
α2 macroglobulin 163 1 1 0 0

Coagulation-
related Fibrinogen

α chain 68 5 5 4 4
β chain 56 4 4 4 4
γ chain 48 4 5 4 4

Cleavage fragments <48 1 4 4 4
Prothrombin 72 2 2 2 2
Antithrombin 53 8 7 7 7

Factor I 88 0 0 0 0
Factor XII 80 6 7 7 7
Factor XI 70 9 9 10 10

Prekallikrein 85 5 5 4 4
50 7 6 6 6

Plasminogen 91 9 9 7 6
Kininogen 120 0 0 0 0
Fibronectin 440 0 0 0 0
Protein C 62 0 0 0 0
Protein S 69 0 0 0 0

2.8. Immune Response-Related Proteins

The complement system is critical to the immune response to biomaterials, and C3
activation plays a central role in this response [32,33]. C3 can show for bands in the fol-
lowing immunoblots: full-length (187 kDa), α-chain (115 kDa), β-chain (70 kDa), and
activation fragment (42 kDa) [34]. Herein, intact C3 was detected, with similar and mod-
erately low intensities (~3–4 scale) compared to other proteins eluted for all MNPs. The
α-chain intensities were lower between β- and γ-MNPs (3 scale) compared to α-MNPs
and bare MNPs (~5–6 scale). The β-chain displayed relatively high band intensities across
all types of MNPs. C3 activation fragments were found to be consistent for all systems
(6 scale), indicating that CD modification did alter activation of C3 compared to controls.
Comparable results have been reported for the intensity levels of β-chain and activation
fragments in β-CD-grafted MNPs [27].

ELISA was further used to quantify C3a in MNP-depleted frozen plasma from whole
blood samples post-incubation (Figure 7). It was found that C3a concentrations were
higher than expected in healthy donors [35]. This was likely a direct result of the ex vivo
manipulation of the whole blood required for MNP treatment and subsequent manipulation
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of the plasma for MNP removal via centrifugation and magnet exposure, wherein a total
of ~3 h elapsed between blood draw and the freezing of plasma for C3a analysis; the
ex vivo complement activation continues in citrated plasma [32], which likely inflated
the values reported here. Variability in responses across donors was observed; two of
the donors showed decreased C3a levels relative to the control with the CD-MNPs. The
only statistically significant difference was the reduction in C3a for bare MNPs compared
to controls. Notably, the ELISA was performed in plasma depleted of MNPs following
treatment, meaning the proteins bound to the MNPs (Table 3) were not measured. The fact
that similar levels of C3a to the control are observed across all modified MNPs aligns with
immunoblot results.
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Figure 7. C3a ELISA results of MNP-depleted plasma from whole blood hemocompatibility exper-
iments. Whole blood from n = 3 healthy donors was incubated with 0.18 mg/mL of each MNP
formulation, and MNP-depleted plasma was assayed for C3a with a commercial ELISA. Data on
the left side of the dotted line is from a separate set of experiments, previously published by our
group [27], and shapes reflect biological replicates. Results were compared across groups with
repeated measures ANOVA to compare differences within biological replicates across groups, and
paired t-tests were used for pairwise comparisons to the water control (* p < 0.05). Comparisons not
shown were not statistically significant.

IgG is 10–20% of the total plasma protein complement and can initiate the classical
complement pathway activation [34,36]. No change in band intensity was observed for
IgG upon MNP modification. The heavy chain (55 kDa) showed lower intensity levels
compared to the light chain (27 kDa). The presence of bound IgG may indicate a propensity
for complement activation. Previous immunoblot studies have revealed a consistent trend
in band intensity for the IgG light chain on β-CD-grafted MNPs, while a decrease in band
intensity was observed for the IgG heavy chain upon β-CD grafting [27].

Factor I (88 kDa) regulates complement through cleaving complement proteins C3b
and C4b [37]. Factor I was not observed for any MNP system. While IgG was present,
the absence of Factor I may suggest that the classical activation pathways are not being
regulated [38]. This finding is consistent with previous studies where Factor I has not been
found adsorbed to β-CD-grafted MNPs [27]. Transferrin (77 kDa) can activate macrophages
and function as an innate immune system component [32,39,40]. The adsorption of transfer-
rin was consistent and relatively high across all types of MNPs, suggesting that the binding
of this protein could potentially trigger macrophage activation. Similar levels of transferrin
adsorption have been found in β-CD-grafted MNPs [27].

Vitronectin is a multifunctional glycoprotein that regulates the complement system
in plasma [41] and preferentially interacts with negative or hydrophobic surfaces [42,43].
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Similar and high-intensity bands for vitronectin were observed for all MNPs. Adsorbed
fibronectin and vitronectin can enhance platelet adhesion, where fibronectin can also
regulate platelet activity [44]. Despite the identical plasma concentrations of fibronectin
and vitronectin, research on various polystyrene copolymeric surfaces has revealed that
vitronectin has a greater affinity for surface binding [43]. While all MNPs exhibited negative
surface charge and relatively high levels of vitronectin adsorption, fibronectin was not
observed. A similar trend in the adsorption of vitronectin and fibronectin has been found
in β-CD-grafted MNPs [27].

α1-antitrypsin is a serine protease inhibitor that accounts for 95% of trypsin inhibitory
capacity and has immunomodulatory properties, such as anti-inflammatory effects and T-
and B-lymphocyte regulation [45,46]. All MNP types showed moderate absorption levels
of α1-antitrypsin. Given the anti-inflammatory nature of α1-antitrypsin, this protein acts
as an immune system regulator in connection to nanoparticles, where the presence of α1-
antitrypsin in the protein corona of nanoparticles has been shown to decrease macrophage
recall to the nanoparticle site [47]. Previous studies on MNPs grafted with β-CD have
shown slightly higher levels of α1-antitrypsin adsorption [27].

α2-macroglobulin inhibits a wide range of proteases and regulates proteases by enhanc-
ing their clearance from blood [48,49]. Very faint bands were observed for α2-macroglobulin
on bare and α-MNPs, but none was detected on β- and γ-MNPs. This correlates with pre-
vious studies where α2-macroglobulin has not been detected adsorbed to β-CD-grafted
MNPs [27].

2.9. Plasma Proteins Involved in Coagulation

Fibrinogen (340 kDa) is composed of three polypeptide chains (Aα—68 kDa, Bβ—56
kDa, and γ—48 kDa). It is a substrate for Factor XIIIa and thrombin for clot formation,
where cleavage fragments may appear for MW < 48 kDa [34,50,51]. The adsorption level
of all fibrinogen fragments remained relatively low and constant across all MNP systems.
Fibrinogen cleavage fragments (<48 kDa) were moderate (4 scale) for modified MNPs,
while bare MNP showed a very low quantity of cleavage fragments (1 scale). That said,
fibrinogen adsorption alone can induce platelet adhesion and thrombosis. The relatively
low levels of adsorbed fibrinogen are consistent with previous findings, where the β-CD
coating has been used to reduce fibrinogen adsorption to polyethylene- and polypropylene-
based biomaterials, leading to improved hemocompatibility [52]. While previous studies
have demonstrated that cleavage fragments exhibit low quantity in the presence of MNPs
grafted with β-CD, these MNPs exhibited relatively high levels of adoption for all three
fibrinogen polypeptide chains [27].

Prothrombin is transformed to form the active enzyme thrombin that is critical to the
coagulation cascade [53]. Very low and consistent levels of prothrombin were found for all
MNP systems. The active site of thrombin is a substrate for antithrombin (53 kDa), a serine
protease inhibitor that acts as an endogenous anticoagulant. Antithrombin complexes
with thrombin and other coagulation factors to inhibit coagulation [54]. Bare MNPs were
found to adsorb relatively high levels of antithrombin, whereas CD coating resulted in a
step decrease in the adsorption of this protein. β-CD-grafted MNPs have shown similar
adsorption levels for prothrombin and antithrombin, with the intensity of antithrombin
remaining consistent between bare and modified MNPs [27].

The contact pathway of coagulation involves factors XII and XI, plasma prekallikrein,
and high molecular weight kininogen, which serves as a non-enzymatic cofactor [55].
Factor XI has been previously found in the protein corona of glucose-coated iron oxide
particles and is known to play a role in nanoparticle clearance [56]. Factor XI is absorbed
at high and relatively high levels by all MNP types. A moderate amount of Factor XII
was absorbed to all MNP systems at similar levels, despite previous work showing that
increasing particle size from ~10 nm to ~75 nm increased of Factor XII adsorption to silica
nanoparticles [57]. Kininogen, known for its involvement in initiating the contact activation
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pathway, was not found in any of the formulations. The intensity values for factors XII and
XI, and kininogen, correlated with previous findings on MNPs grafted with β-CD [27].

Prekallikrein (85 kDa) cleaves high-molecular-weight kininogen [58] and exhibited
consistently low adsorption levels across all MNP types. The activated form of prekallikrein
and kallikrein (50 kDa) displayed bands with slightly higher intensity than prekallikrein
for all MNP systems. The reduction in the intensity of prekallikrein immunoblot bands is
believed to be related to the activation of the contact system, with the formation of kallikrein
complexes with α2-macroglobulin and a C1 inhibitor [59,60]. Prekallikrein has been found
at very low adsorption levels in β-CD-grafted MNPs, with a substantial increase in the
intensity value of kallikrein (50 kDa) [27].

Plasminogen (91 kDa) is the zymogen of plasmin, the primary protease responsible
for fibrinolysis [61]. β- and γ-MNPs showed the decreased adsorption of plasminogen
compared to bare and α-MNPs, where they exhibited relatively high adsorption levels for
this protein. Plasminogen adsorption could indicate fibrinolytic activity [62]. While the
adsorption levels have been reported as relatively high, MNPs grafted with β-CD have
previously demonstrated a one-step decrease in plasminogen adsorption compared to bare
MNPs [27].

Protein S regulates coagulation and acts as a cofactor for activated protein C [63].
Additionally, Protein S demonstrates anticoagulant functions independently of activated
protein C; it directly inhibits intrinsic tenase and prothrombinase complexes [64]. None of
the MNPs exhibited fibronectin, protein S, or protein C adsorption, indicating a restricted
clot formation and fibrinolytic reaction [34]. These findings correlate with previous stud-
ies, where β-CD-grafted MNPs have not exhibited the adsorption of the aforementioned
proteins [27].

2.10. Whole Blood Hemocompatibility and Platelet Function

To further investigate the hemocompatibility of these MNPs, experiments were con-
ducted after 1h incubations at 37 ◦C of MNPs with whole blood. Complete blood counts
were performed (Figure 8A–E) to probe cellular changes in response to MNP exposure. As
expected, there is clear variability in the measures across donors, but MNPs do not appear
to impact white blood cell (Figure 8A), red blood cell (Figure 8B), or platelet (Figure 8C)
counts compared to the control—indicating integrity was not compromised. There was also
no effect of surface coating on hemoglobin (Figure 8D) or the mean corpuscular volume of
the red blood cells (Figure 8E).

Hemolysis was assessed in plasma through the quantification of free hemoglobin via
spectrophotometry using the Harboe method [65]. While all CD coatings showed similar
percent hemolysis to the water control, it was evident that hemolysis was higher in this set
of experiments compared with our previously published data (shown on the left side of the
dashed line). This is likely a direct result of the lower concentration of the stock suspen-
sions of MNPs (8 mg/mL) used in these experiments compared with the previous dataset
(10 mg/mL), requiring more volume to be added to reach a final concentration of
0.18 mg/mL. As the MNPs were suspended in water, it follows that decreased osmotic pres-
sure in this set of experiments would yield increased hemolysis, which is in line with the
increased hemolysis in the control. Overall, the data does not suggest hemolysis induced
by the CD-modified MNPs.

As platelet function is not entirely captured by changes in numbers on a complete
blood count, the impact of modified MNP exposure on platelets was further assessed
through flow cytometry (Figure 9A,B) and platelet-dependent rotational thromboelastome-
try outcomes (Figure 9C,D). Baseline platelet activation reflected by the percent of platelets
with surface CD62P (Figure 9A) was not statistically significantly different from the control
condition for any of the modified MNPs, although one donor (squares) had increased
platelet activation with all three CDs, and α-MNP induced an increased activation in two of
the three donors. Even so, the increases were marginal and likely not clinically significant.
Bare MNPs consistently increased platelet activation across all three donors, but also to
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a marginal extent. The lack of consistent increase in platelet activation with exposure
to modified MNPs indicated that the polymer coating may enhance compatibility with
platelets when compared with bare MNPs. The platelet responsiveness to ADP (Figure 9B)
was not significantly different in any of the modified MNPs, indicating retained function
and responsiveness.
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Figure 8. CD-coated MNP exposure does not impact complete blood counts or hemolysis. Whole
blood from N = 3 healthy donors was incubated with 0.18 mg/mL of each MNP formulation. Sysmex
XN-550 hematology analyzer results for (A) white blood cells, (B) red blood cells (C) platelets,
(D) hemoglobin, and (E) mean corpuscular volume of red cells are shown. Hemolysis was assayed in
MNP-depleted plasma via the Harboe method (F). Data on the left side of the dotted line is from a
separate set of experiments, previously published by our group [27], and shapes reflect biological
replicates. Results were compared across groups with repeated measures ANOVA to compare
differences within biological replicates across groups, and paired t-tests were used for pairwise
comparisons to the water control. Comparisons not shown were not statistically significant.

Platelet-dependent outcomes in whole blood rotational thromboelastometry were also
not significantly impacted by exposure to modified MNPs. Maximum clot firmness, which
is a product of fibrin polymerization and platelet stabilization of the clot, was not affected
by MNP exposure (Figure 9C). Clot formation time—the time from clot initiation to a
firmness of 20 mm—was also not impacted by treatment with any of the MNPs (Figure 9D).
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Figure 9. Platelet function is not impaired by CD-coated MNP exposure. Whole blood from
n = 3 healthy donors was incubated with 0.18 mg/mL of each type of MNP. (A) Baseline platelet
activation reflected by the surface expression of CD62P detected by flow cytometry. Percentage of
CD62P+ platelets displayed. (B) Platelet degranulation in response to 10 µM of ADP, reflected by
the surface expression of CD62P, detected by flow cytometry. Baseline activation was subtracted
from the % of CD62P+ platelets to yield an increase in the degranulated platelets, as a measure of
the platelet response. (C) Platelet function in coagulation reflected by the ROTEM maximum clot
firmness and (D) clot formation time. Horizontal dashed lines indicate normal ranges as per the
manufacturer’s information, and shapes reflect biological replicates. Data on the left side of the dotted
line is from a separate set of experiments, previously published by our group [27]. Results were
compared across groups with repeated measures ANOVA to compare differences within biological
replicates across groups, and paired t-tests were used for pairwise comparisons to the water control
(* p < 0.05). Comparisons not shown were not statistically significant.

Taken together, the hemocompatibility experiments in whole blood suggest that all
of the CD coatings tested are compatible with whole blood and merit further exploration
for their ability to clear and mitigate the adverse effects of uremic toxins in the blood of
CKD patients on hemodialysis. Importantly, many of these experiments were conducted
without the removal of the MNPs from the whole blood/plasma. Given that the modified
MNP adsorbs several critical proteins for coagulation and the immune response (Table 3),
further evaluation is required to determine whether hemostasis is maintained following
their removal, as would occur in the clinic. In addition to their target effect of uremic toxin
binding, they may also reduce the levels of key proteins via adsorption and subsequent
removal from circulation, but the extent of this reduction and whether it would be a
clinically relevant decrease remains unknown.
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3. Conclusions

This hemocompatibility study of α-, β-, and γ-MNPs as potential adsorbent bioma-
terials for uremic toxin clearance revealed several key findings. The surface coating of
iron oxide MNPs with CDs improved particle characteristics for biomedical applications,
resulting in smaller cluster sizes and a more uniform size distribution. Circular dichroic
analysis revealed that the modified MNPs had minimal effects on HSA and α-lactalbumin.
Lysozyme exhibited a subtle alteration, demonstrating a 2.1–2.3% decrease in α-helix and
a 0.1–0.4% increase in β-sheet content. Notably, γ-CD-coated MNPs induced the most
significant changes, leading to a 0.8% reduction in the helix content of α-lactalbumin and
a 0.6% increase in the random coil content of HSA. A consistent trend in quenching in
tryptophan fluorescence was observed, with a gradual increasing of the concentration of
MNPs in the protein solution, aiding in the determination of binding sites and affinity.
β-MNPs exhibited the lowest, while α-MNPs showed the highest number of binding sites.
However, the binding affinity towards HSA remained relatively consistent across different
MNP systems.

A total protein assay was performed to assess the quantity of protein adsorbed to each
type of MNP, revealing that bare MNPs exhibited the highest protein absorption per unit
of surface area. Additionally, an immunoblot analysis of MNP-associated proteins was
conducted, probing 21 plasma proteins. Among these, 14 proteins were identified as being
associated with these MNP systems. Notably, the immunoblot results indicated variations
in the adsorption levels of C3, fibrinogen, antithrombin, Factor XI, and plasminogen across
different MNP systems. The absence of fibronectin and proteins S and C within the protein
corona of MNPs indicates a potential limitation in the fibrinolytic response. Despite the
observed interaction between prekallikrein and MNPs, the absence of kininogen provides
valuable insights that may contribute to refining blood-contacting adsorbents. When
evaluating the hemocompatibility of whole blood across three biological replicates, no
significant MNP-related effects were observed on the erythrocyte or leukocyte counts.
The CD modification did not show any negative impact on platelets, as evidenced by the
absence of detectable increases in platelet activation and retained function as assessed by
rotational thromboelastometry. Overall, these findings contribute to the understanding of
the hemocompatibility profile of CD-coated MNPs, providing essential insights for their
potential application as absorbent biomaterials in the clearance of uremic toxins from blood.

4. Materials and Methods
4.1. Materials

Human plasma: Platelet-poor human plasma was obtained through the Blood4Research
program from Canadian Blood Services (REB: 2022.021) as approved by the research ethics
board of the University of Alberta.

Chemicals for synthesis: FeCl2·4H2O and FeCl3·6H2O (>98%, Acros Organics, Geel,
Belgium). Ammonium hydroxide solution (25%) was purchased from Sigma Aldrich,
with β-Cyclodextrin (≥97%, Sigma Aldrich, St. Louis, MO, USA), α-Cyclodextrin (≥98%,
Sigma Aldrich), γ-Cyclodextrin (≥98%, Sigma Aldrich), Sodium Citrate (Fisher Scientific,
Waltham, MA, USA).

Chemicals for experiments: Sodium phosphate monobasic monohydrate, Sodium
phosphate dibasic heptahydrate, and PBS tablet were purchased from Fisher Scientific.
Sodium dodecyl sulfate (SDS) and polyvinylidene fluoride (PVDF) membranes were from
Bio-Rad, Hercules, CA, USA. Total protein assays were conducted using Pierce™ BCA
Protein Assay Kit (Thermo Fisher Scientific Inc., Waltham, MA, USA). The TMB-stabilized
substrate was purchased from Promega (Madison, WI, USA). For the complete list of
primary and secondary antibodies, see Supplementary Table S1. All chemicals were used
without further purification.
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4.2. Methods
4.2.1. Synthesis of CD-Coated MNPs

CD-MNPs synthesis was carried out as previously detailed [20,21]. Milli-Q wa-
ter degassed (1 h, at room temperature) and purged (UHP N2, 20 min), and 25 mL of
100 µg of CD along Fe3+ and Fe2+ ions (2:1 molar ratio), was introduced in a nitrogen-
inlet-equipped three-necked, round-bottom glass flask. The mixture was stirred (400 rpm,
20 min) and 1.5 mL of ammonium hydroxide solution was added dropwise at a consistent
rate while stirring at 900 rpm. The resulting nanoparticle suspension was gently stirred
overnight to facilitate the volatilization of excess ammonia. The nanoparticle precipitates
underwent a thorough rinsing process with Milli-Q water. The nanoparticle suspension
was stirred overnight with sodium citrate (500 mg/mL) solution. The resultant product
then underwent another Milli-Q water wash, and the nanoparticle suspension in water
was stored at 4 ◦C for subsequent characterization.

4.2.2. Characterization of MNPs

Thermogravimetric analysis (TGA) was conducted (TGAQ50, TA Instruments, New
Castle, DE, USA) under a 60 mL/min nitrogen gas flow and temperature range of 25 to
950 ◦C with a 10 ◦C/min ramp. TEM images were acquired (Philips-FEI Morgagni-268
transmission electron microscope, Hillsboro, OR, USA) at an acceleration voltage of 80 kV.
The surface zeta potential and hydrodynamic size of CD-modified MNPs were evaluated
using (Zetasizer Nano ZS, Malvern Instruments, Malvern, UK) as outlined previously [20].
Briefly, MNP suspensions (8 µg/mL in Milli-Q water) underwent a 30-s sonication and
were promptly characterized.

4.2.3. Fluorescence Spectroscopy

The accessibility of tryptophan residues in HSA structure was tested via MNP quenching
studies following a previously established procedure [20]. In summary, HSA (330 µg/mL) in a
10 mM PB solution at pH 7.4 was gradually mixed with various MNP formulations (1 mg/mL)
and the fluorescence spectra captured (FlexStation 3 multimode plate reader, Molecular Devices).
Emission fluorescence intensity was recorded (300 to 500 nm) using an excitation wavelength of
280 nm. The binding affinity constant (Kb) and the number of binding sites (n) were determined
using established methodologies (Equation (1)) [20,66,67].

(F0 − F)/(F0 − Fs) = [(S)/Kd]n (1)

where F0 is the relative fluorescence intensity (F) of the protein solution alone, Fs is the
relative fluorescence intensity of protein saturated with MNPs, and [S] is the concentration
of MNPs. n is the number of binding sites and was determined from the slope of the plot,
log [(F0 − F)/(F − Fs)] vs. log [S]. The log [S] at log [(F0 − F)/(F − Fs)] = 0 determines the
logarithm of the dissociation constant (Kd), where Kb is the reciprocal of Kd.

4.2.4. SDS-PAGE and Immunoblot

Upon the arrival of pooled platelet-poor plasma, the plasma samples were aliquoted
and stored at −80 ◦C until needed. The incubation of MNPs with platelet-poor plasma
was carried out following established protocols [34]. Plasma was combined with MNPs
(0.18 mg/mL) at 37 ◦C for 2 h, centrifugated (20,000 × g for 10 min), supernatant removed,
and MNP pellet washed twice (1 mL, 1xPBS) to eliminate loosely bound proteins. Final
pellet was resuspended in 100 µL of 10% SDS in PBS and incubated at 50 ◦C for 2 h to
elute adsorbed proteins. Eluted protein concentrations were determined using a detergent-
compatible Pierce™ BCA protein assay.

SDS-PAGE and immunoblot techniques were employed for sample analysis, following
a previously documented protocol [34,38]. An equal amount of each protein sample (30 µg)
was loaded onto SDS-PAGE gels.



Int. J. Mol. Sci. 2024, 25, 10710 18 of 22

Gels were transferred to polyvinylidene difluoride membranes, which were then cut
into 23 strips. Two strips were used for colloidal gold staining, while 21 were utilized
for protein characterization. Primary antibodies (1:1000 dilution) were applied and in-
cubated for 1 h at room temperature. HRP-conjugated secondary antibodies with TMB
substrate were used for visualization. All immunoblots underwent a consistent 5-min color
development for intensity comparison.

4.2.5. Circular Dichroism

Far-UV CD (Olis DSM 17 Circular Dichroism Spectrometer, Olis, Bogard, GA, USA)
spectra of HSA, α-lactalbumin, and lysosome were obtained using protein concentrations
of 1.25, 0.25, and 0.25 mg/mL for HSA, α-lactalbumin, and lysozyme, respectively. CD-
MNPs were at a concentration of 0.25 mg/mL. Equal volumes of the protein and MNP
solutions were mixed and incubated for 3 h at 37 ◦C before the test. The CD spectra were
recorded in the range of 180 to 260 nm. The reported results represent the average values
obtained from three independent repetitions. The raw data were further analyzed using
CDNN 2.0 software to articulate the changes in secondary structure upon the addition
of MNPs.

4.2.6. Whole Blood Hemocompatibility Testing

For whole blood hemocompatibility testing, venous blood from N=3 healthy donors
was collected into 2.7 mL BD vacutainers containing buffered sodium citrate (0.109 M,
3.2%). All donors provided informed consent, and this study was approved by the UBC
Clinical Research Ethics Board (H22-00215). MNPs suspended in deionized water (or an
equal volume of deionized water, as a control) were added to 2.7 mL of citrated whole
blood at a final concentration of 0.18 mg/mL and incubated on a rocker for one hour at
37 ◦C. Hemocompatibility of bare MNPs was obtained in a separate but parallel set of
experiments, as previously published [27], and shown on the graphs separated by a dashed
line to indicate separate datasets.

Following incubation, complete blood counts were assessed using a Sysmex XN-550
hematology analyzer (Sysmex Corporation, Kobe, Japan). Coagulation was assessed in
the treated citrated whole blood using rotational thromboelastometry (ROTEM; Instru-
mentation Laboratory, Bedford, MA, USA), where 300 µL of whole blood was added to
the STAR-TEM and EXTEM reagents to re-calcify and activate the extrinsic coagulation
pathway, respectively. Primary outcomes of interest included the clotting time (the period
from the beginning of coagulation to the start of fibrin polymerization), the clot formation
time (time from clot initiation to a firmness of 20 mm—reflects fibrin polymerization and
stabilization with platelets), and the maximum clot firmness (mechanical strength of the
clot—dependent on platelet function, fibrin polymerization, and Factor XIII activity).

Baseline platelet activation and responsiveness to a weak agonist were evaluated using
flow cytometry on a BD FACSCanto II flow cytometer (BD Biosciences, San Jose, CA, USA).
For baseline activation, 3 µL of whole blood was incubated with 5 µL of mouse anti-CD62P
(IM1759U, Beckman Coulter, Brea, CA, USA) in 0.22 µm filtered PBS at a total volume of
50 µL. For responsiveness, 3 µL of whole blood was incubated with ADP (Chrono-Log,
Havertown, PA, USA) at a final concentration of 10 µM and 5 µL of antibody in 0.22 µm
filtered PBS, at a total volume of 50 µL. After a 30-min incubation at room temperature,
samples were diluted with 0.75 mL of 0.22 µm filtered PBS before measurement. The
location of the platelet population on the FSC/SSC plot was confirmed with a CD41 stain
and gated for the remainder of the experiments. Gates for a positive CD62P signal in the
platelet population were determined for each experiment based on an isotype control (IgG1;
IM0670U, Beckman Coulter). Platelet responsiveness to ADP was calculated by subtract-
ing baseline (unstimulated) % CD62P+ from the total % CD62P+ following stimulation
with ADP.

The remaining whole blood was centrifuged at 3000 rpm for 10 min at 4 ◦C to obtain
platelet-poor plasma (PPP). The PPP was spun again at 20,000 × g for 20 min at 4 ◦C to pellet
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the remaining microparticles before exposure to a magnet for 15 min at room temperature.
Hemolysis was measured in PPP using the previously described Harboe method [65],
and C3a levels reflecting complement activation were assessed in MNP-depleted plasma
aliquots frozen at −70 ◦C using a commercial ELISA (#A031, Quidel, San Diego, CA, USA),
following the kit instructions for plasma. All diluted samples were within the detection
limits of the ELISA.

Graphing and statistical analysis for the hemocompatibility outcomes were performed
in RStudio using R version 4.0.5, with the packages rstatix, dplyr, grid, and ggplot2. Due
to the innate variability in whole blood characteristics across donors, hemocompatibility
results were evaluated using a repeated measures ANOVA, with the donor as the identifier
and treatment as the within-subject variable. ANOVAs were only run on the data collected
in this set of experiments (water control, α-, β-, γ-MNP). Pairwise comparisons were
performed using paired t-tests, where each MNP formulation was compared to the water
control from the same experiment. P-values were not adjusted for multiple comparisons,
as the goal was to identify any MNP formulations that showed indications of hemo-
incompatibility with high sensitivity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms251910710/s1.
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29. Kowalczyńska, H.M.; Nowak-Wyrzykowska, M.; Szczepankiewicz, A.A.; Dobkowski, J.; Dyda, M.; Kamiński, J.; Kołos, R.
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