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Abstract: Fibrosis is a major medical challenge, as it leads to irreversible tissue remodeling and organ
dysfunction. Its progression contributes significantly to morbidity and mortality worldwide, with
limited therapeutic options available. Extensive research on the molecular mechanisms of fibrosis
has revealed numerous factors and signaling pathways involved. However, the interactions between
these pathways remain unclear. A comprehensive understanding of the entire signaling network
that drives fibrosis is still missing. The TGF-β and Notch signaling pathways play a key role in
fibrogenesis, and this review focuses on their functional interplay and molecular mechanisms. Studies
have shown synergy between TGF-β and Notch cascades in fibrosis, but antagonistic interactions
can also occur, especially in cardiac fibrosis. The molecular mechanisms of these interactions vary
depending on the cell context. Understanding these complex and context-dependent interactions is
crucial for developing effective strategies for treating fibrosis.
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1. Fibrosis Development
1.1. Cellular and Molecular Mechanisms

Fibrosis is a pathological condition characterized by the excessive growth of connective
tissue and the abnormal deposition of extracellular matrix (ECM). Fibrotic tissue replace-
ment leads to the gradual loss of specific tissue properties and causes the dysfunction of the
affected organ [1,2]. Fibrosis can occur in nearly any organ including the liver, kidney, lung,
heart, and skin [3–7]. Fibrosis can be induced by a variety of conditions, including past
illnesses, traumas, surgeries, radiation, and allergic reactions [8–12]. The most common
reason for fibrogenesis is excessive, prolonged, or recurrent tissue injury accompanied by
chronic inflammation [13–15].

Many cell types are involved in the complex, multicomponent mechanisms of fibrogen-
esis, but myofibroblasts play a central role. Myofibroblasts are characterized by a high level
of α-smooth muscle actin (α-SMA) expression. Myofibroblasts synthesize large amounts
of ECM, such as collagens and fibronectin, and produce fibrogenic cytokines [16,17]. The
cellular sources of myofibroblasts accumulation in fibrosis are various. They can origi-
nate from residential fibroblasts and pericytes, from mesenchymal stem cells in the bone
marrow, and via the transdifferentiation of epithelial cells [18–20]. The last mechanism
involves epithelia–mesenchymal transition (EMT), which results in the transformation of
epithelial cells into mesenchymal cells (Figure 1). At the molecular level, this process is
characterized by the expression of the transcription factors Snai1 and Snai2, Twist, Zeb1,
and Zeb2. This leads to a downregulation of E-cadherin, involved in the formation of
tight junctions between epithelial cells, and to an upregulation of mesenchymal markers
such as α-SMA and vimentin. The cells become motile and acquire a mesenchymal pheno-
type [21,22]. Numerous studies have demonstrated that EMT is an essential component in
the development of fibrosis [13,23–25].
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Figure 1. Cellular sources of myofibroblasts and fibrosis development. MSCs—mesenchymal stem 
cells; EMT—epithelia–mesenchymal transition; ECM—extracellular matrix. “Created with BioRen-
der.com”. 

Extensive studies on the molecular mechanisms underlying fibrosis have shown that 
numerous factors and signaling pathways involved in organ development, such as Notch, 
Wnt, TGF-β, etc., also participate in fibrogenesis [26–28]. The interplay between all these 
pathways remains unclear, and we are still far from a complete understanding of the full 
signaling network underlying fibrosis. This review discusses the crosstalk between two 
important signaling pathways, TGF-β and Notch, in the pathogenesis of fibrosis. 

1.2. TGF-β Pathway and Its Role in Fibrosis 
TGF-β signaling is facilitated by transmembrane serine/threonine kinase receptors, 

specifically type II (TβRII) and type I (TβRI) receptors. The TGF-β ligand family includes 
TGF-β1, TGF-β2, and TGF-β3. TGF-β ligands bind to TβRII, which recruits and phosphor-
ylates TβRI. The TβRI then phosphorylates receptor-regulated SMADs (SMAD1, SMAD2, 
or SMAD3). They are also known as R-SMADs, which can now form a complex with coS-
MAD (SMAD4), which translocates into the nucleus. There, they interact with other tran-
scription factors to either activate or repress the transcription of TGF-β target genes. In-
hibitory SMADs (I-SMADs), SMAD6 and SMAD7, act by binding to TβRI, thereby pre-
venting the recruitment and phosphorylation of the R-SMADs [29,30] (Figure 2). 

Figure 1. Cellular sources of myofibroblasts and fibrosis development. MSCs—mesenchymal
stem cells; EMT—epithelia–mesenchymal transition; ECM—extracellular matrix. “Created with
BioRender.com”.

Extensive studies on the molecular mechanisms underlying fibrosis have shown that
numerous factors and signaling pathways involved in organ development, such as Notch,
Wnt, TGF-β, etc., also participate in fibrogenesis [26–28]. The interplay between all these
pathways remains unclear, and we are still far from a complete understanding of the full
signaling network underlying fibrosis. This review discusses the crosstalk between two
important signaling pathways, TGF-β and Notch, in the pathogenesis of fibrosis.

1.2. TGF-β Pathway and Its Role in Fibrosis

TGF-β signaling is facilitated by transmembrane serine/threonine kinase receptors,
specifically type II (TβRII) and type I (TβRI) receptors. The TGF-β ligand family includes
TGF-β1, TGF-β2, and TGF-β3. TGF-β ligands bind to TβRII, which recruits and phosphory-
lates TβRI. The TβRI then phosphorylates receptor-regulated SMADs (SMAD1, SMAD2, or
SMAD3). They are also known as R-SMADs, which can now form a complex with coSMAD
(SMAD4), which translocates into the nucleus. There, they interact with other transcription
factors to either activate or repress the transcription of TGF-β target genes. Inhibitory
SMADs (I-SMADs), SMAD6 and SMAD7, act by binding to TβRI, thereby preventing the
recruitment and phosphorylation of the R-SMADs [29,30] (Figure 2).

The TGF-β signaling pathway plays an important role in the development, homeosta-
sis, and repair of most body tissues. It is involved in controlling proliferation, differentiation,
migration, and apoptosis of many cell types [31–33].

All three isoforms of TGF-β, TGF-β1, TGF-β2, and TGF-β3 have fibrogenic effects
on different cell types [26]. Among them, TGF-β1 is considered to play a major role in
fibrogenesis and mediate part of the functions of TGF-β2 and TGF-β3 [34]. TGF-β1 can
induce EMT, myofibroblast differentiation, and fibrosis of any tissue or organ [35]. α-SMA
contains SMAD3 binding element in its promoter, which is required for transcriptional
activation of α-SMA by TGF-β1 [36]. R-SMAD complexes can directly bind to the Snai1
promoter to initiate its transcription and can also form complexes with Snai1 protein to
repress the expression of E-cadherin and occludin [37]. TGF-β1 can also directly induce
collagen 1 alpha 1 (COL1A1) transcription [1,38,39].

Beyond the SMAD-dependent pathway there are various non-SMAD downstream
signaling pathways for TGF-β1 ligands. Some of them, like the mitogen-activated protein
kinase (MAPK) pathway, extracellular signal-regulated kinase (ERK)1/2 pathway, and
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c-Jun N-terminal kinase (JNK) pathway, are involved in TGF-β1-induced renal [40] and
lung [41] fibrosis. It is widely recognized that the TGF-β signaling pathway plays a central
and crucial role in fibrogenesis of any organ or tissue [1,26,29,42].
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vated through direct cell-to-cell contact. The Notch receptor on one cell binds to a trans-
membrane ligand, such as Jagged or Delta-like, present on a neighboring cell. This inter-
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to NICD and as an activator when bound to NICD. NICD-CSL complex promotes the ex-
pression of Notch target genes, firstly members of Hes, and Hey gene families, which en-
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Figure 2. TGF-β and Notch signaling pathways. TGF-β—transforming growth factor β;
TβRI—TGF-β receptor 1; TβRII—TGF-β receptor 2; NECD—Notch extracellular domain;
NICD—Notch intracellular domain; DLL—distal-less like; JAG—Jagged; DLL and JAG are Notch lig-
ands; ADAM—ADAM metallopeptidase; ADAM and γ-secretase are needed to cleave Notch receptor
and release NICD; CSL—NICD co-factor, its name is an abbreviation of the first letters of the members
of its family from different animal groups: CBF-1/RBPJ (mammalian), Su(H) (drosophila), Lag-1 (ne-
matoda); CoR—co-repressor; CoA—co-activator. See text for detail. “Created with BioRender.com”.

1.3. Notch Signaling and Fibrogenesis

The Notch signaling pathway plays a crucial role in determining cell fate and is
activated through direct cell-to-cell contact. The Notch receptor on one cell binds to a
transmembrane ligand, such as Jagged or Delta-like, present on a neighboring cell. This
interaction initiates the cleavage that releases Notch intracellular domain (NICD). The
NICD then moves into the nucleus where it forms a complex with CSL protein (CBF-
1/RBPJ, Su(H), Lag-1). CSL is a transcription regulator, which acts as a repressor when not
bound to NICD and as an activator when bound to NICD. NICD-CSL complex promotes
the expression of Notch target genes, firstly members of Hes, and Hey gene families,
which encode basic helix-loop-helix (bHLH) transcription factors essential for mediating
Notch’s downstream effects (Figure 2). Mammals have four Notch receptors (Notch1-4),
with their intracellular domains (N1ICD, N2ICD, N3ICD, and N4ICD), five ligands—two
Jagged family ligands (JAG1 and JAG2), and three delta-like ligands (DLL1, DLL3, and
DLL4) [43–45].

Over the last two decades, evidence has accumulated on the involvement of Notch
signaling in the fibrosis of various organs and tissues. Like the TGF-β pathway, Notch
signaling is capable of regulating EMT and myofibroblast activation in lung, kidney, liver,
skin, and other organs [13,46–49]. For example, all four Notch receptors can initiate fibrob-
last to myofibroblast transition in primary human alveolar fibroblast cultures [50]; Notch1,
Notch3, and Jag-1 are involved in renal, liver, and skin fibrosis [13,51–53]. However, the
role of Notch signaling in fibrogenesis is not so straightforward. The Notch signaling
pathway demonstrates cardioprotective effects after myocardial infarction (MI), in par-
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ticular, it can attenuate the profibrotic changes [54–58]. On the other hand, some studies
suggest that Notch signaling has the ability to induce cardiac fibrosis. In transgenic mice
subjected to myocardial infarction with increased afterload, activation of Notch through
the immobilized DLL4 ligand promotes the differentiation of multipotent stromal cells into
a myofibroblastic phenotype, originating from the epicardial cell population [59]. Notch
signaling activation induces the expression of Snai2 and α-SMA in cardiac mesenchymal
cells [60]. Therefore, Notch signaling plays a complex role in fibrosis, contributing to fibro-
genesis in various organs but also demonstrating cardioprotective effects by attenuating
fibrosis after MI.

2. Notch and TGF-β Signaling Pathways Interplay in the Fibrosis of Various Organs
2.1. Notch Signaling and TGF-β Pathway Crosstalk in Pulmonary Fibrosis

There is substantial evidence that both Notch and TGF-β pathways play significant
roles in the development of lung fibrosis [23,61–63]. Several studies suggest an interaction
between these signaling pathways in the induction of pulmonary fibrosis.

For instance, Notch1 induces the production of TGF-β1 and the phosphorylation of
SMAD3 that activate the expression of α-SMA in rat alveolar epithelial cell line RLE-6TN.
In turn, the addition of TGF-β increases the expression level of Notch1. Inhibition of
the Notch signaling after TGF-β1 treatment significantly reduces the effect of TGF-β1 on
α-SMA activation, and α-SMA induction by N1ICD is completely blocked by an inhibitor
of SMAD2/3 phosphorylation. Thus, in RLE-6TN cells, Notch and TGF-β signaling act
synergistically during myofibroblast differentiation. Activation of one pathway triggers the
other, and both are essential for the upregulation of α-SMA [18]. The interaction with TGF-β
has been shown for another Notch receptor—Notch3 in mouse and human lung fibrob-
lasts. Primary lung fibroblasts isolated from Notch3 knockout (Notch3-KO) mice exhibit a
weak response to TGF-β1 stimulation. The number of α-SMA-positive cells was markedly
decreased in Notch3-KO cells at multiple time points, specifically 24 h, 48 h, 72 h, and
5 days after treatment with TGF-β1, indicating reduced myofibroblast differentiation [64].
Incubation with TGF-β1 leads to an increase in the expression of Notch3 in human lung
fibroblasts IMR-90 [41]. In alveolar epithelial cells from the human adenocarcinoma cell
line A549, activation of the TGF-β pathway also leads to an increased expression of Notch2,
Notch4, and the ligand Jagged1. Inhibition of Notch signaling significantly diminishes
TGF-β1-induced EMT by suppressing the activation of Snai1. Additionally, E-cadherin
expression remains significantly higher in cells with depleted Notch2, Notch4, or Jagged1,
and this effect is only observed in the presence of TGF-β1 [65]. Moreover, overexpression
of the intracellular domain of Notch4 (N4ICD) in primary cultures of human fibroblasts
increases expression of TGF-β1 and phosphorylation of SMAD2 [66]. Studies in mouse
models of experimentally induced lung fibrosis have demonstrated that the Jagged1/Notch
and TGF-β1/SMAD pathways work together to promote EMT and myofibroblast differen-
tiation [16,67,68]. Together, these studies highlight the cooperative and synergistic effects
of the TGF-β and Notch pathways in lung fibrogenesis [62].

2.2. Notch and TGF-β in Liver Fibrosis

Fibrosis is a key pathological process in the development of all chronic liver dis-
eases [69,70]. A key aspect of liver fibrogenesis is the activation of hepatic stellate cells
(HSCs), which plays a pivotal role in this process. TGF-β1 treatment of mouse HSCs pro-
motes their activation and differentiation into myofibroblasts [71,72] and this transforma-
tion is accompanied by increased expression of Notch1, Jagged1, and Hes1 [73]. Inhibition
of Notch signaling hinders myofibroblast differentiation induced by TGF-β1, suggesting
that TGF-β1 signaling controls HSCs activation through regulating the expression of the
Notch pathway [73]. Further evidence indicates that Notch signaling can operate upstream
of TGF-β1. For example, overexpression of micro-RNA-25 (miR-25), which targets key
components of Notch signaling such as ADAM-17 (ADAM Metallopeptidase Domain 17)
and FKBP14 (FKBP Prolyl Isomerase 14), leads to a reduction in the expression of TGF-β1
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and TGFβR1 in the HSC cell line LX-2. Notably, in inactive LX-2 cells, miR-25 expression
does not affect the levels of activation markers α-SMA and Col1A1. However, when LX-2
cells are stimulated with TGF-β1, overexpression of miR-25 significantly inhibits the upreg-
ulation of Col1A1, while it has no effect on the increased expression of α-SMA [74]. In vivo
studies also support the interaction between these pathways. Rats with concanavalin
A-induced liver fibrosis exhibit higher expression levels of Notch (Notch1, Hes1, Hes5)
and TGF-β (TGF-β1, SMAD3) pathway components than control rats. Inhibition of Notch
signaling in these cells leads to the downregulation of TGF-β1 and SMAD3, while TGF-β
inhibitors, in turn, suppress Notch1, Hes1, and Hes5 [75]. Additionally, the suppression
of Notch signaling results in a notable decrease in fibrogenesis within the intrahepatic
cholangiocarcinoma microenvironment, especially in cancer-associated fibroblasts (CAFs).
The deactivation of CAFs and reduction of ECM synthesis in the presence of a Notch
inhibitor are mediated through the inhibition of canonical TGF-β signaling [76]. Taken
together, these findings highlight the positive cross-regulation between the Notch and
TGF-β signaling pathways in liver fibrosis, underscoring their synergistic role in promoting
the fibrotic process.

2.3. Notch and TGF-β Interaction in Kidney Fibrosis

The interplay between Notch and TGF-β is essential for renal fibrosis [53,77]. The
profibrotic effect of these pathways were demonstrated in both interstitial fibroblasts and
tubular epithelial cells (TECs). Renal interstitial fibroblasts are capable of fibroblast-to-
myofibroblast transformation, leading to fibrosis development [78]. TECs secrete pro-
fibrotic cytokines. In vitro TECs can undergo EMT, but there are no solid data supporting
EMT as an in vivo process in kidney fibrosis [79]. The impact of Notch signaling on TGF-β
has been demonstrated both in vivo and in vitro using the unilateral ureteral obstruction
(UUO) mouse model. The UUO mice exhibited increased expression of Notch1, Notch3,
and Notch4, and its target genes Hes1 and HeyL. Inhibition of Notch signaling with diben-
zazepine (DBZ) significantly reduced fibrotic tissue transformation and the expression of
fibrogenesis markers, such as collagens, α-SMA, and fibronectin, and it also suppressed
TGF-β1 expression and SMAD2 and SMAD3 phosphorylation [78]. Tubular epithelial cells
(TECs), transfected with a vector, bearing N1ICD, demonstrated enhanced expression of
TGF-β1. Conditioned medium from N1ICD-transduced TECs stimulated the renal fibrob-
lasts to express collagens and fibronectin and led to their differentiation to myofibroblasts.
The effects of N1ICD were significantly attenuated by adding anti-TGF-β1 neutralizing
antibodies to the medium. Together, these findings indicate that Notch activation in TECs
drives myofibroblast differentiation by increasing TGF-β1 production [78]. Similar results
were obtained on cell cultures from rat and human kidney fibrotic tissues: Notch1 activa-
tion in TECs and interstitial fibroblasts contributes to the myofibroblastic phenotype and
fibrosis by targeting downstream TGF-β1/SMAD2/3 signaling [80]. Moreover, this study
demonstrated that TGF-β1 upregulates Notch1, Jagged-1, and Hey1 expression in TECs
and interstitial renal fibroblasts. Numerous studies revealed cooperative interaction of
Notch and TGF-β1 pathways in renal fibrosis [81,82]; however, some evidence indicates
the possibility of antagonistic relationships of these signals in the renal epithelium. Under
conditions of pathological shear stress, which triggers fibrosis in renal proximal tubular
epithelial cells (PTECs), Notch4 inhibits the TGF-β1 pathway [83]. Therefore, we can con-
clude that the interplay between Notch and TGF-β signaling is crucial in kidney fibrosis,
where these pathways cooperatively promote EMT and myofibroblast differentiation, but
under certain conditions, Notch4 may antagonize TGF-β1 signaling in renal epithelial cells.

2.4. Crosstalk between Notch and TGF-β in Cardiac Fibrosis

Cardiac fibrosis is a common pathophysiologic process in most heart disease. Most
studies suggests that Notch signaling in cardiac fibroblasts (CFs) and cardiomyocytes
suppresses fibrogenesis [55–58]. The inhibition of Notch signaling with specific antago-
nist DAPT (γ-secretase inhibitor prevents the release of NICD) in rat CFs results in the
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fibroblast-to-myofibroblast transformation. Treatment of these cells with TGF-β1 leads to
an increase in α-SMA expression and a decrease in the expression of Notch1, Notch3, and
Notch4 [56]. Further studies have demonstrated that overexpression of N1ICD reduced
all of the TGF-β1-induced profibrotic changes in rat CFs, such as increased proliferation,
invasiveness, adhesion, elevated α-SMA expression, and collagen 1 synthesis. Knockdown
of the N1ICD, on the contrary, amplified TGF-β1 effects [57]. Overexpression of the Notch
ligand Jag-1 in mouse cardiomyocytes resulted in reduced activation of TGF-β2, TGF-β3,
and myofibroblast markers after transaortic constriction [55]. The transduction of mouse
CFs with lentiviral constructs carrying Notch3 cDNA attenuated TGF-β1-induced fibrosis,
while the intramyocardial injection of short interfering RNA for Notch3 (siNotch3), on the
contrary, enhanced the profibrotic effects of TGF-β1 [84]. Thus, numerous studies indicated
a cardioprotective role of Notch signaling in heart fibrosis, associated with its negative reg-
ulation of TGF-β pathway. Nevertheless, some studies have found a synergistic interaction
between Notch and TGF-β pathways in cardiac fibrosis and postulated profibrotic effect of
Notch signaling [59,85]. Li and colleagues showed using an in vivo MI mouse model that
knockdown of the NICD key cofactor CSL using shCSL significantly reduced fibrosis. Mice
injected with shCSL exhibited markedly lower levels of TGF-β1 and collagen expression
compared to the control group [85]. The interaction between Notch and TGF-β signaling
plays a complex role in cardiac fibrosis, with most studies indicating that Notch signaling
suppresses TGF-β-induced fibrotic changes, though some evidence suggests a potential
synergistic profibrotic effect in certain contexts.

Numerous studies on fibrogenesis across various organs have shown that the TGF-β
and Notch signaling pathways generally exhibit functional synergy in the development of
fibrosis, as seen in lung, liver, and kidney fibrosis. However, in cardiac fibrosis, Notch sig-
naling displays a dual role: it can act as an antagonist to the TGF-β pathway, preventing the
transformation of cardiomyocytes and cardiac fibroblasts into myofibroblasts, or as a pro-
tagonist, promoting the differentiation of cardiac mesenchymal cells into a myofibroblastic
phenotype (Figure 3).
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fibrosis of various organs. TGF-β and Notch act synergistically in the kidney, liver, and lung, leading
to myofibroblast differentiation and fibrosis development. The TGF-β pathway induces fibrosis,
but the role of Notch signaling in the process of cardiac fibrosis remains ambiguous and highly
depends on cell context. Most studies demonstrate that Notch inhibits myofibroblast differentia-
tion via antagonizing TGF-β pathway, but several studies point to possible synergistic interplay
between these pathways and demonstrate profibrotic effect of Notch. Jag-1—Jagged-1. “Created with
BioRender.com”.
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3. Molecular Mechanisms of the Interplay between TGF-β and Notch Signaling

There is limited evidence supporting the direct transcriptional regulation of Notch
receptors or ligands by TGF-β-induced SMAD complexes. For example, SMAD2/3 binding
to the promoters of Notch2 and Notch3 has been demonstrated in hepatic stellate cells
(HSCs) during liver fibrogenesis [86].

Crosstalk of Notch and TGF-β signaling can occur at multiple levels. Below we
describe some of the interaction mechanisms, focusing on those involved in fibrogenesis.

3.1. Interaction of SMAD3 and NICD

The profibrotic effects of TGF-β are primarily mediated through the activation of
SMAD3. There are several lines of evidence that NICD can directly bind SMAD3 [57,87–90].
In 2003 Blokzijl and colleagues showed that N1ICD and phosphorylated SMAD3 (pSMAD3)
interact directly in a ligand-dependent manner, and pSMAD3 could be recruited to CSL-
binding sites on DNA in the presence of CSL and N1ICD and this complex induces Hes1
expression [87]. A similar cooperation was shown in mouse regulatory T cells in that the
N1ICD interacts with activated SMAD3, facilitates its nuclear translocation, where they
together upregulate the transcription factor Forkhead box P3 (Foxp3) [91]. The SMAD3-
N1ICD-CSL complex can bind to both SMAD and CSL binding sites, leading to histone
H4 acetylation on a subset of gene promoters [88]. N1ICD can also prolong the pSMAD3
half-life [88] (Figure 4).
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NICD and SMAD3 interaction can also inhibit TGF-β/SMAD3 signal transduction. 
Indeed, Sun and colleagues demonstrated that direct binding of N4ICD with active 
SMAD3 reduced the expression of TGF-β/SMAD3 transcriptional targets and attenuated 
TGF-β1 induced growth inhibition in HC-11 and EpH4 mammary epithelial cells [89]. 
N1ICD can also inhibit antiproliferative activity of TGF-β in epithelial cells via sequestra-
tion of p300 from pSMAD3 [92]. In muscle stem cells N1ICD and pSMAD3 physically 
interact, and this association prevents pSMAD3 binding to promoters of the cyclin-de-
pendent kinase (CDK) inhibitors p15, p16, p21, and p27, which maintains the proliferative 
activity of these cells. In aging muscle, N1ICD levels are low, resulting in SMAD3 persis-
tently activating transcription of CDK inhibitors. This leads to the suppression of muscle 
stem cell proliferation and a restricted capacity for aged muscle regeneration [90]. N1ICD 
binding with pSMAD3 is capable of preventing SMAD3 interaction with α-SMA promoter 
region in rat CFs [57]. Some studies suggest that N1ICD and N4ICD can negatively regu-
late SMAD3 phosphorylation or pSMAD3 degradation [57,83] (Figure 4). 

3.2. Shared Transcriptional Targets 
The genes of the Hey/Hes family of bHLH transcriptional repressors are direct tar-

gets of Notch signaling pathway. Sequence analysis of the Hey1 promoter identified five 
putative consensus binding elements for SMAD3/SMAD4—SMAD-binding element core 
repeats (SCRs). Zavadil and colleagues showed that TGF-β induced expression of the 
Hey1 in established cell culture models of TGF-β-induced EMT. TGF-β activated Hey1 via 
direct binding of the SMAD3/4 complex with its promoter and this activation is Notch 
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Figure 4. The complex role of NICD-SMAD3 binding in TGF-β and Notch signaling transduction.
Synergistic interaction: NICD-pSMAD3 complex moves to the nucleus, interacts with CSL, and
enhances transcription of both TGF-β and Notch targets. NICD binding to pSMAD3 can increase
the pSMAD3 half-life. Antagonistic interaction: NICD binds to pSMAD3 and sequestrates histone
acetyltransferase P300 from it, blocking the transcription of TGF-β transcriptional targets. NICD
binding to pSMAD3 can prevent its interaction with target gene promoters. NICD binding to pSMAD3
can promote degradation of the latter. CDK-cyclin-dependent kinase; NECD—Notch extracellular
domain; NICD—Notch intracellular domain; SBE—SMAD binding element; CBE—CSL binding
element. “Created with BioRender.com”.

NICD and SMAD3 interaction can also inhibit TGF-β/SMAD3 signal transduction.
Indeed, Sun and colleagues demonstrated that direct binding of N4ICD with active SMAD3
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reduced the expression of TGF-β/SMAD3 transcriptional targets and attenuated TGF-β1
induced growth inhibition in HC-11 and EpH4 mammary epithelial cells [89]. N1ICD
can also inhibit antiproliferative activity of TGF-β in epithelial cells via sequestration of
p300 from pSMAD3 [92]. In muscle stem cells N1ICD and pSMAD3 physically interact,
and this association prevents pSMAD3 binding to promoters of the cyclin-dependent
kinase (CDK) inhibitors p15, p16, p21, and p27, which maintains the proliferative activity
of these cells. In aging muscle, N1ICD levels are low, resulting in SMAD3 persistently
activating transcription of CDK inhibitors. This leads to the suppression of muscle stem cell
proliferation and a restricted capacity for aged muscle regeneration [90]. N1ICD binding
with pSMAD3 is capable of preventing SMAD3 interaction with α-SMA promoter region in
rat CFs [57]. Some studies suggest that N1ICD and N4ICD can negatively regulate SMAD3
phosphorylation or pSMAD3 degradation [57,83] (Figure 4).

3.2. Shared Transcriptional Targets

The genes of the Hey/Hes family of bHLH transcriptional repressors are direct targets
of Notch signaling pathway. Sequence analysis of the Hey1 promoter identified five
putative consensus binding elements for SMAD3/SMAD4—SMAD-binding element core
repeats (SCRs). Zavadil and colleagues showed that TGF-β induced expression of the
Hey1 in established cell culture models of TGF-β-induced EMT. TGF-β activated Hey1
via direct binding of the SMAD3/4 complex with its promoter and this activation is
Notch independent. The authors made a series of Hey1 promoter deletion constructs
and confirmed that promoter fragments containing both proximal and distal SCRs were
required for the activation by TGF-β signals, while constructs lacking the SCRs were
unresponsive [68]. This work also revealed that TGF-β/SMAD and Notch signals used
physically distinct promoter regions to activate Hey1.

It was shown that Notch also can activate classical targets of TGF-β/SMAD pathway,
for example, Snai1 and Snai2, which are key players in TGF-β1-induced EMT. Promoter
region of Snai1 has one putative CSL binding sequence [65,93]. Constitutive activation
of Notch2 or Notch4 was sufficient for the induction of Snai1 in A549 cells. CHiP assay
revealed that both N2ICD and N4ICD are recruited to the Snai1 promoter. Interestingly,
in human ovarian carcinoma SKOV-3 cells this region was targeted by N1ICD [93]. Notch
signaling also directly modulated Snai2 expression that was required for endothelial-to-
mesenchymal transition (endoMT) in cardiac cushion morphogenesis [94].

3.3. Interactions Mediated by Reactive Oxygen Species (ROS)

TGF-β1 increases ROS production [95], which is important for EMT and fibrosis de-
velopment [96]. In turn, ROS triggers the expression of some antioxidant factors, including
Nrf2 [97]. Several studies have demonstrated that Nrf2 can activate Notch signaling. For
instance, Yazaki and colleagues showed that TGF-β1 activates Nrf2 expression in A549
cells in an ROS-dependent manner, and Nrf2 directly activates Notch4 expression via
binding with one of the antioxidant response elements (ARE) regions in its promoter [98].
In hepatocytes, activated Nrf2 directly interacts with ARE in the Notch1 promoter to induce
its transcription [99]. It is interesting that in A549 cells Notch1 was not induced by TGF-β1
despite the presence of functional ARE [65]. This result suggests the ROS-Nrf2 pathway is
necessary but not sufficient for TGF-β1-induced Notch transcription.

In pulmonary fibroblast cell culture IMR-90 TGF-β1-induced activation of Notch3 was
also mediated by ROS. The ROS production induced the expression of MAPK kinases p38
and JNK1/2, which in turn upregulated Notch3 receptor expression [41].

4. Conclusions

Fibrogenesis of any organ or tissue involves interplay between Notch and TGF-β
signaling pathways. The outcomes and mechanisms of this crosstalk vary depending
on the cellular context and potentially on the activity of other signaling, such as Wnt
and Hippo pathways, which are also involved in regulating similar physiological and
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pathological processes [100–102]. In most cases, TGF-β and Notch signaling pathways
demonstrate functional synergy in the development of fibrosis, such as in lung, liver, or
kidney fibrosis. However, in cardiac fibrosis, Notch signaling acts as an antagonist to
TGF-β pathway, preventing the myofibroblast transformation of heart cells. The diversity
of potential interaction mechanisms leads to ambiguous outcomes in the activation of these
signaling pathways, complicating the search for therapeutic approaches to treat fibrosis.
The development of cell signaling research tools combined with mathematical modeling
may reveal a full signaling network in cells under various biological contexts, that will help
us accurately predict biological outcomes from combinatorial signaling activities.
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