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Abstract: The phenotype of albino tea plants (ATPs) is significantly influenced by temperature regimes
and light conditions, which alter certain components of the tea leaves leading to corresponding
phenotypic changes. However, the regulatory mechanism of temperature-dependent changes in
photosynthetic pigment contents and the resultant leaf colors remain unclear. Here, we examined the
chloroplast microstructure, shoot phenotype, photosynthetic pigment content, and the expression
of pigment synthesis-related genes in three tea genotypes with different leaf colors under different
temperature conditions. The electron microscopy results revealed that all varieties experienced
the most severe chloroplast damage at 15 ◦C, particularly in albino cultivar Baiye 1 (BY), where
chloroplast basal lamellae were loosely arranged, and some chloroplasts were even empty. In
contrast, the chloroplast basal lamellae at 35 ◦C and 25 ◦C were neatly arranged and well-developed,
outperforming those observed at 20 ◦C and 15 ◦C. Chlorophyll and carotenoid measurements revealed
a significant reduction in chlorophyll content under low temperature treatment, peaking at ambient
temperature followed by high temperatures. Interestingly, BY showed remarkable tolerance to high
temperatures, maintaining relatively high chlorophyll content, indicating its sensitivity primarily to
low temperatures. Furthermore, the trends in gene expression related to chlorophyll and carotenoid
metabolism were largely consistent with the pigment content. Correlation analysis identified key
genes responsible for temperature-induced changes in these pigments, suggesting that changes in
their expression likely contribute to temperature-dependent leaf color variations.

Keywords: albino tea; cold; green tea; high temperature; photosynthetic pigment

1. Introduction

Tea [Camellia sinensis (L.) Kuntze], an evergreen perennial crop valued for its unique
taste and rich nutritional content, has become one of the most popular beverages world-
wide [1]. Tea plants have a long domestication history that is traced back to 3000 years
ago [2]. Throughout long evolution, the evergreen characteristic of tea plants has undergone
mutations, leading to a phenomenon known as the albino phenotype (also referred to as
albinism) [3]. Albinism, in which the leaf becomes white, is common in many plants, such
as Arabidopsis (Arabidopsis thaliana), Tomato (Solanum lycopersicum), Maize (Zea mays), Rice
(Oryza sativa), etc. [4–7]. For most crops, albinism has adverse effects, leading to reduced
yields and deteriorated quality due to damage to photosynthetic organs, resulting in an
imbalance in carbon and nitrogen metabolism [8]. Compared with normal green tea plants,
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the L-theanine content in Albino tea plants (ATPs) is 0.5–2 times higher, while the total
catechin content is only half that of normal tea plants [9]. ATPs possess a unique ratio
of polyphenols to amino acids, enhancing the freshness while simultaneously reducing
the bitterness of the tea [10,11]. Thus, tea leaf color variation resources serve as essential
materials for genetic breeding programs and represent a crucial source for the development
of high value-added products.

In China, ATPs are becoming increasing attention, and their planting range is gradu-
ally expanding, with a gradual introduction from low altitude to high altitude. Various
ecological factors, including light, temperature, humidity, rainfall, and soil conditions,
affect the flavor and aroma of tea [12–14]. Notably, temperature not only has a great impact
on the quality-related substances of the tea but also on the pigment content of the tea leaves,
which should not be overlooked. Zhao et al. found that chlorophyll content decreases under
low temperature conditions due to the inhibition of chlorophyll biosynthesis enzymes [15].
Carotenoid biosynthesis is regulated by various factors, including environmental condi-
tions, endogenous signals, and transcriptional levels of biosynthetic genes [16–18]. ATPs
can be classified according to the different environmental conditions of albinism: tempera-
ture sensitive, light sensitive and ecologically sensitive. In temperature-sensitive tea plants,
the new buds typically sprout and turn white when temperatures are below 20 ◦C with the
upper threshold between 20 and 22 ◦C, and when the temperature is greater than 23 ◦C, the
phenomenon of whitening does not occur. On the other hand, the start-up temperature of
re-greening is about 16–18 ◦C, and at a temperature lower than 16 ◦C, the re-greening speed
is slowed down [19]. Light and temperature can regulate the accumulation of secondary
metabolites at multiple levels, particularly, environmental factors at different temperatures
affect polyphenol accumulation [20].

Differential expression of genes related to the chlorophyll and carotenoid metabolic
pathways results in alterations in the relative amounts of these two photosynthetic pig-
ments, leading to albino phenotype in ‘Baiye 1’ (BY) and ‘Zhonghuang 1’ (ZH) tea culti-
vars [21,22]. The typical chlorophyll synthesis pathway involves the sequential synthesis
of the following metabolites: glutamate (Glu) → 5-aminolevulinic acid (ALA) → proto-
porphyrin IX (Proto IX) → magnesium protoporphyrin IX (Mg- Proto IX) → chlorophyll a
(Chl a) → chlorophyll b (Chl b). Mutations in any of the 16 genes involved in the chloro-
phyll biosynthesis pathway may lead to changes in leaf color in plants. Expression analysis
of chlorophyll synthesis-related genes showed that transcript levels of the glutamate-tRNA
reductase gene (CsGluTR), chlorophyll synthase gene (CsChl), and chlorophyllate acetate
oxidase gene (CsCAO) greatly differ at different stages of albinism in ‘Baiye 1’, suggesting
that the blockage in the chlorophyll synthesis pathway is the direct cause of albino pheno-
type of ‘Baiye 1’ [23]. A comparative study of photosensitive albino tea ‘Huangjinya’ and
normal green leaf tea ‘Fudingdabai’ revealed that strong light regulated the expression of
carotenoid synthesis gene-related pathways, leading to the accumulation of carotenoids,
and that the lack of chlorophyll and the accumulation of carotenoids were responsible
for the yellow coloration or albino phenotype of new shoots in ‘Huangjinya’ [18]. The
expression level of lycopene β-cyclase gene (CsLCYb), a key gene for carotenoid synthesis in
tea plants, was positively correlated with the degree of albinism in different leaf positions of
the albino variety ‘Zhonghuang 2’ and was consistent with the level of carotenoid content.
It was also found that the relative expression of this gene was higher in ‘Zhonghuang 2’
than in ‘Longjing 43’ (LJ) [24].

The current study aims to investigate the impact of different temperature conditions
on leaf color phenotype, photosynthetic pigment content, and associated gene expression in
three tea cultivars differing in leaf colors. It is important to note that different tea varieties
have varying tolerance and response to environmental factors, indicating their unique
response mechanisms. Therefore, it is necessary to study the effect of temperature on the
leaf color phenotype of different tea varieties and the response mechanism of tea plants
with different leaf colors to multiple temperature conditions. This study can provide a
theoretical basis for understanding the response mechanism of tea plants to temperature.
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2. Results and Discussion
2.1. Variations in Shoot Phenotype under Different Temperatures

Under different temperature treatments, the shoot color of ‘BY’ gradually changed
from white to green as the temperature increased (Figure 1). Similarly, the shoot color
of the albino cultivar ‘ZH’ shifted from yellow to green with rising temperatures, al-
though the extent of this change was less pronounced compared to ‘BY’. In contrast,
‘LJ’ exhibited minimal color change, maintaining its evergreen characteristic across the
temperature variations.
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Figure 1. The shoot phenotype (one bud and two leaves) of ‘Longjing 43’ (LJ), ‘Baiye 1’ (BY), and
‘Zhonghuang 1’ (ZH) tea cultivars under 15 ◦C, 20 ◦C, 25 ◦C, and 35 ◦C temperature conditions.

Such differences in leaf color changes may be attributed to the diverse responses of
certain metabolic pathways to temperature changes in the albino tea plants. Previous
studies on the albino cultivar ‘BY’ have established its critical temperature threshold,
with leaves turning white at temperatures below 20 ◦C, and our findings corroborate this
phenomenon [21,25]. In the case of ‘ZH’, the observed changes were less significant. Wang
et al. found that both ‘ZH1’ and ‘ZH2’ were influenced by both temperature and light, with
single temperature changes having a lesser impact on leaf color [26].

2.2. Effects of Different Temperatures on Chloroplast Ultrastructure

Chloroplasts, specialized plastids in higher plants and algal cells, perform photo-
synthesis and are crucial in the synthesis of pigments, amino acids, and fatty acids [27].
The size and number of chloroplasts in higher plants often vary across species, but their
structure is relatively stable, typically oval with a smooth surface. Some have small vesicles
protruding from the outer membrane. The inner basal lamellae of chloroplasts are tightly
stacked, neatly arranged, and structurally intact. Chloroplasts can rapidly respond to envi-
ronmental changes, and their development can be influenced by various factors, such as
temperature [28]. Low temperatures often damage the morphology, structure, and function
of chloroplasts [29,30]. Transmission electron microscopy (Figure 2) has shown that at 25 ◦C,
chloroplasts in the BY are intact and the basal lamellae are tightly arranged. However, at
15 ◦C and 20 ◦C, the arrangement of chloroplast basal lamellae is much looser. Particularly
at 15 ◦C, some chloroplasts appear empty. LJ and ZH also exhibit similar trends to varying
degrees, though not as pronounced as in ‘BY’. At higher temperatures, chloroplasts in these
three tea varieties appear normal. These results indicate that low temperatures, rather
than high temperatures, disrupt the chloroplasts in tea leaves, causing developmental
abnormalities. Among the three varieties, BY is the most sensitive to low-temperature
treatment, showing the most severe damage at these conditions.



Int. J. Mol. Sci. 2024, 25, 10772 4 of 14
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 2. The changes in chloroplast ultrastructure of ‘Longjing 43’(LJ), ‘Baiye 1’ (BY), and ‘Zhong-
huang 1’ (ZH) tea cultivars under 15 °C, 20 °C, 25 °C, and 35 °C temperature conditions. The black 
ellipse is the chloroplast; the white area within the ellipse is the gap caused by poorly aligned chlo-
roplast basal granules; and the gray stripe is the cell wall. GT, grana thylakoid; PG, plastoglobule; 
V, void. All photographs are scaled to 1 µm. 

2.3. Changes in Photosynthetic Pigment Content Under Different Temperatures 
In the four temperature treatments, the descending sort of chlorophyll a content in 

leaves of BY was 35 °C, 25 °C, 20 °C, and 15 °C (Figure 3A,B). However, the highest chlo-
rophyll a content in leaves of LJ and ZH was when treated with 25 °C (Figure 3A,B). The 
chlorophyll b content in leaves of LJ, ZH, and BY decreased with the decreasing tempera-
ture. These results showed that BY exhibited chlorophyll content reduction only at low 
temperatures, whereas the chlorophyll content of LJ and ZH was affected by both high 
and low temperatures. This finding is consistent with the previous results that BY is a low-
temperature-sensitive albino tea plant, when the temperature is < 20 °C, the leaf color is 
white and when the temperature increases to room temperature, the leaves return to a 
normal green color [31,32]. The descending sort of carotenoid content in leaves of LJ, ZH, 
and BY was 25 °C, 35 °C, 20 °C, and 15 °C (Figure 3C). Low temperature had a greater 
effect on the carotenoid content of the three tea plant cultivars, but because BY is a tem-
perature-sensitive albino tea plant, the effect of low temperature on its carotenoid content 
was greater than that of LJ and ZH. This finding is consistent with the research by Ritonga 
et al., who demonstrated that photosynthetic pigment content is significantly reduced un-
der cold stress conditions [33]. This is likely to be caused by the suppression of carotenoid 
synthesis-related genes at low temperature. The ratio of Chlorophyll a/b was suppressed 
to different degrees under high and low temperature (Figure 3D). Deng et al. investigated 
the expression of carotenoid-related genes in BY under 15 °C, 19 °C, and 23 °C treatments, 
and found that the expression of PSY, LCYB, LCYE, and VDE was suppressed under 15 °C 
conditions [34]. Du et al. found that the carotenoid content in the leaves of the tempera-
ture-sensitive albino tea ‘Xiaoxueya’ was significantly lower at 15 °C than at 25 °C [35]. In 
the green tea species, low temperature inhibited the accumulation of carotenoids, and the 
decrease in the carotenoid content was smaller at 15 °C due to the suppression of the ex-
pression of the VDE gene at low temperatures [35]. Low temperatures have a greater effect 
on pigment content than high temperatures [36]. 

Figure 2. The changes in chloroplast ultrastructure of ‘Longjing 43’ (LJ), ‘Baiye 1’ (BY), and
‘Zhonghuang 1’ (ZH) tea cultivars under 15 ◦C, 20 ◦C, 25 ◦C, and 35 ◦C temperature conditions. The
black ellipse is the chloroplast; the white area within the ellipse is the gap caused by poorly aligned
chloroplast basal granules; and the gray stripe is the cell wall. GT, grana thylakoid; PG, plastoglobule;
V, void. All photographs are scaled to 1 µm.

2.3. Changes in Photosynthetic Pigment Content under Different Temperatures

In the four temperature treatments, the descending sort of chlorophyll a content in
leaves of BY was 35 ◦C, 25 ◦C, 20 ◦C, and 15 ◦C (Figure 3A,B). However, the highest
chlorophyll a content in leaves of LJ and ZH was when treated with 25 ◦C (Figure 3A,B).
The chlorophyll b content in leaves of LJ, ZH, and BY decreased with the decreasing
temperature. These results showed that BY exhibited chlorophyll content reduction only
at low temperatures, whereas the chlorophyll content of LJ and ZH was affected by both
high and low temperatures. This finding is consistent with the previous results that BY
is a low-temperature-sensitive albino tea plant, when the temperature is < 20 ◦C, the leaf
color is white and when the temperature increases to room temperature, the leaves return
to a normal green color [31,32]. The descending sort of carotenoid content in leaves of
LJ, ZH, and BY was 25 ◦C, 35 ◦C, 20 ◦C, and 15 ◦C (Figure 3C). Low temperature had a
greater effect on the carotenoid content of the three tea plant cultivars, but because BY is
a temperature-sensitive albino tea plant, the effect of low temperature on its carotenoid
content was greater than that of LJ and ZH. This finding is consistent with the research
by Ritonga et al., who demonstrated that photosynthetic pigment content is significantly
reduced under cold stress conditions [33]. This is likely to be caused by the suppression
of carotenoid synthesis-related genes at low temperature. The ratio of Chlorophyll a/b
was suppressed to different degrees under high and low temperature (Figure 3D). Deng
et al. investigated the expression of carotenoid-related genes in BY under 15 ◦C, 19 ◦C,
and 23 ◦C treatments, and found that the expression of PSY, LCYB, LCYE, and VDE was
suppressed under 15 ◦C conditions [34]. Du et al. found that the carotenoid content in the
leaves of the temperature-sensitive albino tea ‘Xiaoxueya’ was significantly lower at 15 ◦C
than at 25 ◦C [35]. In the green tea species, low temperature inhibited the accumulation
of carotenoids, and the decrease in the carotenoid content was smaller at 15 ◦C due to the
suppression of the expression of the VDE gene at low temperatures [35]. Low temperatures
have a greater effect on pigment content than high temperatures [36].
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significance (p < 0.05) between treatment groups. Groups with non-repeated letters are statistically
significant, while groups with the same letter are not significantly different from each other.

2.4. Changes in the Expression of Genes Related to Chlorophyll and Carotenoid Metabolic Pathways

Chlorophyll synthesis-related genes (PBGS, PBGD, and CAO) play key roles in the
biosynthesis of tetrapyrroles and chlorophylls, regulating the production of chlorophyll
precursors and the conversion of chlorophyll a to chlorophyll b, which are crucial for
photosynthesis and plant adaptation to changing light environments [37–39]. The ex-
pression levels of chlorophyll synthesis-related genes in BY and ZH were higher than LJ
under the four different temperature conditions. This finding aligns with more recent
research highlighting the essential roles of PBGS and PBGD in the tetrapyrrole biosynthesis
pathway [37,38]. Similarly, CAO, which converts chlorophyllide a to chlorophyllide b,
remains vital for maintaining the chlorophyll a/b ratio, ensuring efficient photosynthesis
and adaptation to changing light conditions [39].

When compared to LJ, BY and ZH exhibited lower expression levels of genes directly
responsible for the synthesis of chlorophyll a and b, particularly CHLG, a gene critical in
the final steps of chlorophyll biosynthesis. Recent studies confirm that downregulation
of CHLG results in reduced chlorophyll levels, leading to compromised photosynthetic
efficiency [40]. Additionally, BY and ZH showed higher expression levels of chlorophyll
degradation-related genes, which could further explain their lower chlorophyll content
compared to LJ. This is consistent with recent findings indicating that enhanced expres-
sion of chlorophyllase and PAO correlates with accelerated chlorophyll breakdown under
environmental stress [41].

The expression patterns of most genes in this study corresponded with the trends in
chlorophyll content, following the order: 25 ◦C > 35 ◦C > 20 ◦C > 15 ◦C (Figure 4). These
results are in line with studies showing that chlorophyll accumulation typically peaks at
moderate temperatures, where photosynthetic machinery operates optimally [42]. More-
over, under the same temperature conditions, the expression levels of PPOX, MgPEC, CAO,
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and POR genes in LJ were higher than those in BY and ZH, reflecting the higher chlorophyll
content in LJ. The importance of these genes in chlorophyll biosynthesis, particularly under
varying environmental conditions, has been revealed by recent studies [43–46]. Changes in
the expression of the POR gene are a key factor in triggering albinism in tea plants. Studies
have consistently shown that significant reductions in chlorophyll content in albino leaves
are linked to downregulated POR expression at the protein level and lower transcripts of
associated coding genes [47]. Furthermore, similar observations have been made in other
species, such as rice, where the deletion of a guanine base in the second exon of the PORB
gene in the rice leaf color mutant fgl led to a yellowish-green phenotype [48].
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In addition, the expression trends of most carotenoid synthesis-related genes closely
mirrored the trends in carotenoid content (Figure 5). This is consistent with recent studies
that emphasize the coordinated regulation of chlorophyll and carotenoid pathways, ensur-
ing a balance between these pigments, which is essential for effective light harvesting and
photoprotection [49].
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2.5. Correlation Analysis of Chlorophyll Metabolism-Related Gene Expression and
Chlorophyll Content

Pearson correlation analysis was conducted to examine the relationship between
chlorophyll a and b content and the expression of genes involved in the chlorophyll
metabolic pathway in LJ, BY, and ZH (Figure 6A). The results revealed that most gene
expressions were highly positively correlated with chlorophyll a and b content across
different temperatures (Supplementary Table S1). Specifically, UROD, CPOX, and MgPMT
expression levels showed a significant positive correlation with chlorophyll a content,
while MgPMT, CPOX, and MgPEC expressions were significantly positively correlated
with chlorophyll b content (p < 0.05). Similarly, in BY and ZH, the expression of most
chlorophyll metabolic genes was positively correlated with chlorophyll a and b content. In
BY, GluTR/hemA demonstrated a significant positive correlation with both chlorophyll a
and b content (p < 0.05). GluTR, encoded by hemA, is a key regulator of chlorophyll synthesis,
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catalyzing the formation of ALA from l-glutamyl tRNA, a critical step in chlorophyll
biosynthesis [50]. Recent studies on rice chlorophyll-deficient mutants have also identified
that mutations in hemA, the gene encoding GluTR, can lead to a complete blockage of the
chlorophyll synthesis pathway, resulting in altered leaf morphology [51].
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level of significance: *, p < 0.05; **, p < 0.01).

In addition, NYC1, a crucial gene promoting chlorophyll degradation, showed a mod-
erate but not significant negative correlation with chlorophyll a and b content, which is
consistent with previous findings [52,53]. In ZH, UROD, PPOX, MgPMT, CHLG, and CAO
expression levels exhibited a highly positive correlation with chlorophyll a content, with
UROD, PPOX, and MgPMT showing significant correlations (p < 0.05). Recent studies have
indicated that under low-temperature stress, UROD content decreases significantly, which
can impact chlorophyll production [54]. PPOX, which catalyzes the oxidation of proto-
porphyrinogen IX to protoporphyrin IX, is the last shared step in the biosynthesis of both
chlorophyll and heme, and its activity directly affects chlorophyll content [55]. In Arabidop-
sis, knockout mutations of the CHLM gene, responsible for magnesium-protoporphyrin IX
methyltransferase activity, demonstrated its essential role in chlorophyll formation and the
assembly of the photosystem complex [56].
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The correlation between CHLG and CAO expression and chlorophyll a content was
highly significant. In the final step of chlorophyll biosynthesis, CHLG esterifies chlorophyll
a and b with phytol or geranylgeranyl pyrophosphate in the chloroplasts [57]. Furthermore,
in ZH, UROS expression exhibited a significant positive correlation with chlorophyll b
content (p < 0.05). These key genes, which show positive and highly significant correlations
with chlorophyll content, likely contribute to variations in chlorophyll levels as their
expression changes with temperature. Our analysis suggests that the differences in leaf
color observed in LJ, BY, and ZH under varying temperatures are more likely due to
differential chlorophyll biosynthesis rather than chlorophyll degradation.

2.6. Correlation Analysis of Carotenoids Metabolism-Related Gene Expression and
Carotenoids Content

To investigate the relationship between the expression of carotenoid pathway-related
genes and carotenoid content, we performed Pearson correlation analyses (Supplementary
Table S2). In LJ, the expression levels of Z-IOS, BCH, ZEP, CCD1, and CYP97A exhibited
positive correlations with carotenoid content (Figure 6B). This aligns with previous research
indicating that CYP97A, a cytochrome P450 enzyme, plays a key role in the hydroxylation of
carotenoids, impacting carotenoid composition and content in plants [58]. Similarly, CCD1,
a carotenoid cleavage dioxygenase, has been shown to influence carotenoid degradation
and ,thus, affecting overall carotenoid levels [59].

In BY, DXS, PDS, ZDS, and LCYb1 were highly correlated with carotenoid content,
with the correlation between ZDS expression and carotenoid content showing significant
correlations (p < 0.05). This finding is consistent with studies highlighting the importance
of ZDS (z-carotene desaturase) and DXS (1-deoxy-D-xylulose-5-phosphate synthase) in
carotenoid biosynthesis, where they serve as critical enzymes in the early steps of the path-
way [60,61]. Additionally, LCYb1 has been identified as a major determinant of carotenoid
accumulation, as it controls the cyclization of lycopene to produce β-carotene, a precursor
for various other carotenoids [62].

In ZH, the expression of GGPPS2 and CYP97A showed strong positive correlations
with carotenoid content, with GGPPS2 showing significant correlations (p < 0.05). This is in
line with recent research indicating that GGPPS2 is crucial for the production of geranylger-
anyl diphosphate, a key precursor for carotenoid biosynthesis, and its regulation is vital for
carotenoid accumulation [63]. Studies have also emphasized that GGPPS2 expression is
tightly linked to environmental factors, further supporting its role in modulating carotenoid
content under varying conditions [64].

Our study clarifies the importance of these genes in regulating carotenoid biosynthesis
and highlights the influence of environmental conditions on their expression and, thus,
contributing to the observed variation in carotenoid content among the tea plant varieties.

3. Materials and Methods
3.1. Plant Materials and Treatments

The tea cultivar ‘Baiye 1’ (BY), ‘Longjin43’ (LJ) and ‘Zhonghuang 1’ (ZH) were collected
in July 2023 at the Tea Research Institute of the Chinese Academy of Agricultural Sciences
(TRI, CAAS, N30◦10′, E120◦5′). ‘Longjing 43’ is a widely cultivated green-leaf tea variety
known for its stress resistance (cold, drought, heat, and heavy metal) and high-quality
tea production [65–68]. ‘Baiye 1’ and ‘Zhonghuang 1’ are temperature-sensitive albino
tea varieties, exhibiting white and yellow leaf colors under low temperature conditions,
respectively. All tea plants were not obtained through EMS (ethyl methanesulfonate)
mutagenesis but were instead bred through natural variation and long-term selection.
Plants were set in plastic containers, which were placed within different plant growth
chambers with 600 µmol·m−2·s−1 PAR, 16 h/8 h photoperiod, and 65% relative humidity.
All plants were divided into four treatments until the one bud and two leaves stage as
follows: (1) Low temperature (15 ◦C): plants grew at a temperature of 15/10 ◦C (day/night).
(2) Sub-low temperature (20 ◦C): plants grew at a temperature of 20/15 ◦C (day/night).
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(3) Normal temperature (25 ◦C): plants grew at a temperature of 25/20 ◦C (day/night).
(4) High temperature (35 ◦C): plants grew at a temperature of 35/30 ◦C (day/night). Each
treatment comprised three biological replicates and was carried out under a completely
randomized design (CRD).

3.2. Determination of Photosynthetic Pigment Contents

Fresh leaf tissues (0.2 g) were ground into powder and then soaked in 10 mL of 80%
acetone and stored in a dark place until it turned white. The absorbance of each sample
at 663 nm, 645 nm, and 445.5 nm was determined after zeroing with 80% acetone by an
ultraviolet-visible spectrophotometer (UV-6100, METASH, Shanghai, China). Chl content
was calculated using the formula illustrated as follows:

Chla (µg/mL) = 9.78 × A663 − 0.99 × A645

Chlb (µg/mL) = 21.4 × A645 − 4.65 × A663

Car (µg/mL) = 4.69 × A445.5 − (chla + chlb) × 0.268

3.3. Transmission Electron Microscopy (TEM) Observation

The fresh leaf samples were fixed with 2.5% glutaraldehyde at 4 ◦C overnight and
rinsed with 0.1 M phosphate buffer (pH 7.0) three times for 15 min each time. The samples
were post-fixed with 1% osmium tetroxide for 1–2 h and then washed with 0.1 M phosphate
buffer (pH 7.0) three times for 15 min each time. After that, the samples were dehydrated
with graded concentrations (30%, 50%, 70%, 80%, v/v) of ethanol, then dehydrated twice
with 100% acetone for 20 min. The dehydrated samples were embedded with a mixture of
Spurr resin and acetone 1:1(v/v) for 1 h, then transferred in a mixture of Spurr resin and
acetone (3:1, v/v) for 3 h. Finally, samples were treated with pure Spurr resin overnight
at room temperature. The samples were cut into 70–90 nm sections by using a LEICA EM
UC7 ultrathome (Leica, Wetzlar, Germany), and the sections were stained with a uranyl
acetate and alkaline lead citrate for 7 min each. Finally, the samples were observed through
a Hitachi H-7650 TEM (Hitachi, Tokyo, Japan).

3.4. RNA Extraction, cDNA Synthesis and Real-Time Reverse Transcription Quantitative
Polymerase Chain Reaction (RT-qPCR)

Leaf samples collected from three cultivars under different temperature treatments
were ground in liquid nitrogen, and RNA was extracted using the Plant RNA Extraction
Kit (TIANGEN Biochemical Technology Co., Beijing, China). Reverse Transcriptase kits
(Thermo Fisher Scientific Co. in China, Shanghai, China) were used to synthesize the
complementary DNAs (cDNA). RT-qPCR analysis was performed using the GeneRuler
DNA Ladder Mix kit (Accurate Biotechnology Co., Changsha, China). The RT-qPCR
reaction mixture (10 µL) consisted of 5 µL of SybrGreen qPCR Master Mix, 1 µL of cDNA,
0.2 µL of forward and reserve primers, and 3.6 µL of enzyme-free ddH2O. The PCR reaction
conditions were as follows: denaturation at 95 °C for 30 s, 40 cycles, denaturation at 95 °C for
5 min and annealing and extension at 60 °C for 30 s. Gene-specific primers were designed
using the NCBI Primer-BLAST tool (https://www.ncbi.nlm.nih.gov/tools/primerblast/
index.cgi?LINK_LOC=BlastHome, accessed 26 October 2023). All primer sequences are
shown in Supplementary Table S3. GAPDH served as a housekeeping gene. The relative
gene expression was calculated by the formula of 2−∆∆Ct (Supplementary Table S4).

3.5. Statistical Analysis

Statistical analyses were performed by one-way ANOVA in combination with Dun-
can’s test in SPSS version 22.0 (SPSS, Chicago, IL, USA). The means were tested by the least
significant difference test (LSD test) at p ≤ 0.05. Pearson correlation analysis and figures
were drawn using Origin 8.6 software (Origin Lab, Northampton, MA, USA).

https://www.ncbi.nlm.nih.gov/tools/primerblast/index.cgi?LINK_LOC=BlastHome
https://www.ncbi.nlm.nih.gov/tools/primerblast/index.cgi?LINK_LOC=BlastHome
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4. Conclusions

In summary, the differential temperature treatments applied to tea plant varieties LJ,
BY, and ZH, significantly influenced chloroplast structure, pigment content, and shoot
phenotypes. The results indicated that low temperatures (15 ◦C) induced more severe
chloroplast damage, particularly in BY, while higher temperatures (25–35 ◦C) resulted in
better-developed chloroplasts. Additionally, pigment analysis revealed that chlorophyll
content peaked at ambient temperatures but was significantly reduced under low tempera-
tures. BY exhibited resilience to high temperatures, maintaining relatively high chlorophyll
content, highlighting its sensitivity, primarily to low temperatures. These observations were
further supported by the expression patterns of key pigment synthesis-related genes, which
correlated with the changes in chlorophyll and carotenoid contents. This study signifies the
critical role of temperature in regulating tea plant pigment content and growth, providing
insights for future breeding and cultivation strategies. However, further investigation is
necessary to unravel the intricate interactions between temperature, pigment synthesis,
and leaf color changes at the molecular level.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms251910772/s1.
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