
Citation: Shin, Y. Histone Tail

Cleavage as a Mechanism for

Epigenetic Regulation. Int. J. Mol. Sci.

2024, 25, 10789. https://doi.org/

10.3390/ijms251910789

Academic Editor: Wolfgang Sippl

Received: 24 September 2024

Accepted: 30 September 2024

Published: 8 October 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Communication

Histone Tail Cleavage as a Mechanism for Epigenetic Regulation
Yonghwan Shin

Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of
Southern California, Los Angeles, CA 90033, USA; shinyh81@gmail.com

Abstract: Histones are essential for DNA packaging and undergo post-translational modifications that
significantly influence gene regulation. Among these modifications, histone tail cleavage has recently
garnered attention despite being less explored. Cleavage by various proteases impacts processes
such as stem cell differentiation, aging, infection, and inflammation, though the mechanisms remain
unclear. This review delves into recent insights on histone proteolytic cleavage and its epigenetic
significance, highlighting how chromatin, which serves as a dynamic scaffold, responds to signals
through histone modification, replacement, and ATP-dependent remodeling. Specifically, histone
tail cleavage is linked to critical cellular processes such as granulocyte differentiation, viral infection,
aging, yeast sporulation, and cancer development. Although the exact mechanisms connecting
histone cleavage to gene expression are still emerging, it is clear that this process represents a
novel epigenetic transcriptional mechanism intertwined with chromatin dynamics. This review
explores known histone tail cleavage events, the proteolytic enzymes involved, their impact on gene
expression, and future research directions in this evolving field.
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1. Introduction

Histones, being among the remarkably conserved proteins in eukaryotic organisms,
orchestrate the structural organization of DNA into nucleosomes within the confines of the
cellular nucleus [1–5]. These nucleosomes, constituted by approximately 146 nucleotide
pairs enfolding around a core histone octamer comprised of H2A, H2B, H3, and H4, while
tethered by H1 as a linker histone, represent the fundamental units in chromatin architec-
ture [1–5]. Initially regarded as mere architectural scaffolds for DNA, recent investigations
have illuminated the multifaceted roles of histones across various scientific domains [6].

Recent research has unveiled the intricate involvement of histones in a spectrum of
pathophysiological conditions, encompassing neurodegenerative ailments, oncogenesis,
and inflammatory disorders such as sepsis [6]. Despite these explorations, the precise
molecular underpinnings that connect histones to disease pathogenesis remain elusive.
Post-translational modifications (PTMs), notably on histone tails, are pivotal in govern-
ing gene expression [7]. These diverse modifications, including acetylation, methylation,
phosphorylation, and citrullination predominantly occurring on the N-terminal tails of
histones, exert substantial influence on critical genomic processes such as transcription,
DNA replication, and repair [8–16]. For example, the acetylation of lysine residues neutral-
izes their positive charge, weakening histone-DNA interactions and thereby facilitating
access for transcription factors. [9,17]. The collective repertoire of these PTMs, often encap-
sulated within the framework of the “histone code”, intricately governs the accessibility of
packaged DNA, consequently regulating gene expression [14,18,19]. Histone modifications
within chromatin operate in a coordinated and precise manner to regulate gene transcrip-
tion. The dynamic alteration of chromatin histone modifications is controlled through both
chemical and physical mechanisms involving core histones [20–22]. A typical chemical
mechanism is the reversible enzymatic addition and removal of specific histone marks by
histone-modifying enzymes, referred to as writers, and erasers (Figure 1). In contrast, a
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more drastic physical mechanism involves ATP-dependent chromatin remodelers, which
facilitate the exchange of canonical histones with histone variants, although histone chap-
erones and other mechanisms can conserve histone marks after replacement, particularly
during processes such as replication.
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Although the roles of many PTMs are well-established, the significance of histone tail 
proteolysis remains enigmatic. Histone hydrolysis, an irreversible PTM facilitated by an 
abundance of lysine and arginine residues within core histones, involves proteolytic 
cleavage catalyzed by proteases [14,18,19]. In addition to the impact of histone cleavage 
on individual histones within the octamer, it is crucial to understand its effects on the 
structural stability of H2A-H2B dimers and H3-H4 tetramers, which are significant in 
chromatin dynamics during chromatin remodeling [23,24]. H2A-H2B dimers are known 
to be less stable, and their dissociation from the nucleosome, facilitated by histone cleav-
age, enhances DNA accessibility for transcription, replication, and repair. On the other 
hand, the highly stable H3-H4 tetramers maintain nucleosome integrity, and cleavage 
within these histones can disrupt the tetramer structure, leading to alterations in nucleo-
some stability and positioning. This disruption influences higher-order chromatin struc-
ture and dynamics, impacting chromatin accessibility and compaction, which are critical 
for gene expression regulation and DNA repair. Therefore, understanding the specific ef-
fects of histone cleavage on these subunits provides a comprehensive view of chromatin 
dynamics and emphasizes the importance of histone modifications in chromatin structure 
and function regulation. 

The area of histone proteolytic cleavage represents a dynamically evolving domain 
within epigenetics. Despite its emerging significance, the precise biological role and im-
plications of this process in modulating gene expression remain subjects of active inquiry. 
This review aims to comprehensively examine current insights into the mechanisms gov-
erning histone cleavage, exploring its biological significance, and delineating the spec-
trum of enzymes implicated in this process. Furthermore, it endeavors to propose poten-
tial mechanisms through which histone cleavage may intricately regulate gene expression, 
thereby shedding light on its broader regulatory implications. 

2. Cleavage of Histones H2A 
An identified protease, isolated from purified calf thymus chromatin, demonstrated 

specific targeting of histone H2A, was confirmed to be specific to H2A (Table 1), and was 
identified as an aspartic acid protease with a cleavage site at Asn90-Asp91 towards the C-
terminus [25]. Subsequent investigations formally classified this enzyme as the H2A spe-
cific protease (H2Asp) [26,27]. This truncation pattern was evident not only in myeloid 
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groups of enzymes that act on histones; the writer adds small covalent modifications such as methyl
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Although the roles of many PTMs are well-established, the significance of histone
tail proteolysis remains enigmatic. Histone hydrolysis, an irreversible PTM facilitated by
an abundance of lysine and arginine residues within core histones, involves proteolytic
cleavage catalyzed by proteases [14,18,19]. In addition to the impact of histone cleavage
on individual histones within the octamer, it is crucial to understand its effects on the
structural stability of H2A-H2B dimers and H3-H4 tetramers, which are significant in
chromatin dynamics during chromatin remodeling [23,24]. H2A-H2B dimers are known to
be less stable, and their dissociation from the nucleosome, facilitated by histone cleavage,
enhances DNA accessibility for transcription, replication, and repair. On the other hand, the
highly stable H3-H4 tetramers maintain nucleosome integrity, and cleavage within these
histones can disrupt the tetramer structure, leading to alterations in nucleosome stability
and positioning. This disruption influences higher-order chromatin structure and dynamics,
impacting chromatin accessibility and compaction, which are critical for gene expression
regulation and DNA repair. Therefore, understanding the specific effects of histone cleavage
on these subunits provides a comprehensive view of chromatin dynamics and emphasizes
the importance of histone modifications in chromatin structure and function regulation.

The area of histone proteolytic cleavage represents a dynamically evolving domain
within epigenetics. Despite its emerging significance, the precise biological role and im-
plications of this process in modulating gene expression remain subjects of active inquiry.
This review aims to comprehensively examine current insights into the mechanisms gov-
erning histone cleavage, exploring its biological significance, and delineating the spectrum
of enzymes implicated in this process. Furthermore, it endeavors to propose potential
mechanisms through which histone cleavage may intricately regulate gene expression,
thereby shedding light on its broader regulatory implications.

2. Cleavage of Histones H2A

An identified protease, isolated from purified calf thymus chromatin, demonstrated
specific targeting of histone H2A, was confirmed to be specific to H2A (Table 1), and was
identified as an aspartic acid protease with a cleavage site at Asn90-Asp91 towards the
C-terminus [25]. Subsequent investigations formally classified this enzyme as the H2A
specific protease (H2Asp) [26,27]. This truncation pattern was evident not only in myeloid
and lymphatic leukemia cells [28–30], but also during the induced differentiation of THP-1
promonocytes into macrophages via retinoic acid [31,32]. Speculation emerged regarding a
potential association between H2Asp and neutrophil elastase [33], a crucial protease linked
to neutrophil extracellular trap (NET) formation. It was later suggested that H2Asp might
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be a substrate of neutrophil elastase [33]. Reports indicated that under conditions of reac-
tive oxygen species production, neutrophil elastase translocates to the nucleus, selectively
degrading specific histones, and possibly inducing chromatin decondensation [33,34]. How-
ever, the precise biological implications of C-terminally truncated H2A in NET formation
remain ambiguous.

Subsequent investigations underscored the significance of C-terminally truncated
H2A (1-114aa) in cellular stress susceptibility, emphasizing its pivotal role in maintaining
cellular homeostasis [35]. Furthermore, these studies delineated the importance of the
H2A C-terminal tail in both in vivo and in vitro nucleosome stability and mobility, and its
regulatory role in chromatin remodeling processes mediated by Imitation Switch (ISWI)-
type remodelers. Notably, this tail was identified to act as a recognition module for histone
H1, thereby significantly impacting chromatin dynamics. This emphasized the critical
involvement of the H2A C-terminal tail (115-129aa) in stabilizing the nucleosomal core
particle and orchestrating protein interactions that regulate chromatin dynamics [35].

A distinct protease, exhibiting specificity towards histone H2A and resembling an
aspartic acid-like protease, has been identified in liver nuclear extracts of both young and
adult chickens. Additionally, H2Asp activity was not restricted to chickens, but was also ob-
served in liver nuclear extracts from fish, frogs, and mice, suggesting a conserved function
among vertebrates [36]. This protease specifically generates a single truncated H2A product
(H2AGlu91) through in vitro cleavage assays. Notably, both its expression and activity
were exclusively observed in liver nuclear extract, suggesting a tissue-specific occurrence.
However, the functional implications of truncated H2A and the precise characterization of
this protease remain to be fully elucidated. A recent study also reported that Cathepsin L
cleaves histone H2A during embryonic stem cell differentiation and the role of this cleavage
in altering H2A modifications and nucleosome stability during cell fate commitment [37].

Table 1. Characterization of histone proteases.

Histone Protease Cleavage Site(s) Biological Significance
of Activity Model Reference

H2A

H2A-specific
protease Val114-Leu115 Unknown Calf thymus [25]

Neutrophil elastase Val114-Leu115 Neutrophil extracellular
trap (NET) formation Neutrophil [31]

Histone H2A specific
protease (H2Asp) Asn90-Asp91 Unknown Chicken liver extract [33]

Cathepsin L Leu23-Gln24 Embryonic stem cells
(ESCs) differentiation

Mouse embryonic
stem cells (mESCs) [38]

H2B Tryptase Unknown Mast cell differentiation Mouse mast cells [35,36]

H3

Tryptase Unknown Mast cell differentiation Mouse mast cells [35,36]

Cathepsin L

Ala21-Thr22, Arg26-Lys27,
Ala31-Thr32

Embryonic stem cells
(ESCs) differentiation

Human embryonic
stem cells (hESCs) [37]

Ala21-Thr22, Thr22-Lys23,
Lys23-Ala24,

Embryonic stem cells
(ESCs) differentiation

Mouse embryonic
stem cells (mESCs) [38]Ala24-Ala25, Arg26-Lys27,

Lys27-Ser28

Yeast endopeptidase Ala21-Thr22
Induced under nutrient

deprivation and
sporulation

Saccharomyces
cerevisiae [38]
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Table 1. Cont.

Histone Protease Cleavage Site(s) Biological Significance
of Activity Model Reference

H3

JMJD5 Lys9-Ser10 Induced under
DNA damage

Human lung
cancer cells [39]

Glutamate
dehydrogenase Lys23-Ala24, Lys27-Ser28 Unknown Chicken liver

extracts [40]

Unknown Unknown Unknown Tetrahymena
micronuclei [41]

FMDV 3C protease Leu20-Ala21 Host cell transcription
shutoff

Hamster kidney
fibroblast cells [42]

MMP-9 Lys18-Gln19

Osteclastogenesis Bone marrow
macrophages [43]

Melanomagenesis Human melanoma [44]

Colonic carcinogenesis Human colon
cancer cells [45]

Cathepsin D Lys23-Ala24 Involution mammary
gland

Mouse mammary
gland [46]

Vacuolor protease
B (PrB) Lys23-Ala24 Unknown Saccharomyces

cerevisiae [47]

Granzyme A Unknown Staurosporine-induced
cell death

Human B
lymphoblastoid cell [48]

H4

Granzyme A Unknown Staurosporine-induced
cell death

Human B
lymphoblastoid cell [49]

Trypsin and
Chymotrypsin Arg17-Arg19 Intestinal cell

differentiation
Human colon

cancer cells [50]

3. Cleavage of Histones H2B

An enzyme responsible for the cleavage of H2B tails has been identified (Table 1), re-
vealing the involvement of tryptase in removing the N-terminal tails of histone H2B [38,51].
Tryptase, predominantly localized in the cytoplasmic secretory granules of mast cells and
known for its pro-inflammatory functions, surprisingly exhibited nuclear translocation
during cell death, initiating the cleavage of core histones. Strikingly, tryptase-mediated
truncation of histones H2B and H3 was evident during mast cell differentiation. Further-
more, the localization of tryptase to heterochromatin and the increased chromatin resistance
to micrococcal nuclease in tryptase-deficient cells implied its role in modulating chromatin
structure, favoring euchromatin formation over heterochromatin.

Subsequent studies further elucidated tryptase’s role, suggesting that its absence leads
to the age-dependent accumulation of H2BK5ac, which is associated with the upregulation
of markers indicative of non-mast cell lineages [51]. These observations propose a dual
role for tryptase in modulating gene expression, contingent upon the chromatin state of
mast cells.

4. Cleavage of Histones H3

The proteolytic cleavage of histone H3 has been a subject of intense investigation
compared to other histones. Histone H3 contains multiple susceptible sites targeted by
various proteases [6]. N-terminal cleavage of H3 has been observed across diverse cel-
lular processes, including mouse embryonic stem cell (ESC) differentiation, viral infec-
tions, aging, yeast sporulation, senescence, DNA damage responses, osteoclastogenesis,
and cancer development [39,40,43,52–55] (Table 1). H3 protease activity has been iden-
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tified in Tetrahymena micronuclei, avian liver tissues, human ESCs, and mouse mast
cells [38,41,42,54,56]. Two electrophoretically distinct forms of histone H3, H3F (fast migrat-
ing) and H3S (slow migrating), were reported in Tetrahymena micronuclei. H3F is derived
from H3S through a regulated proteolytic event during cell growth and division, suggesting
a regular, generation-specific H3 proteolytic cleavage during cell cycle progression [24].

Evidence from studies highlights the impact of viral infections on histone integrity. For
instance, foot-and-mouth disease virus (FMDV) infection in BHK cells leads to notable his-
tone H3 depletion and the emergence of a novel chromatin-associated protein (Pi) observed
migrating amidst histones H2A and H4 on SDS-polyacrylamide gels [39]. Pi was identified
as a truncated H3 variant lacking the 20 N-terminal residues, attributed to the activity
of FMDV 3C protease, which plays a role in viral polyprotein maturation [57]. Reports
suggest that the FMDV 3C protease hampers gene transcription through the process of H3
truncation [58]. Cathepsin L, a lysosomal protease with implications in extracellular matrix
degradation, cancer, bone remodeling, cardiovascular disease, and immune modulation,
has nuclear localization and reported nuclear functions [46,47,59–62]. Cathepsin L has been
demonstrated to play a proteolytic role in histone H3 during mouse ESC differentiation,
highlighting its involvement in epigenetic changes during differentiation. Cathepsin L was
identified as the H3 N-terminal tail clipping protease, potentially modulated by covalent
modifications such as H3K18ac or H3K27me2. These modifications may affect downstream
effects by hindering CBX27-H3K27 methylation binding [52].

In oncogene-induced and replicative senescence, H3.3 is preferentially cleaved over
H3.1, leading to transcriptional downregulation of cell cycle genes by removing H3K4me3,
implicating H3.3 tail cleavage in silencing cell cycle-promoting genes [43]. In a yeast model,
increased endopeptidase activity toward histone H3 was observed in cells transitioning to
a stationary phase or sporulation, revealing histone H3 cleavage after alanine 21 by a serine
protease. The absence of H3 tail cleavage impaired gene expression activation during the
stationary phase and sporulation [40]. Vacuolar proteinase B (Prb1) demonstrated cleavage
activity toward the histone H3 N-terminus in yeast, specifically cleaving between Lys23
and Ala24 [48]. Glutamate dehydrogenase in quail liver showed H3 tail cleavage during
aging [48,60]. In the involuting mammary gland, Cathepsin D caused preferential cleavage
between lysine 23 and alanine 24 in histone H3 upon nuclear translocation mediated by
tyrosine nitration [63]. JMJD5, a Jumonji C (JmjC) domain-containing protein, mediated
H3 N-tail cleavage at H3K9me1 under stress conditions such as DNA damage responses,
potentially regulating gene transcription [47]. In mast cells, tryptase functions as a ‘clippase’
for histones H3 and H2B. Tryptase deficiency resulted in altered H2BK5ac levels without
affecting H3 post-translational modifications, indicating the unresolved biological signifi-
cance of histone H3 clipping in mast cells. In staurosporine (STS)-induced Raji cells, the
histone H3 N-terminal tail was cleaved by granzyme A (GzmA) [44].

The previous findings implicated matrix metalloproteinase 9 (MMP-9) as the primary
protease for histone H3 N-terminal tail cleavage (H3NT) during osteoclast differentiation,
melanomagenesis, and colon cancer development [45,49,53]. Despite MMP-9’s known
role as a secretory protein, biochemical studies revealed its nuclear accumulation during
osteoclastogenesis. MMP-9 specifically cleaved H3K18-Q19 in vitro and in vivo, facilitated
by H3K18 acetylation, orchestrated by p300/CBP, and necessary for gene activation dur-
ing osteoclast differentiation. The role of MMP-9 in promoting melanoma development
was demonstrated by facilitating H3 N-terminal tail cleavage (H3NT) proteolysis within
the promoter and coding regions of pro-melanomagenic genes, consequently enhancing
their expression [45,49,53]. The dynamic control of MMP-9-dependent H3NT proteoly-
sis, mediated by p300/CBP-induced H3K18ac, significantly contributes to the efficient
transcription of MMP-9 responsive genes in melanoma cells [49]. These findings hold
substantial significance, unveiling previously undocumented functions of MMP-9 and
p300/CBP, and shedding light on novel epigenetic mechanisms that propel the expression
of genes involved in melanomagenesis. In a recent report, it was shown that MMP-9 is over-
expressed and responsible for catalyzing H3NT proteolysis in colon cancer cells. [50]. The
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genome-wide transcriptome analysis showed that growth-regulatory genes are selectively
targeted and activated by MMP-9-dependent H3NT proteolysis in colon cancer cells. These
results unveil a previously uncharacterized function of nuclear MMP-9 and underscore the
diagnostic, prognostic, and therapeutic potential of H3NT clipping to prevent the onset of
colonic tumorigenesis.

5. Cleavage of Histones H4

The study revealed that granzyme A (GzmA) cleaves histone H4 during the apoptotic
process in Raji cells (Table 1) [64]. The amount of cleaved histone H4 fragments increased
in a dose-dependent manner with the caspase inhibitor in these cells, and the cleavage
site was located on the histone H4 tail. Granzyme A (GzmA), an endogenous serine
protease found in the cytotoxic granules of natural killer cells and cytotoxic T cells, is
suggested to disrupt chromatin architecture by cleaving the H4 tail specifically in response
to staurosporine treatment in Raji cells [64]. Additionally, another study demonstrated that
the N-terminal tail of H4 is removed during intestinal cell differentiation by proteolytic
cleavage by trypsin or chymotrypsin at residues 17-19, which reduces p-IκBα binding [65].
It has also been shown that truncation of the H4 tail affects DNA wrapping efficiency and
chromatin structure, highlighting its role in regulating chromatin architecture [66]. These
findings underscore the broader role of H4 tail cleavage in specific cellular differentiation
processes, suggesting that the cleavage of histone tails plays a significant role in cellular
function and differentiation.

6. Epigenetic Regulation through Histone Cleavage Mechanism

The enzymatic cleavage of histones is a pivotal process in the landscape of epigenetic
modifications. As research continues to reveal an expanding repertoire of enzymes and
cellular pathways involved in histone cleavage, understanding the precise mechanisms
by which cleaved histones regulate gene expression remains a paramount goal in the field.
Histone cleavage, characterized by the targeted proteolysis of histone proteins, represents a
dynamic aspect of epigenetic regulation. This process is integral to chromatin dynamics
and plays a crucial role in shaping the epigenomic landscape (Figure 2).

The discovery of novel enzymes involved in histone cleavage has provided greater
understanding of this phenomenon’s intricacies. Recent studies have highlighted the roles of
specific proteases, such as caspases and metalloproteases, in mediating histone cleavage events,
thereby adding complexity to the regulatory network [24,40–43,47,49,50,52,55,56,63,64,67,68].
Despite advances in identifying key players in histone cleavage, the functional conse-
quences of cleaved histones on gene expression remain a subject of intense investigation. It
is increasingly evident that histone cleavage products may act as signaling entities, influ-
encing downstream transcriptional programs [45,49,50,53]. These cleavage products, often
carrying post-translational modifications, can serve as epigenetic marks that modulate the
recruitment of transcriptional machinery and chromatin remodeling complexes. Further-
more, the context-dependent nature of histone cleavage adds another layer of complexity.
Histone cleavage events have been observed in response to various cellular cues, including
DNA damage, apoptosis, and cellular differentiation. Understanding the crosstalk between
histone cleavage and these cellular processes is crucial for a comprehensive understanding
of their regulatory implications.
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cleavage may also lead to histone eviction, providing easier access for transcription factors to DNA
elements during gene activation. Additionally, histone tail cleavage might result in the extensive
removal of multiple PTMs and effector ‘reader’ proteins, preventing the recruitment of associated
proteins or other PTM-related processes on histone tails.

7. Chromatin Dynamics and Future Directions

Eukaryotic DNA is organized into chromatin structures, requiring a compact arrange-
ment within the nucleus. This compaction restricts the accessibility of transcription factors
and RNA polymerase to gene promoters, underscoring the pivotal role of chromatin con-
formation in gene expression dynamics [40]. Studies employing tailless nucleosomes and
nucleosomes containing truncated H3 and H4 emphasize the critical involvement of hi-
stone tails in both inter- and intra-nucleosomal interactions. Specific protease-induced
truncations of histone tails enhance DNA accessibility by promoting an open nucleosome
conformation, ultimately contributing to gene activation. [68,69].

Histones are evicted from gene promoters during activation, facilitating access to the
transcription machinery [70,71]. In S. cerevisiae, a histone H3 endopeptidase was identified,
revealing that H3 cleavage precedes histone eviction. This cleavage potentially marks
nucleosomes for displacement prior to gene induction, suggesting a role for histone tail
cleavage in simplifying access for the transcription machinery during gene activation [40].
Collectively, the evidence suggests a connection between histone tail cleavage and the
initiation of histone eviction. Histone tails undergo PTMs at different amino acids, playing
a crucial role in chromatin remodeling, DNA accessibility, and overall chromatin dynamics.
Two models describe the outcomes of histone tail modifications: changes in nucleosome
physical properties leading to relaxed chromatin fibers and modifications serving as recog-
nition marks for effector protein recruitment. First, histone tail modifications can induce
changes in the physical properties of the nucleosome, reducing inter- or intra-nucleosomal
contacts and resulting in a more relaxed chromatin fiber [9]. Specifically, histone acetylation
neutralizes the positive charge of lysine, and histone phosphorylation introduces a negative
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charge, both of which contribute to chromatin decondensation. Second, these modifications
serve as recognition marks that facilitate the recruitment of effector proteins [9,72]. Nu-
merous chromatin-associated factors specifically interact with modified histones through
various distinct domains, including the bromodomain, chromodomain, malignant brain tu-
mor (MBT) domain, tudor domain, plant homeodomain (PHD) finger, and PWWP domain.
Various chromatin-associated factors interact specifically with modified histones through
distinct domains. Although specific modifications can be removed by enzymes, histone tail
cleavage emerges as an efficient method to globally erase multiple modifications, thereby
impeding the recruitment of effector proteins or halting other PTM cascades on histone
tails. The radical removal of various modifications through histone tail cleavage thus adds
complexity to the regulatory landscape of chromatin [9,47,57,62].

Recent discoveries have revealed the extensive occurrence of histone tail cleavage
across various cellular processes, identifying specific proteases responsible for these modi-
fications. Understanding the relevance of processed histones to gene expression remains
pivotal in a broader context. The findings presented in this review serve as a foundation for
future investigations to delve deeper into the intricate mechanisms underpinning histone
proteolysis and its profound impact on gene transcription.

Potential therapeutic implications in diseases underscore the necessity for a compre-
hensive exploration of the in vivo functions of histone cleavage. For instance, histone
tail cleavage can significantly alter chromatin structure and gene expression, potentially
enhancing the susceptibility of cancer cells to anti-cancer agents. Additionally, targeting
specific proteases responsible for histone cleavage could lead to novel therapeutic strate-
gies. These strategies might involve directly inducing histone clipping to hinder cancer cell
proliferation or sensitizing cancer cells to existing treatments by modifying their epigenetic
landscape [73]. Despite significant progress, there are gaps to fill; further research will
likely uncover additional proteases involved in histone cleavage and reveal novel functions
of clipped histones. Elucidating the detailed molecular mechanisms behind histone clip-
ping and its direct implications in epigenetics is a crucial endeavor [74]. Recent advances
have prompted intriguing questions about the complex interplay between diverse histone
modifications and their role in the histone code regulating gene expression. Continued
research in this area promises to enhance the understanding of epigenetic regulation and
may open new avenues for medical advancements.
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