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Abstract: The co-occurrence of Alzheimer’s disease (AD) and cardiovascular diseases (CVDs) in
older adults highlights the necessity for the exploration of potential shared risk factors. A total of
566 adults were selected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database,
including 111 individuals with AD, 383 with mild cognitive impairment (MCI), and 410 with CVD.
The multivariable linear mixed model (LMM) was used to investigate the associations of AD and
CVD with longitudinal changes in 146 plasma proteomic biomarkers (measured at baseline and
the 12-month follow-up). The LMM showed that 48 biomarkers were linked to AD and 46 to CVD
(p < 0.05). Both AD and CVD were associated with longitudinal changes in 14 biomarkers (α1Micro,
ApoH, β2M, BNP, complement C3, cystatin C, KIM1, NGAL, PPP, TIM1, THP, TFF3, TM, and VEGF),
and both MCI and CVD were associated with 12 biomarkers (ApoD, AXL, BNP, Calcitonin, CD40, C-
peptide, pM, PPP, THP, TNFR2, TTR, and VEGF), suggesting intricate connections between cognitive
decline and cardiovascular health. Among these, the Tamm Horsfall Protein (THP) was associated
with AD, MCI, CVD, and APOE-ε4. This study provides valuable insights into shared and distinct
biological markers and mechanisms underlying AD and CVD.

Keywords: Alzheimer’s disease; mild cognitive impairment; cardiovascular diseases; proteomics;
biomarkers; linear mixed model; APOE-ε4

1. Introduction

Alzheimer’s disease (AD), the leading cause of major neurocognitive disorders, af-
fected 6.7 million Americans aged 65 and older in 2023 with projected increases to
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13.8 million by 2060 [1]. Concurrently, cardiovascular diseases (CVDs) such as atheroscle-
rosis, stroke, hypertension, myocardial infarction, coronary heart disease, and congestive
heart failure are the foremost causes of disability and mortality globally for people aged
45 years and older [2,3]. CVDs impact 126.9 million adults in the United States (U.S.), a
number that increases with age [4]. These conditions are particularly prevalent in the aging
population, especially among adults aged 65 years and older, constituting an increasing
public health problem [3,5–7].

Previous studies suggested that there is considerable overlap between AD and CVDs
in terms of lifestyle risk factors, pathophysiology, and clinical presentations, but there
might also be a direct causal association of CVDs and cardiovascular risk factors with AD
and MCI [3,7–9]. For example, CVDs and risk factors are associated with an increased risk
of AD and mild cognitive impairment (MCI), while AD and CVDs share similar genetic
biomarkers and biochemical profiles, suggesting a complex interplay of genetic predispo-
sitions and environmental triggers [7,8]. Several genes have been linked to both AD and
CVDs including apolipoprotein E (APOE), MTHFR, HFE, FTO, and ARHGAP26 [8,10–14].
Most importantly, one study reported a shared APOE-ε4 allele among several chronic health
conditions, including AD, CVDs, and metabolic phenotypes [15]. A more recent study
reported that ACE1 and several APO proteins were associated with AD, MCI, CVDs, and
the APOE-ε4 allele [16]. However, the mechanisms remain unclear. It has been proposed
that certain genetic variants influence AD through multiple cardiovascular risk factors, [17]
while some genes could interact with cardiovascular risk factors in the development of
AD [18]. Additionally, an epigenetic/epigenomic influence in cardiovascular complica-
tions is also involved in the development of neurodegenerative disorders such as AD [19].
Therefore, there is still a gap in understanding the precise mechanistic pathways for the
cause–effect and/or shared pathology between AD and CVDs [3].

Despite the established connections, there has been limited focus on the longitudinal
changes in proteomic biomarkers in people suffering from both AD and CVD. Given the
high prevalence of comorbid CVD in people with AD, exploring these biomarker changes
is crucial for understanding the relationships between these conditions. This study aims to
(1) examine the longitudinal changes in plasma proteomic biomarkers in adults who have
been diagnosed with cognitive impairment (AD and MCI) and CVD while adjusting for
covariates and (2) detect the overlapping biomarkers among AD, MCI, and CVD, thereby
offering insights into potential shared pathophysiological mechanisms.

2. Results
2.1. Baseline Descriptive Statistics

At baseline, no significant differences were observed in age and education across
groups defined by AD diagnostic status or CVD presence, indicating that these factors did
not systematically vary among the groups studied (Table 1). Gender was not associated
with AD but was associated with CVD. APOE-ε4 was associated with AD diagnostic status
but not with CVD.

Table 1. Descriptive statistics at baseline.

Variable AD MCI CN F/χ2, p CVD Non-CVD t/χ2, p

Age (mean ± SD) 74.8 ± 8.1 74.8 ± 7.7 75.1 ± 5.8 0.05, 0.9527 75.2 ± 7.2 73.9 ± 7.8 3.60, 0.0584
Gender

Male 65 248 30 4.39, 0.1113 258 85 4.38, 0.0364 *
Female 46 135 28 140 69

Education (mean ± SD) 15.1 ± 3.2 15.6 ± 3.0 15.7 ± 2.8 1.31, 0.2699 15.4 ± 3.1 15.8 ± 2.8 1.70, 0.1930
APOE- ε4

0 36 178 53 54.80, <0.0001 *** 187 80 1.10, 0.2953
1+ 75 205 5 211 74

Abbreviations: CN: cognitive normal; MCI: mild cognitive impairment; AD: Alzheimer’s disease; CVD: cardiovas-
cular disease; SD: standard deviation. p value is based on Chi-square test or F test/t test in ANOVA. * p < 0.05;
*** p < 0.0001.
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2.2. Multivariable LMM Analysis

The LMM showed that AD and CVD were associated with longitudinal changes in 48
and 46 plasma proteomic biomarkers, respectively (p < 0.05, Table S1). Both AD and CVD
were associated with longitudinal changes in fourteen proteomic biomarkers (α1Micro,
ApoH, β2M, BNP, complement C3, cystatin C, KIM1, NGAL, PPP, TIM1, THP, TFF3, TM,
and VEGF) (Table 2), of which four were also associated with MCI. Furthermore, MCI and
CVD were associated with twelve proteomic biomarkers (ApoD, AXL, BNP, Calcitonin,
CD40, C-peptide, pM, PPP, THP, TNFR2, TTR, and VEGF), with eight listed in Table 3.
Moreover, the single biggest risk gene for sporadic AD, APOE-ε4, was associated with
22 proteomic biomarkers (Table S1).

Table 2. Multivariable linear mixed model for AD and CVD shared proteins.

Variable AD vs. CN (t, p) MCI vs. CN (t, p) CVD vs.
Non-CVD (t, p)

APOE-ε4-1+ vs. 0
(t, p) 12 Months (t, p)

A1Micro 2.40, 0.0168 * 1.80, 0.0720 4.68, <0.0001 *** −2.01, 0.0454 * −5.20, <0.0001 ***
ApoH 2.20, 0.0279 * −1.55, 0.1225 2.90, 0.0039 ** −0.54, 0.5874 −15.40, <0.0001 ***
β2M 3.10, 0.0020 ** 0.28, 0.7813 4.52, <0.0001 *** −2.61, 0.0092 ** −0.97, 0.3314
BNP 5.53, <0.0001 *** 4.94, <0.0001 *** 3.82, 0.0001 ** −0.40, 0.6866 3.728, 0.0011 **
Complement C3 2.66, 0.0080 ** −1.44, 0.1504 2.07, 0.0391 * −2.30, 0.0221 * 2.94, 0.0034 **
Cystatin C 2.31, 0.0213 * −1.24, 0.2157 5.78, <0.0001 *** −2.49, 0.0130 * −1.65, 0.1001
KIM1 −3.06, 0.0023 ** 0.74, 0.4617 3.12, 0.0019 ** 0.01, 0.9900 −5.47, <0.0001 ***
NGAL 2.83, 0.0048 ** 0.60, 0.5465 2.53, 0.0117 * −1.61 0.1080 −3.94, <0.0001 ***
PPP 3.53, 0.0005 ** 3.08, 0.0022 ** 2.15, 0.0322 * 1.31, 0.1904 2.77, 0.0059 **
TFF3 2.84, 0.0046 ** 0.30, 0.7653 4.30, <0.0001 *** −1.37, 0.1706 4.09, <0.0001 ***
THP −3.51, 0.0005 ** −2.91, 0.0038 ** −4.10, <0.0001 *** 2.90, 0.0038 ** −9.98, <0.0001 ***
TIM1 3.29, 0.0011 ** 0.68, 0.4999 2.14, 0.0328 * −1.51, 0.1321 0.72, 0.4744
TM 2.14, 0.0324 * 0.90, 0.3665 4.19, <0.0001 *** −0.74, 0.4626 −1.46, 0.1455
VEGF 3.63, 0.0003 ** 2.40, 0.0169 * 4.13, <0.0001 *** −1.70, 0.0895 1.92, 0.0553

Abbreviations: CN: cognitive normal; MCI: mild cognitive impairment; AD: Alzheimer’s disease; CVD: cardio-
vascular disease; LMM: linear mixed model; t-value is based on multivariable LMM adjusted for age, gender,
education, and APOE-ε4. p value is based on multivariable LMM. * p < 0.05; ** p < 0.01; *** p < 0.0001.

Table 3. Multivariable linear mixed model for MCI and CVD shared proteins.

Variable AD vs. CN (t, p) MCI vs. CN (t, p) CVD vs. non-CVD
(t, p)

APOE-ε4-1+ vs. 0
(t, p) 12 Months (t, p)

ApoD −1.84, 0.0670 −3.12, 0.0019 ** −2.00, 0.0456 * −0.92, 0.3576 −0.78, 0.4374
AXL 1.62, 0.1067 2.64, 0.0084 ** 2.28, 0.0233 * −0.25, 0.8027 −5.62, <0.0001 ***
Calcitonin 1.86, 0.0633 2.75, 0.0061 ** 2.17, 0.0302 * 2.51, 0.0124 * −2.34, 0.0197 *
CD40 1.15, 0.2498 −2.61, 0.0093 ** −0.93, 0.3543 −0.42, 0.6278 2.97, 0.0032 **
C-peptide 1.14, 0.2558 2.03, 0.0429 * 4.77, <0.0001 *** 0.22, 0.8281 1.05, 0.2947
pM 0.56, 0.5784 2.10, 0.0365 * 3.63, 0.0003 ** −1.15, 0.2525 1.95, 0.0517
TNFR2 0.64, 0.5208 −2.07, 0.0385 * 3.96, <0.0001 *** −2.38, 0.0175 * −3.43, 0.0007 **
TTR −1.42, 0.1562 −3.69, 0.0002 ** 2.68, 0.0075 ** 1.10, 0.2701 −10.65, <0.0001 ***

Abbreviations: CN: cognitive normal; MCI: mild cognitive impairment; AD: Alzheimer’s disease; CVD: cardio-
vascular disease; LMM: linear mixed model; t-value is based on multivariable LMM adjusted for age, gender,
education, and APOE-ε4. p value is based on multivariable LMM. * p < 0.05; ** p < 0.01; *** p < 0.0001.

The THP was associated with AD, MCI, CVD, and APOE-ε4 (Table 2) and with age
(p = 0.001). The multiple comparisons for the THP between AD diagnosis, CVD status,
and APOE genotypes at baseline and the 12-month follow-up are illustrated in Table 4.
There were significant differences between AD and CN, between CVD and non-CVD, and
between APOE-ε4-1+ and APOE-ε4-0 at baseline and at the 12-month follow-up, as well as
between MCI and CN at the 12-month follow-up.
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Table 4. Multiple comparison for the THP in linear mixed model analysis.

Comparison Visit Difference ± SE t, p

AD vs. CN Baseline −0.52 ± 0.16 −3.16, 0.0048 **
12 months −0.60 ± 0.16 −3.66, 0.0008 **

MCI vs. CN Baseline −0.31 ± 0.14 −2.22, 0.0695
12 months −0.50 ± 0.14 −3.53, 0.0013 **

AD vs. MCI Baseline −0.20 ± 0.10 −1.97, 0.1219
12 months −0.10 ± 0.11 −0.99, 0.5863

CVD vs. non-CVD Baseline −0.39 ± 0.09 −4.32, <0.0001 ***
12 months −0.33 ± 0.09 −3.55, 0.0004 **

APOE-ε4-1+ vs. 0 Baseline 0.24 ± 0.09 2.73, 0.0066 **
12 months 0.26 ± 0.09 2.94, 0.0034 **

Abbreviations: CN: cognitive normal; MCI: mild cognitive impairment; AD: Alzheimer’s disease; CVD: cardio-
vascular disease; LMM: linear mixed model; t-value is based on multivariable LMM adjusted for age, gender,
education, and APOE-ε4. p value is based on multivariable LMM. SE = standard error; p value is Tukey–Kramer
Test ** p < 0.01; *** p < 0.0001.

2.3. Correlation Analysis and Variable Cluster Analysis

Pearson and Spearman correlation analyses were conducted for the baseline data of
22 proteins which were associated with AD or MCI and CVD in LMM analysis
(Tables 2 and 3), and the coefficients are presented in Table S2. Based on variable cluster
analysis, the twenty-two proteins were clustered into eight clusters (eight, three, two, two,
one, one, three, and two variables for each cluster, Figure 1). Cluster 1 included eight
proteins (α1Micro, β2M, BNP, cystatin C, NGAL, TFF3, THP, and TNFR2), while cluster
2 included three proteins (CD40, TIM1, and VEGF). AXL and TM were in cluster 3, and
ApoH and TTR were in cluster 4. One protein (Calcitonin) was in cluster 5 and one protein
(KIM1) was in cluster 6. Three proteins (C-peptide, pM, and PPP) were in cluster 7, and
two proteins (ApoD and C3) were in cluster 8. About 65.1% of the total variation in the
data could be accounted for by the eight clusters. Table S3 describes the variables in each
cluster and the corresponding 1-R2 ratio values. Small values of the 1-R2 ratio indicate that
the variable has a strong correlation with its own cluster and a weak correlation with the
other clusters.

 
Figure 1. Oblique variable clustering analysis of 22 proteins.
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3. Discussion

This study underscores the complex relationships among AD, CVDs, and proteomic
biomarkers in these conditions. There is established evidence that the pathway to the
development of CVDs and AD includes regulating the transcription and translation of
specific biomarkers, which in turn affects the structure and physiological function of
resident cells in both the cardiovascular and central nervous system. After controlling for
known potential confounding factors (age, gender, education, and APOE-ε4 allele), the
main findings of this study include that (1) AD and CVDs were associated with longitudinal
changes in 48 and 46 proteomic biomarkers, respectively, and both AD and CVDs were
associated with longitudinal changes in 14 proteomic biomarkers; (2) both MCI and CVDs
were associated with longitudinal changes in 12 proteomic biomarkers; and (3) APOE-ε4
was associated with 22 proteomic biomarkers. Interestingly, AD, CVDs, and APOE-ε4 were
associated with α1Micro, β2M, complement C3, cystatin C, and THP. Furthermore, MCI,
CVDs, and APOE-ε4 were associated with THP, Calcitonin, and TNFR2. Additionally, THP
was associated with AD, MCI, CVD, and APOE-ε4.

3.1. Proteomic Biomarkers Associated with AD, CVDs, and APOE-ε4

Interestingly, both AD and CVDs were associated with longitudinal changes in
14 biomarkers (α1Micro, ApoH, β2M, BNP, complement C3, cystatin C, KIM1, NGAL,
PPP, TIM1, THP, TFF3, TM, and VEGF); among them, five proteins (α1Micro, β2M, comple-
ment C3, cystatin C, and THP) were associated with APOE-ε4 (Table 2).

Alpha-1-microglobulin (α1M) is a small plasma protein that plays a role in various
physiological processes, including the regulation of the immune response and protection
against oxidative stress. One previous study found that α1M may play a role in AD [20],
and one study of α1M in acute kidney injury and cardiovascular events reported higher
α1M levels in those with CKD, diabetes, hypertension, and heart failure [21]. Beta-2
microglobulin (β2M) is a low-molecular-weight protein that is a component of the major
histocompatibility complex (MHC) class 1 molecules, present on the surface of nucleated
cells. It has been primarily recognized for its role as a marker of immune system activity
and renal function. It has been suggested as a potential biomarker for preclinical AD
and might have varied functions throughout various stages of preclinical AD progression,
possibly related to energy metabolism in the pathological mechanism of AD [22,23]. β2M is
one of the genes that appear to mediate the association of diet with incident cardiovascular
disease and all-cause mortality [24], and there are moderate positive associations between
β2M levels and CVD events and mortality [25]. Recently, it was reported that β2M plays
an active role in both brain injury and cognitive disorders in animal models [26].

Complement C3 is a central component of the complement system and plays a crucial
role in inflammation and immunity and the pathophysiology of both CVDs and AD. It is
well established that complement C3 is associated with atherosclerosis and CVDs [27,28].
The activation of C3 leads to the recruitment of inflammatory cells to the vessel wall,
contributing to the formation and progression of atherosclerotic plaques. One recent study
found that the complement C3 system is involved in the progression of atherosclerosis by
vascular remodeling [29], while another study suggested that complement C3 is associated
with a higher future risk of coronary heart disease [30]. In AD, complement C3 may reflect
stage-associated biomarker changes in AD [31], and the presence of APOE-ε4 has been
associated with elevated C3 levels, resulting in elevated Alzheimer’s neurodegeneration,
noting that amyloid has a regulating effect on the complement system and is linked to
subsequent tau protein pathology [32]. C3 is one of the blood biomarkers for use in point-
of-care diagnosis tools for AD [20], with one recent study confirming that C3 could be a
biomarker in the early diagnosis of AD [33].

Regarding the cystatin C protein, cystatin C is known to have neuroprotective prop-
erties. It is represented in neurodegenerative diseases [34] and is a therapeutic candidate
that can potentially prevent brain damage and neurodegeneration [35]. One recent study
provided evidence for the use of saliva samples to source biomarkers (including cystatin
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C) for the early detection of cognitive impairment in individuals on the AD continuum
and potentially other neurodegenerative diseases [36]. However, the role of cystatin C in
CVD showed inconsistent results. Previous studies revealed that cystatin C is historically
linked to its utility as a marker of renal function which is closely linked to cardiovascular
health. It can be viewed as an alternative predictor of complications for CVDs [37], and
cystatin C could be promising as a biomarker in the diagnosis of coronary artery disease,
aneurysm, adiposity, peripheral arterial disease, and coronary artery calcification [38]. A
meta-analysis found that there is a significant association between high levels of cystatin C
and the development of cardiovascular events or mortality in individuals with normal renal
function [39]. One recent study also found that cystatin C independently predicted major
cardiovascular events, the development of chronic kidney disease, and cardiovascular and
all-cause mortality. The prediction of long-term mortality was independent of the improved
estimation of GFR [40]. However, Mendelian randomization analyses did not support
a causal role of cystatin C in the etiology of CVDs, and as such, therapeutics targeting
lowering circulating cystatin C are unlikely to be effective in preventing CVDs [41].

3.2. Proteomic Biomarkers Associated with MCI, CVDs, and APOE-ε4

The present study further found that MCI and CVDs were associated with 12 biomark-
ers (ApoD, AXL, BNP, Calcitonin, CD40, C-peptide, pM, PPP, THP, TNFR2, TTR, and
VEGF), while MCI, CVDs, and the APOE-ε4 allele were associated with THP, Calcitonin,
and TNFR2 (Tables 2 and 3).

The current findings of cytokines (TNF-α, TNFR2, and VEGF) associated with CVDs
are congruent with the results of previous studies for TNFR2 in myocardial infarction in
the Swedish population [42] and TNF-α [43]. The findings of this study are important in
understanding how VEGF contributes to cardiovascular illness. An alteration in VEGF
has been associated with several diseases (e.g., kidney, hypertension, cancer, or diabetes),
but this study was the first report showing that VEGF is increased in CVDs. VEGF rep-
resents inflammatory processes that were present in several tissues including the heart
and brain. These CVD-associated biomarkers could be used to inform clinical applica-
tions, such as pharmacotherapies targeting neutralizing inflammatory biomarkers which
have displayed potential for effectiveness toward treating CVDs, such as atherosclerosis,
although contradictory findings indicate that there is still a need for designing more precise
therapy [44]. VEGF was positively associated with AD, MCI, and CVDs in our study. Thus,
the biomarkers shared by AD, MCI, and CVDs in the current study can be used to further
identify shared pathophysiology for AD, MCI, and CVDs. VEGF, as an intracellular player
together with other cytokines, may determine vascular risk factors and their contribution to
cognitive impairment and the development of CVDs and AD. Understanding the complex
interactions between VEGF and other signaling pathways could tell us how molecular
discovery can inform future drug development and clinical trial design [45].

TNFR2 is one of two receptors of the cytokines and has proinflammatory effects. A
recent study suggested that stimulating TNFR2 has the potential to strongly modulate the
balance between effector T cells and Treg cells that may impact disease in both positive and
negative manners [46]. Previous studies have shown that TNFR2 has a neuroprotective
function. For example, a study in human post-mortem AD brain tissues demonstrated
that TNFR2 levels were decreased [47], while individuals with low levels of TNFR2 were
more likely to develop AD [48]. The neuroprotective role of TNFR2 signaling has been
reported in a review article [49]. Furthermore, both animal model and human studies
have suggested TNFR2 as a therapeutic target [50–52]. The present study revealed that
TNFR2 was positively associated with CVD but negatively associated with MCI, whereas
no significant association was found with AD. These findings suggest a differential role of
TNFR2 in CVDs versus neurocognitive function and the complex pathogenesis mechanism
of AD, MCI, and CVDs.
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3.3. Proteomic Biomarkers Associated with AD, MCI, CVDs, and APOE-ε4

We found that AD, MCI, and CVDs were associated with BNP, PPP, THP, and VEGF,
while THP was also associated with the APOE-ε4 allele (Table 2).

The THP, also known as uromodulin, is associated with kidney function along with
graft survival, CVDs, glucose metabolism, end-stage renal disease, systemic inter-organ
signaling, and overall mortality [53,54]. For example, one previous study found that higher
levels of urinary uromodulin were associated with a lower risk of eGFR decline, a lower
risk of incident chronic kidney disease (CKD), and a lower risk of mortality in the aged
population [55]. One recent study demonstrated that higher serum uromodulin levels were
associated with lower mortality and major adverse cardiovascular events in a white CKD
population from Germany [56]. A recent study reported that they were able to predict,
with accuracy, the risk of a person with MCI progressing to dementia due to AD in a time
period of up to four years by using a machine learning-based panel composed of 12 plasma
proteins (ApoB, Calcitonin, C-peptide, CRP, IGFBP-2, Interleukin-3, Interleukin-8, PARC,
Serotransferrin, THP, TLSP 1-309, and TN-C) that included THP [57].

3.4. Relationship among Shared Proteomic Biomarkers

The present study found that both AD and CVDs were associated with fourteen
proteomic biomarkers, and both MCI and CVDs were associated with twelve proteomic
biomarkers; among them, four biomarkers were shared by AD, MCI, and CVDs
(Tables 2 and 3). Based on the 22 shared proteins, correlation analyses and variable cluster
analysis were conducted (Tables S2 and S3 and Figure 1). The twenty-two proteins were
clustered into eight clusters. Proteins within a cluster revealed strong correlations with
each other, which implies similar pathways. However, further pathway analysis is required
to validate the results.

AD is an age-related neurodegenerative disorder which is characterized by the pro-
gressive accumulation in the brain parenchyma of β-amyloid A(β) plaques (Aβ peptides)
and neurofibrillary tangles (tau protein), and the most widely used biomarkers for AD
include the APOE genotype, CSF Aβ42, pTau and tTau, and findings from imaging setups
such as MRI and PET together with a battery of cognition tests [34,58–60]. Previous stud-
ies have shown that the levels of Aβ42 are fully decreased at least 5 to 10 years before
the conversion of MCI to AD dementia [61], the abnormal accumulation of Aβ can start
decades before the dementia stage [62], and the first Aβ plaques occur at least 10 years, and
probably 20–30 years, before the first symptoms [63]. Previous studies have also shown that
amyloid-Aβ is increased in atherosclerotic arteries, indicating that amyloid-Aβ is involved
in cardiovascular disease [64–66]. More recently, a study reported that ACE1 and several
APO proteins are associated with AD, MCI, CVDs, and the APOE-ε4 allele [16]. The shared
proteins among AD, MCI, and CVDs support previous studies that suggested that AD,
MCI, and CVDs shared similar genetic biomarkers and biochemical profiles [7,8,10–14,16].
Furthermore, among the twenty-two shared proteins, seven biomarkers were associated
with APOE-ε4 (Tables 2 and 3), providing additional evidence that the APOE-ε4 allele plays
an important role in AD, MCI, CVDs, and metabolic phenotypes [15,16].

3.5. Strengths and Limitations

We are aware of the strengths of the current study. First, we have taken into account
potential confounding factors in our analysis since the presence of certain confounding
factors, such as variations in age, sex, and the APOE-ε4 allele, may contribute to variations in
findings [43] and false results. Second, we used longitudinal analysis, which is particularly
useful for evaluating the relationship between risk factors and the development of diseases,
such as AD and CVDs.

We acknowledge some limitations of the current study. First, we were unable to model
the interactions between genetic, environmental, and direct effects nor document that
genetic and environmental factors are considered risk factors for CVDs and AD since both
diseases are considered complex and multifactorial. Second, the modest sample size in
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the current study may result in false positive or negative findings; thus, a future study
with larger sample sizes is needed for accurate type-1 error rate control. To confirm the
utility of these biomarkers, it is crucial to validate them in studies with larger samples.
Third, in the future, further studies are needed to explore the inflammatory responses in
the central nervous system of patients with AD and CVD to gain a better understanding of
the disease’s etiology and risk factors.

4. Materials and Methods
4.1. Dataset

To achieve the aims of this study, data were analyzed from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) (accessed on 26 October 2022).
Initiated in 2003, the ADNI is an ongoing, longitudinal, multicenter study representing a
collaborative effort as a public–private partnership, led by Principal Investigator Michael
W. Weiner, MD. The primary goal of the ADNI is to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of MCI
and early AD. The ADNI provides services in the U.S. and Canada. The use of ADNI data
to perform a secondary data analysis is exempt from the Institutional Review Board.

4.2. Measures

The demographic variables included in this study were age, gender, and educational
levels (https://adni.bitbucket.io/reference/ptdemog.html, accessed on 26 October 2022).
Gender was a dichotomous variable that was self-reported as either male or female. Age and
education were continuous variables expressed in total years. CVDs were identified using
the MedHist data within the ADNI (https://adni.bitbucket.io/reference/medhist.html,
accessed on 26 October 2022) with participants classified based on their history of CVDs,
defined as either yes (with history) or no (without history). Data on APOE-ε4 genotypes
were extracted from the ADNI database (https://adni.loni.usc.edu/updated-apoe-results-
2, accessed on 26 October 2022). APOE genotyping was performed on DNA samples
obtained from blood samples. APOE-ε4 carriers were defined as individuals with at least
one ε4 allele (ε4/ε4 designated as APOE-ε4-2, ε4/ε3 or ε4/ε2 as APOE-ε4-1+), while
non-carriers were defined as individuals with no ε4 allele (APOE-ε4-0) (Table 1).

Plasma samples were collected from a subset of these participants 12 months after the
baseline assessment. Plasma samples were assayed for 190 analytes using the “Human Dis-
coveryMAP”, developed on the Luminex xMAP platform by Rules-Based Medicine. A total
of 146 plasma proteomic biomarkers passed the strict ADNI quality control from a subset of
the ADNI-1 dataset known as the “Biomarkers Consortium Plasma Proteomics Project RBM
multiplex data” (https://adni.bitbucket.io/reference/rbmqc.html, accessed on 26 October
2022) [67]. More details about the Biomarkers Consortium Project “Use of Targeted Multi-
plex Proteomic Strategies to Identify Plasma-Based Biomarkers in Alzheimer’s Disease” are
listed at https://adni.loni.usc.edu/wp-content/uploads/2010/12/BC-Plasma-Proteomics-
Analysis-Plan.pdf, accessed on 26 October 2022. There were 566 adults measured for
plasma proteomic biomarkers at baseline in the ADNI-1 dataset. This study included the
demographics, AD diagnosis, medical history information, APOE genotypes, and protein
data, and there were 111 individuals with AD, 383 with mild cognitive impairment (MCI),
and 410 with CVD.

4.3. Statistical Methods

The categorical variables were depicted using raw counts along with the corresponding
proportions, while continuous variables were presented as means ± standard deviations
(SDs). The Chi-square test was used to examine the differences in categorical variables
for both AD diagnoses and CVDs. For continuous variables, differences among groups
based on AD and CVD diagnoses were evaluated using the one-way Analysis of Variance
(ANOVA). Given the potential for a skewed distribution among the protein data, Z scores

adni.loni.usc.edu
https://adni.bitbucket.io/reference/ptdemog.html
https://adni.bitbucket.io/reference/medhist.html
https://adni.loni.usc.edu/updated-apoe-results-2
https://adni.loni.usc.edu/updated-apoe-results-2
https://adni.bitbucket.io/reference/rbmqc.html
https://adni.loni.usc.edu/wp-content/uploads/2010/12/BC-Plasma-Proteomics-Analysis-Plan.pdf
https://adni.loni.usc.edu/wp-content/uploads/2010/12/BC-Plasma-Proteomics-Analysis-Plan.pdf
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were calculated for each protein to standardize the data, using the mean and standard
deviation.

A multivariable linear mixed model (LMM) was used to explore the impact of AD,
CVDs, and the APOE-ε4 allele on the longitudinal changes in 146 proteins (from baseline to
12 months). The model was adjusted for age, gender, and education.

Yit = µt + βixit + γzi + αi + εit i = 1, . . . , n; t = 1, . . . , T (1)

where Yit is the value of the outcome for individual i at follow-up time t, µt is an intercept
varying with time, xit is a vector of time-varying variables such as the follow-up visit, zi is
a vector of time-invariant variables such as gender and education, αi denotes the random
effects where each has a normal distribution with a mean of 0 and constant variance, and
β are fixed effects. εij is a random distribution term. i = 1,. . ., Ij is the level-1 individual i
indicator, and t = 1,. . .,T is the level-2 indicator, such as the follow-up visit.

Both Pearson and Spearman correlation analyses were performed to test the associa-
tions among AD- or MCI- and CVD-associated proteins using the Z scores. To further test
the relationship among AD -or MCI- and CVD-associated proteins, the variable cluster pro-
cedure (VARCLUS) in SAS 9.4 (SAS Institute, Cary, NC, USA) was used to identify clusters
of variables that exhibited strong correlations within each cluster and weak correlations
with variables in other clusters, offering insight into the potential underlying patterns and
relationships among the proteins. A good fit for each item was indicated by higher squared
correlation (R2) values within its own cluster, low R2 values with the next closest cluster,
and low 1 − R2 ratios (the ratio of 1 − R2 for a variable’s own cluster to 1 − R2 for its
nearest cluster) [68,69].

1 − R2 ratio =
1 − R2 own cluster

1 − R2 next closest cluster
(2)

All statistical analyses were performed using SAS (version 9.4). A p < 0.05 was
considered statistically significant.

5. Conclusions

The findings from our study align with prior experimental and observational studies
on the connection between biomarkers and two diseases (AD and/or CVD) after controlling
for several potential confounding factors. Moreover, we observed a correlation between
certain proteins and the APOE-ε4 allele. Together, these biomarkers hold significant poten-
tial for early detection, prognostication, and perhaps even the development of targeted
treatment therapies for AD and CVD. This potential can only be realized through the
confirmation and validation of these findings in studies with larger sample sizes and well-
defined traits/diseases. The further testing of additional biomarkers could contribute to the
creation of a predictive scoring system, offering guidance for timely treatment interventions
and future meta-analysis.
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