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Abstract: The progression and metastasis of oral squamous cell carcinoma (OSCC) are highly influ-
enced by cancer stem cells (CSCs) due to their unique self-renewal and plasticity. In this study, data
were obtained from a single-cell RNA-sequencing dataset (GSE172577) in the GEO database, and
LASSO-Cox regression analysis was performed on 1344 CSCs-related genes to establish a six-gene
prognostic signature (6-GPS) consisting of ADM, POLR1D, PTGR1, RPL35A, PGK1, and P4HA1.
High-risk scores were significantly associated with unfavorable survival outcomes, and these features
were thoroughly validated in the ICGC. The results of nomograms, calibration plots, and ROC curves
confirmed the good prognostic accuracy of 6-GPS for OSCC. Additionally, the knockdown of ADM
or POLR1D genes may significantly inhibit the proliferation, migration, and invasion of OSCC cells
through the JAK/HIF-1 pathway. Furthermore, cell-cycle arrest occurred in the G1 phase by sup-
pressing Cyclin D1. In summary, 6-GPS may play a crucial role in the occurrence and development of
OSCC and has the potential to be developed further as a diagnostic, therapeutic, and prognostic tool
for OSCC.

Keywords: oral squamous cell carcinoma; cancer stem cells; prognosis signature; RNA-sequencing;
ADM; POLR1D

1. Introduction

Despite advancements in science, oral cancer continues to have a high mortality rate in
humans [1,2]. More than 90% of oral malignancies, according to histopathology, are caused
by oral squamous cell carcinoma (OSCC) [3,4]. In 2020, 377,713 new cases of oral cancer
were reported worldwide, along with 177,757 new fatalities [5]. The traditional techniques
of treating OSCC include surgery, radiation, chemotherapy, and a combined approach
based on the three [6]. Gene therapy, immunotherapy, hyperthermia, and photodynamic
treatment used in conjunction with conventional therapy have helped OSCC patients’
therapeutic outcomes in recent years [7–10], but their 5-year overall survival rate (OS) is
still only 50% to 64% [11]. The recurrence rate of OSCC is between 18% and 76%, even in
individuals who receive the usual mix of surgical and non-surgical treatments [12]. The
elucidation of molecular mechanisms driving OSCC occurrence is essential, as it holds the
promise of expediting the advancement of personalized therapeutic approaches.

Recent advances have highlighted the significant role of cancer stem cells (CSCs)
with self-renewal and differentiation capabilities in the occurrence and development of
OSCC [13,14]. Additionally, CSCs are strongly linked to poor prognostic outcomes and
cancer recurrence in OSCC due to their various biological differences from non-CSCs,
including resistance to chemotherapy and radiotherapy [15,16], avoidance of induced cell
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death [17], and dormancy [18]. Reports indicate that certain CSCs express proteins similar
to embryonic stem cells, such as OCT4, NANOG, and SOX2, which serve as key regulators
for self-renewal and maintenance in undifferentiated stem cell populations [19,20]. As
for potential CSCs, indicators in OSCC, CD44, CD24, CD133, Oct-4, Bmi-1, Musashi-1, and
ALDH have also been mentioned [21,22]. However, currently, there is a lack of reliable
biomarkers available for the accurate isolation and characterization of CSCs in OSCC.
Therefore, the identification of novel and improved CSC markers that comprehensively
correlate with known cancer progression alterations in OSCC appears to be necessary.

RNA sequencing (RNA-seq) is a high-throughput method for determining the se-
quence of RNA molecules in the transcriptome. Combining bulk RNA-seq and Single-cell
RNA-seq (scRNA-seq) not only provides comprehensive information about gene expres-
sion but also aids in understanding the cellular genetic, transcriptional, and epigenetic
changes during the progression of OSCC [23]. In this study, we obtained a scRNA-seq
dataset from the Gene Expression Omnibus (GEO) and bulk RNA-seq data for OSCC
from the International Cancer Genome Consortium (ICGC). Using bioinformatics tools,
we analyzed and identified the cancer stem cell marker genes (CSCMGs) of OSCC and
further constructed and validated a six-gene prognostic signature (6-GPS, consisting of
Adrenomedullin (ADM), RNA polymerase 1 subunit D (POLR1D), Prostaglandin reduc-
tase 1 (PTGR1), L35a ribosomal protein (RPL35A), Phosphoglycerate kinase 1 (PGK1) and
Prolyl 4-hydroxylase subunit alpha 1 (P4HA1)) for OSCC. Subsequently, we constructed
nomograms for the prediction models of 1/3/5-year OS and validated the biological roles
of ADM and POLR1D genes in OSCC cell lines through gene knockdown experiments.
Additionally, gene set enrichment analysis was performed to identify signaling pathways
enriched by the prognostic features associated with 6-GPS. In conclusion, this study focused
on OSCC CSCs and developed and validated a new prognostic feature associated with
cancer stem cell marker genes, which can be used to guide survival risk stratification and
improve the management of OSCC patients.

2. Results
2.1. Identification of CSCMGs Expression Profiles

Data quality control (QC) and visualization were carried out by the Seurat package,
and the gene numbers, cell numbers, and mitochondrial contents were calculated (Sup-
plementary Figure S1A). After the QC and the removal of batch effects, multiple principal
components (PC) populations with large differences that can be used as anchor points were
obtained (shown as PC1 and PC2), and the results showed that the batch removal effect
was excellent (Supplementary Figure S1B). Next, HVGs were calculated and visualized,
and the top 10 HVGs were marked (Supplementary Figure S1C). Then, the top 2000 HVGs
were used for further PC analysis. The ElbowPlot function was used to evaluate the PCs,
and the results were visualized as the scree plot (Supplementary Figure S1D).

Principal Component Analysis (PCA) and scree plot analysis were performed to
investigate the data structure, followed by Uniform Manifold Approximation and Projection
(UMAP) dimensionality reduction analysis, which enabled the identification of 19 distinct
cell clusters (Figure 1A). Subsequently, the reference dataset from the human main cell map
was employed to annotate the cell types present in each cluster. Among the 14 annotated
cell clusters, a total of 15,731 unique gene expressions were observed, as documented
in Supplementary Table S1. Notably, Cluster 1 encompassed cells classified as CSCs
(Figure 1B), consisting of 1344 genes with expression profiles specifically associated with
CSCs, as indexed in Supplementary Table S1. To further ascertain this distinction, the
expression levels of cancer stem cell markers TACSTD2 [24] and KRT19 [25] were assessed
across all cell clusters. Interestingly, Cluster 1 exhibited significantly higher expression of
both TACSTD2 (Figure 1C,E) and KRT19 (Figure 1D,F) when compared to other cell clusters.
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expression details; (F) KRT19 expression details.

2.2. Establishment of the 6-GPS Based on CSCMGs

Utilizing a predetermined cutoff value, we subjected 124 CSCs-related genes to uni-
variate Cox regression analysis to establish a prognostic feature among the 1344 identified
genes (Supplementary Table S2). From this analysis, 19 CSCMGs were found to be sig-
nificantly associated with the prognosis of OSCC, as determined by single-variable Cox
regression analysis (Figure 2).

Employing the least absolute shrinkage and selection operator (LASSO) Cox regression
analysis, we further identified the six most predictive genes (ADM, PTGR1, RPL35A, PGK1,
POLR1D, and P4HA1) to construct a prognostic risk scoring model (Figure 3A,B). The
resulting model, known as the 6-GPS, was validated as an independent prognostic factor
with remarkable statistical significance (p < 0.01). Subsequently, for each sample, the risk
score was calculated using the 6-GPS and the corresponding regression coefficient. This
calculation was performed with the following equation: Risk-based score = Sum of each
gene (Regression coefficient × Gene expression). The optimal risk score cutoff value was
determined based on the median risk score using the ‘SurvMiner’ package within the
training set. Based on their respective risk scores, patients were classified into high-risk
and low-risk groups, with the dividing line set at the median risk score (Figure 3C). The
distribution of survival status was visually represented in Figure 3D, respectively, clearly
demonstrating a higher incidence of mortality within the high-risk group. Figure 3E
provides detailed expression profiles of the six genes comprising the 6-GPS. Kaplan-Meier
(K-M) analysis revealed a significantly inferior OS for patients with high-risk scores as
compared to those with low-risk scores (Figure 3F). To evaluate the predictive performance
of the risk model, we determined the area under the time-dependent receiver operating
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characteristic (TimeROC) curve (AUC) at different time points (1, 3, and 5 years), which
yielded AUC values of 0.696, 0.664, and 0.636, respectively (Figure 3G).
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Figure 3. Establishment of a prognosis-associated signature for OSCC. (A) 6-GPS-based LASSO
cross-validation plot. (B) LASSO coefficient of 6-GPS in OSCC. (C) Visualization of risk scores of
OSCC patients. (D) Visualization of dead and alive OSCC patients with high- and low-risk scores.
(E) Heatmap of the expression of the 6-GPS in specimens with high-risk and low-risk scores.
(F) Survival analyses of OSCC subjects with high- and low-risk scores with K-M curves. (G) Estima-
tion of the predictive ability of the nomogram in OSCC prognosis using the ROC curves.
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2.3. Construction and Assessment of Nomogram

A widely used prognostic visualization tool in oncology, the nomogram, was employed
to estimate patient survival by incorporating an index score. Based on our predictive
model, patients who are over 60 years old, female, in clinical stages III to IV, and have
high expression of ADM/PTGR1/RPL35A/PGK1/POLR1D/P4HA1 are more likely to be
in a high-risk state (Figure 4A). These predictive factors can serve as important criteria
for evaluating patient risk and devising personalized treatment strategies. The calibration
curve serves as evidence of the effective performance of the prognostic gene traits in
predicting survival outcomes, with the nomogram accurately estimating 1-, 3- and 5-year
OS (Figure 4B). The Y-axis represents the actual survival probability, while the X-axis
represents the estimated survival probability generated by the nomogram. The calibration
curve, characterized by a 45-degree diagonal dotted line, indicates perfect agreement
between the observed probability and the actual probability.
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Figure 4. Estimated prognostic accuracy of 6-GPS in patients with OSCC. (A) Nomogram shows
that the age, gender, clinical stage, and risk score were associated with 1-, 3-, and 5-year OS.
(B) Calibration plots for showing the deviation between model-estimated and observed 1-, 3-, and
5-year survival.

2.4. Validation of the Prognostic Signature

The ICGC cohort was employed as the validation cohort for 6-GPS, and the patients
were split into low-risk and high-risk groups based on the training cohort’s median risk
score. Figure 5A–C display the 6-GPS risk score, survival status, and heatmap for the
validation cohort. The survival curve demonstrated that people in the high-risk category
had a worse prognosis than those in the low-risk category, which was consistent with the
findings of the training cohort (Figure 5D). Additionally, the 1-, 2-year OS AUC prediction
values were 1.000 and 0.953, respectively (Figure 5E). Overall, 6-GPS has demonstrated
worldwide applicability in its performance as a classifier.
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shown. (E) Time-independent ROC analysis of risk score for predicting the OS in the ICGC cohort.

2.5. Expression Levels of 6-GPS

The mRNA expression of the 6-GPS was subjected to analysis using the Cancer
Genome Atlas (TCGA) dataset. In comparison to the established normal standard, the
OSCC samples exhibited significantly lower expression of PTGR1, while demonstrating
higher expression of ADM, RPL35A, PGK1, POLR1D, and P4HA1 (p < 0.05, Figure 6A,B).
Correspondingly, the HPA website conducted evaluations of the protein abundance of
the 6-GPS. Immunohistochemistry results revealed that OSCC samples exhibited notably
higher protein levels of PTGR1, PGK1, POLR1D, and P4HA1 compared to normal skin
and mucosa tissues (Figure 6C–J). Importantly, patients diagnosed with OSCC displayed a
distinct survival disadvantage in the high expression group of the 6-GPS, as demonstrated
by lower OS rates in comparison to the low expression group (Figure 6K–P). Collectively,
these comprehensive findings provide compelling evidence supporting a robust association
between the 6-GPS and the prognosis of OSCC patients.
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Figure 6. Expression levels of 6-GPS (A) Comparing the 6-GPS expression levels in all OSCC and
normal epithelium tissues. (B) Comparison of 6-GPS expression levels between cancer and adjacent
normal tissues from the same patient. (C) Negative expression of PTGR1 was observed in normal
oral mucosa (HPA036724). (D) Negative expression of PGK1 was observed in normal oral mucosa
(HPA073644). (E) Medium expression of POLR1D was observed in normal skin (25–75%, HPA039337).
(F) Medium expression of P4HA1 was observed in normal oral mucosa (>75%, HPA026593).
(G) Low expression of PTGR1 was observed in OSCC (HPA036724). (H) High expression of PGK1
was observed in OSCC (>75%, CAB010065). (I) Medium expression of POLR1D was observed in
OSCC (>75%, HPA039337). (J) High expression of P4HA1 was observed in OSCC (>75%, HPA026593).
(K–P) K-M survival curves for the 6-GPS. (*: p < 0.05; ***: p < 0.001; ns: No significance).
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2.6. Analysis of the Functional Characteristics of 6-GPS

To gain deeper insights into the underlying biological pathways associated with the
6-GPS, we conducted further investigation by identifying genes correlated with the 6-
GPS and constructing a protein–protein interaction (PPI) network analysis map, depicted
in Figure 7A. Subsequently, the interactions among these genes were explored using
GeneMANIA (http://genemania.org). The resultant analysis revealed that the 6-GPS
interaction network was significantly enriched in biological processes related to response
to reduced oxygen levels, hypoxia, cellular response to oxygen levels, as well as protein
hydroxylation, protein targeting to the endoplasmic reticulum (ER), protein localization
to the ER, and protein targeting to the cell membrane (Figure 7B). Moreover, functional
enrichment analyses using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) were performed. The results generated three functional categories
encompassing biological processes (BP), cellular components (CC), and molecular functions
(MF), which are detailed in Supplementary Table S3. Notably, the enrichment analysis
unveiled that the expression of the 6-GPS was closely associated with various functional
annotations such as the ribosome, hypoxia-inducible factor 1 (HIF-1) signaling pathway,
and ribosome structural component. Furthermore, examples of enriched terms include
protein targeting to the cell membrane, nuclear-transcribed mRNA catabolism, cellular
response to oxygen levels, cellular response to hypoxia, and protein localization to the ER
(Figure 7C,D). These findings collectively suggest that the 6-GPS is significantly implicated
in biological pathways relevant to cancer progression.
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2.7. Inhibition of OSCC Cell Proliferation, Migration, and Invasion upon ADM and POLR1D
Genes Knockdown

Previous studies have elucidated the roles of other genes within the 6-GPS in OSCC.
However, the biological functions of ADM and POLR1D remain to be validated. To further
investigate the biological effects of ADM and POLR1D in CAL-27 and SAS cell lines, we
utilized siRNA knockdown technology. Real-time quantitative polymerase chain reac-
tion (RT-qPCR) results showed that siRNA3-ADM and siRNA3-POLR1D exhibited high
knockdown efficiency in CAL-27 and SAS cells (Figure 8A,B); thus, these two siRNAs were
selected for subsequent experiments. CCK-8 assays revealed that interfering with targeted
gene expression significantly inhibited the proliferation of OSCC cells (Figure 8C,D). The
Transwell migration and invasion assay confirmed that ADM or POLR1D knockdown inhib-
ited the migration (Figure 8E,F) and invasion (Figure 8G,H). Subsequent RT-qPCR analysis
unveiled a reduction in MMP2 mRNA expression subsequent to the knockdown of ADM
and POLR1D (Figure 8I). Furthermore, flow cytometry analysis showed that knockdown of
ADM or POLR1D induced G1 phase cell-cycle arrest in CAL-27 and SAS cells (Figure 8J).
These findings corroborate the bioinformatics analysis, indicating that ADM and POLR1D
may promote the proliferation and tumorigenicity of OSCC cells.

2.8. The Mechanistic Role of ADM and POLR1D in OSCC Cells

The cell surface antigen CD133 is considered to be a cancer stem cell biomarker. Flow
cytometry analysis revealed a significant decrease in CD133-positive cells in CAL-27 and
SAS cell lines upon knockdown of ADM and POLR1D genes compared to the control
group (Figure 9A,B). RT-qPCR results demonstrated a correlation between the ADM and
POLR1D genes, as the knockdown of ADM or POLR1D resulted in the downregulation of
the other gene. Additionally, the study investigated the related genes in the PPI network.
Interestingly, the knockdown of ADM led to compensatory upregulation of its receptor
gene, RAMP2. On the other hand, the expression of POLR1F and POLR3B decreased with
the knockdown of POLR1D (Figure 9C,D). The analysis of gene enrichment demonstrated
the connection between 6-GPS and the HIF-1 signaling pathway, cellular response to
hypoxia, and other relevant pathways. Spearman correlation analysis revealed a correlation
between the ADM (Figure 9E) and POLR1D (Figure 9F) genes and the cellular response
to hypoxia. To investigate the downstream effects of ADM and POLR1D knockdown
in SAS cells, we performed Western blot analyses to assess the expression levels of key
genes. Our findings revealed a decrease in the levels of JAK1, phosphorylated-JAK1, and
HIF-1α expression following the knockdown of the target genes. Knockdown of ADM
resulted in reduced expression of Cyclin D1, a marker associated with the transition from
G1 to S phase. Furthermore, the knockdown of POLR1D was accompanied by decreased
CDK2 expression. Notably, we also observed a significant reduction in the protein levels
of CD133 and ALDH1A1, markers indicative of cancer stem cells (Figure 9G,H). These
findings suggest that the ADM and POLR1D genes may play a role in the cellular response
to hypoxia and potentially regulate critical pathways associated with the properties of
cancer stem cells in OSCC cells.
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Figure 8. Correlations between ADM/POLR1D knockdown and biological characterizations of
CAL-27 and SAS cells. The expression of ADM (A) and POLR1D (B) was interfered with using
siRNAs. The interfering efficiency was examined by RT-qPCR. CCK-8 assay was conducted to detect
the proliferation of CAL-27 (C) and SAS (D) cells after the targeted gene silence. Cell migration
(E–F) and Invasion (G–H) were detected in CAL-27 and SAS cells transfected with RNAi-ADM or
RNAi-POLR1D by Transwell assay. mRNA expression levels of MMP2 in CAL-27 and SAS cells with
the ADM or POLR1D knockdown (I). Cell-cycle analysis demonstrated an increase in the proportions
of the G1 phase upon knockdown of ADM and POLR1D (J). Data are shown as mean and SD of
triplicates (mean ± SD). (*: p < 0.05; **: p < 0.01; ***: p < 0.001; ns: No significance; vs. RNAi-NC).
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Figure 9. Mechanistic role of ADM and POLR1D in OSCC. Flow cytometry analysis of CD133
cell surface expression as a marker of cancer stem cells ((A) Flow cytometry images; (B) statistical
analysis). The networking genes of ADM and POLR1D expression levels in CAL-27 (C) and SAS
(D) cells were checked by RT-qPCR. Spearman’s correlation analysis between ADM (E) and POLR1D
(F) and pathway scores. Expression of the protein in SAS cell was determined by Western blot
((G) Western blot images; (H) statistical analysis). Data are shown as mean and SD of triplicates
(mean ± SD). (*: p < 0.05; **: p < 0.01; ***: p < 0.001; vs. RNAi-NC).

3. Discussion

A growing body of research demonstrates that CSCs are crucial to the formation and
development of OSCC [26]. Patients with OSCC may live longer if cancer stem cells are
specifically targeted [27,28]. The advancement of bioinformatics enables comprehensive
investigation into the molecular characteristics of OSCC and the identification of potential
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prognostic biomarkers. For instance, Wang et al. [4] obtained gene expression profiles
from the GEO database and identified the prognostic signature of six genes in OSCC
through bioinformatics analysis and RT-qPCR validation. Wu et al. [29] constructed an
OSCC-related risk model based on cancer-associated fibroblasts by scRNA-seq analysis
and explored the potential correlation between OSCC and periodontal disease. However,
current research lacks the investigation of potential mechanisms underlying the occurrence
and progression of OSCC through the establishment of prognostic signatures based on
CSCMGs. Additionally, the limited sample size of individual GEO datasets may result in
biases in differential gene studies without yielding biological significance. In contrast to
the analysis of a single dataset, the present study used the GEO database to build a novel
predictive signature for OSCC patients based on CSCMGs, which was then thoroughly
verified in the ICGC cohort. Moreover, we validated the reliability of these prognostic
signatures through experimental validation.

LASSO-Cox regression analyses were employed to establish a prognostic signature,
leading to the discovery of six genes (ADM, POLR1D, PTGR1, RPL35A, PGK1, and P4HA1)
as constituents of the prognostic signature. A nomogram incorporating clinical character-
istics was constructed based on the ability of these genes to distinguish between OSCC
patients at different risk levels. The prognosis of high-risk patients was found to be worse
compared to that of low-risk individuals. The nomogram, calibration plot, and ROC curve
data collectively provided strong evidence supporting the prognostic accuracy of the 6-GPS.
Furthermore, in vitro experiments validated the inhibitory effects on cell proliferation,
migration, and invasion after the knockdown of ADM and POLR1D genes, with decreased
expression levels of CSCs markers, such as the cell surface antigen CD133 and ALDH1A1.

ADM, which was originally identified as a hypotensive and vasodilatory peptide be-
longing to the calcitonin gene-related peptide family, has been observed to exert influence
on vascular development, cell proliferation, migration, apoptosis, and differentiation [30].
ADM and its receptor modifying proteins, RAMPs, upregulation has been detected in
diverse human malignancies relative to healthy tissue [31]. Previous studies have revealed
that ADM-RAMP2 exerts a stimulatory effect on tumor angiogenesis, leading to the sup-
pression of tumor cell adhesion and invasion. The loss of RAMP2 promotes the formation
of pre-metastatic niches in distant organs by disrupting vascular structure and inducing
inflammation [32,33]. In the context of acute myeloid leukemia, the expression of ADM
is linked to stem cell phenotypes, inflammatory attributes, and genes associated with
immune suppression [34]. Similarly, the presence of ADM in solid tumors has been found
to enhance the probability of lymph node metastasis in ovarian cancer [35]. Furthermore,
ADM has been established as a dependable prognostic marker for long-term outcomes in
individuals with nasopharyngeal carcinoma [36]. Our study demonstrates a positive corre-
lation between elevated ADM expression and poor prognosis in OSCC patients. In vitro
experiments further substantiate these findings, as ADM knockout inhibits proliferation,
migration, and invasion of OSCC cells, reduces mRNA levels of MMP2, and induces
compensatory upregulation of RAMP2, therefore suppressing tumor cell migration and
invasion. Furthermore, the depletion of ADM results in decreased expression of Cyclin D1
protein, leading to cell-cycle arrest at the G1-S phase in OSCC cell lines.

The POLR1D gene is responsible for encoding a subunit of RNA polymerase I and
RNA polymerase III. It is located on chromosome 13q [37]. A deficiency in its functionality
leads to impaired ribosome biogenesis, which in turn affects crucial cellular processes such
as cell death, proliferation, and differentiation [38,39]. In the context of colorectal cancer
research, POLR1D has been found to promote the G1-S cell-cycle transition by activating
the Wnt-β-Catenin pathway and suppressing the p53 signaling pathway [40]. Additionally,
POLR1D has been observed to influence the expression of VEGF-α and EREG, resulting in
acquired resistance to bevacizumab in colorectal cancer [41]. Our study indicates that high
expression of POLR1D is an independent adverse prognostic factor in OSCC. Knockdown
of POLR1D reduces the expression levels of CDK2 and Cyclin D1, leading to the induction
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of G1-S phase cell-cycle arrest and significant inhibition of the carcinogenic behavior of
OSCC cells.

Since PTGR1 is overexpressed in several cancer cell lines, including those from stom-
ach [42], liver [43], lung [44], and prostate [45] cancers, PTGR1 may cause cancer. Con-
versely, diminished expression of PTGR1 is correlated with unfavorable prognosis in
ovarian cancer, endometrial cancer, and renal clear cell carcinoma [46]. In the investigation
of breast cancer stem cells, PTGR1 has been recognized as a prospective prognostic indicator
associated with the condition of breast CSCs and the progression of cancers [47]. Moreover,
the elevation of anti-PTGR1 autoantibody in saliva is considered a biomarker for early-stage
OSCC [48]. The RPL35A gene is situated on the chromosomal band 3q29-qter and plays a
crucial role in facilitating protein synthesis, therefore serving as a biomarker for cancer an-
giogenesis [49,50]. Recent investigations have revealed that RPL35A potentially facilitates
the advancement of gastric cancer by means of the p38/JNK signaling pathway [51]. Our
observations indicate that this phenomenon is also evident in OSCC tissue, particularly
characterized by elevated levels of RPL35A in cancer tissues, which correlates with an
unfavorable prognosis. As a glycolytic enzyme, PGK1 plays a crucial role not only in tumor
energy metabolism but also in regulating and expressing multiple cancer proteins [52]. In
the treatment of liver cancer, breast cancer, colorectal cancer, and prostate cancer, PGK1 is
considered a critical target. Previous studies have demonstrated that the PGK1 and P4HA1
genes serve as prognostic features of OSCC as hypoxia-related genes [53]. In the hypoxic
environment of OSCC, the activated AKT signaling pathway increases the expression of
PGK1, promoting glycolysis, enhancing stem-like properties, and epithelial-mesenchymal
transition (EMT) [54–57]. The expression of P4HA1 is markedly elevated in OSCC tissues,
and heightened P4HA1 expression is linked to a more unfavorable prognosis [58]. Further-
more, a robust correlation exists between P4HA1 mRNA levels and various EMT and stem
cell markers [59]. These investigations substantiate the pivotal involvement of the 6-GPS in
the development of OSCC and propose that the genes identified in CSCMGs might serve
as promising targets for laboratory-based experimentation.

Results of the 6-GPS interaction network analysis primarily encompassed responses
to decreased oxygen levels, hypoxic reactions, and cellular responses to oxygen levels.
Spearman correlation analysis revealed a correlation between ADM and POLR1D with
cellular response to hypoxia. Knockdown of these two genes resulted in reduced levels
of JAK1/p-JAK1/HIF-1α proteins in CAL-27 and SAS cells, suggesting that ADM and
POLR1D may impact the hypoxic microenvironment in OSCC via the JAK/HIF-1 pathway,
therefore influencing its development. Through GO and KEGG analysis, a total of 11
enrichment terms and 1 signaling pathway were identified. These terms and pathways
play crucial roles in various stages of OSCC development, particularly involving ribosome
biogenesis, mRNA degradation in the nucleus, protein targeting to membranes, cellular
response to oxygen levels, cellular response to hypoxia, and the HIF-1 signaling pathway.

Despite positive findings, it is important to note that our study has several limita-
tions. First, a sizable OSCC research institution needs to conduct a prospective study on
the accuracy and stability of our prognostic signature. Second, based on the insufficient
experimental results mentioned above, it cannot be concluded that ADM and POLR1D can
serve as cancer stem cell markers in OSCC. Future studies should incorporate additional
experiments to validate the role of these two genes in CSCs. In summary, the relation-
ship between the expression of the 6-GPS and the prognosis for OSCC should be further
investigated in future studies.

Taken together, a remarkable performance in predicting the prognosis of OSCC pa-
tients has been found and proven for the six-gene prognostic signature based on CSC
marker genes. It is a prognostic biomarker that may be applied in clinical settings to
provide personalized predictions. Furthermore, the inhibitory effects of knocking down
ADM and POLR1D expression on cancer-related biological behaviors in CAL-27 and SAS
cells were experimentally validated. Thus, ADM and POLR1D might become a promising
therapeutic target for OSCC.
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4. Materials and Methods
4.1. Data Download and Preprocessing

To identify the CSCMGs of OSCC, the scRNA-seq data set (GSE172577) of OSCC [60]
was obtained and preprocessed from the GEO database (https://www.ncbi.nlm.nih.gov/
geo) (accessed on 17 October 2022). TCGA dataset, along with clinical information for
40 OSCC patients, was collected from the ICGC database (https://dcc.icgc.org/releases/
current/Projects) (accessed on 3 November 2022) for CSCMGs localization and the deriva-
tion of predictive characteristics. Relevant immunohistochemical information of OSCC
patients was downloaded from the Human Protein Atlas (HPA) database (https://www.
proteinatlas.org) (accessed on 21 January 2023) for further validation. Initially, the R package
Seurat [version 3.0.2] was utilized to standardize the scRNA-seq data. The normalization
process involved using the “Normalize Data” function with the normalization technique
set to “Log Normalize”. Subsequently, the transformed data were converted into a Seurat
object. To ensure the retention of high-quality data, three filtering criteria were applied to
the raw scRNA-seq data matrix using the R package Seurat. Genes detected in fewer than
3 cells, cells expressing fewer than 200 genes or more than 7000 genes, and cells with a high
mitochondrial proportion (>10%) were removed. The “Find Variable Features” function
and the “Harmony” method were employed to identify the top 2000 highly variable genes
(HVGs). It is important to note that this study utilized publicly accessible datasets from the
initial research, which had received ethical approval.

4.2. Identification of CSCs Marker Genes by scRNA-seq Analysis

PCA utilizing the “Run PCA” function implemented in the R package Seurat. To
identify the most significant PC population for gene population clustering, the relevance of
PCs was determined through Jack Straw analysis, enabling the identification of potential
“magnets” for PC populations. Subsequently, the first 17 PCs were selected for visualization
using the UMAP technique, which served as a reduction technique for dimensionality
clustering. Cell cluster analysis was performed using the “Find Clusters” function with a
resolution parameter of 0.5. Differentially Expressed Genes within each cluster were iden-
tified using the “Find All Markers” function, and the Wilcoxon–Mann–Whitney test was
applied. Marker genes for each cluster were determined based on an adjusted p-value < 0.01
and |log2FC| > 1 [61–64]. Annotation of all clusters was carried out manually, utilizing
known cell-type marker genes.

4.3. Construction of 6-GPS Based on CSCMGs

To enhance the comparability between TCGA samples and microarrays, the RNA-seq
data obtained from the TCGA Fragments Per Kilobase Per Million format was transformed
into transcripts per million reads (TPM) values and subjected to log2-transformation.
Univariate Cox regression analysis was employed to evaluate the predictive significance
of CSCMGs for OS in TCGA OSCC patients, with a prognostic gene defined as having
a p-value < 0.05. To mitigate overfitting, prognostic gene analysis was performed using
the LASSO-Cox proportional hazards regression, utilizing the “survival” package [version
3.2-10] and the “glmnet” package [version 4.1-2]. LASSO is a widely utilized regression
technique for high-dimensional variables in Cox proportional hazard regression models
for survival analysis. To select the optimal model, 10-fold cross-validation was performed
using the “cv.glmnet” function, with the tuning parameter LASSO selected based on 1-SE
(standard error). Genes with beta coefficients greater than zero were included in the Gene
Prognostic Signature, which was constructed based on the linear combination of mRNA
expression and the associated hazard coefficient identified by LASSO-Cox regression
analysis. The prognostic value of the Gene Prognostic Signature was established using a
dichotomized approach, with patients being categorized into low-risk and high-risk groups
based on the median cutoff value. The impact of the 6-GPS on OSCC patient prognosis
in the TCGA dataset was assessed using K-M survival curves. The AUC was calculated
using the “TimeROC” package [version 0.4], and the prognostic capability of the 6-GPS was

https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://dcc.icgc.org/releases/current/Projects
https://dcc.icgc.org/releases/current/Projects
https://www.proteinatlas.org
https://www.proteinatlas.org
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evaluated by constructing risk factor groups using the “ggplot2” package [version 3.3.3].
The “Survival” package [version 3.2-10] was used for the statistical analysis of the survival
data. The statistical significance of the difference was determined using the log-rank test
implemented in the “SurvMiner” package [version 0.4.9].

4.4. Development of a Prognostic Nomogram and Assessment of Its Predictive Performance

To estimate the survival rates at 1, 3, and 5 years, a nomogram was constructed using
the “RMS” package [version 6.2-0]. Additionally, calibration curves were generated to
assess the agreement between the predicted survival probabilities from the nomogram and
the actual observed survival outcomes.

4.5. Validation of the Prognostic Signature

The RNA-seq data and associated clinical information of 40 cases of oral malignan-
cies were obtained from the ICGC database for the purpose of externally validating and
verifying the wide applicability of the 6-GPS. The risk score for each individual in the
validation cohort was determined by applying the risk score equation derived from the
training cohort. Consequently, the individuals in the validation cohort were classified into
low-risk and high-risk groups based on the risk threshold established in the training cohort.
Utilizing the aforementioned risk stratification, K-M survival curves and TimeROC curves
were promptly generated, as previously described.

4.6. Pathway and Function Enrichment Analysis

To gain a comprehensive understanding of the functional characteristics of the 6-
GPS and its potential associated signaling pathways, gene enrichment analysis using the
KEGG and GO databases was conducted employing the “clusterprofiler” package [version
3.14.3]. Additionally, the “org.Hs.eg.db” package [version 3.10.0] was employed for efficient
conversion and mapping of gene identifiers, facilitating a more informative interpretation
of the 6-GPS [65].

4.7. Correlation between ADM/POLR1D and the Cellular Response to Hypoxia

To examine the influence of ADM and POLR1D on the cellular response to hypoxia,
we assembled a collection of genes associated with the hypoxia pathway. The R software
package version 4.0.3, in conjunction with the GSVA package, was employed for pathway
analysis using the method = ‘ssgsea’. Subsequently, Spearman correlation analysis was
conducted to evaluate the association between gene expression and pathway scores.

4.8. Cell Culture and Transfection

The OSCC cell lines CAL-27 (Servicebio, Wuhan, China) and SAS (Cellcook, Guangzhou,
China) were cultivated in Dulbecco Modified Eagle Medium F12 (DMEM/F12) (Servicebio,
Wuhan, China) supplemented with 10% fetal bovine serum (FBS) (ABW, Shanghai, China)
and 100 U/mL penicillin-streptomycin-gentamicin solution (Solarbio, Wuhan, China). Cul-
turing was performed in a CO2-controlled incubator at 37 ◦C. A density of 1 × 106 cells was
seeded in T-25 cell culture flasks. For transfection, siRNAs targeting ADM (siRNA1-ADM,
siRNA2-ADM, siRNA3-ADM), siRNAs targeting POLR1D (siRNA1-POLR1D, siRNA2-
POLR1D, siRNA3-POLR1D), and a negative control (siRNA-NC) (GenePharma, Shanghai,
China) were transfected into cells using the Lipofectamine™ 2000 transfection kit (Life
Technologies, Carlsbad, CA, USA). After 24 h, the expression levels of ADM and POLR1D
were assessed via RT-qPCR.

4.9. RT-qPCR

The SPARKeasy Cell RNA Kit (Sparkjade, Qingdao, China) was utilized for the ex-
traction of total RNA from the transfected cells. The same amount of total RNAs was
reversed to cDNA according to the Reverse Transcription Kit manufacturer’s protocol
(AG11705, Accurate Biology). Afterwards, RT-qPCR was conducted utilizing the QIAGEN
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Rotor-GeneQ (QIAGEN, Dusseldorf, Germany) with SYBR Green Pro. Tag. HS PremixII
(AG11702, Accurate Biology, Changsha, China). The thermocycling conditions were as
follows: pre-denaturation at 95 ◦C for 30 s, followed by 40 cycles of denaturation at 95 ◦C
for 5 s, and extension at 60 ◦C for 30 s. All experiments were repeated three times inde-
pendently, and each sample underwent a melting curve analysis to verify the specificity of
amplification. Table 1 presents the primer sequences. The expression of the target genes
was normalized to GAPDH, and fold changes were calculated in the manner of the 2−∆∆CT.

Table 1. The primer sequences of the target genes.

Genes Forward Primer (5′-3′) Reverse Primer (5′-3′)

ADM CGAAAGAAGTGGAATAAGTGGGC AGTTGTTCATGCTCTGGCGGT
POLR1D AAAGAGGGCGATAAGGAACCAG TTTCGTACTTGTCCTGGCTGC
RAMP2 ACTTTGCCAACTGCTCCCTG GCCTCACTGTCTTTACTCCTCCAT
POLR1F AGTGACTCCAGTGGTTACCAAAGT GGTGAGCATTTCAAAGGTGGG
POLR3B CATCCGCAATGCCTTACCT CCCTTTTCTATCAGCCTCCAC
MMP2 CTCATCGCAGATGCCTGGAA TTCAGGTAATAGGCACCCTTGAAGA

GAPDH GGAAGCTTGTCATCAATGGAAATC TGATGACCCTTTTGGCTCCC

4.10. Cell Proliferation Assay

CAL-27 and SAS cells were seeded in 96-well plates at a density of 5000 cells per well.
At designated time points (0, 24, 48, and 72 h), 10µL of CCK-8 reagent (Apexbio, Houston,
TX, USA) was added to each well and incubated for 2 h. The optical density (OD) readings
at a wavelength of 450 nm were obtained using a microplate reader (Infinite M200 Pro,
Tecan Group, Zurich, Switzerland).

4.11. Cellular Migration and Invasion Assays

Invasion of cells was assessed using Transwell inserts coated with Matrigel, whereas
8 µm Transwell inserts were employed to measure cellular migration. CAL-27, as well as
SAS cells following transfection, were seeded onto the upper chambers (1 × 105 cells/well).
DMEM plus 10% FBS was added into the lower chambers. Following 36 h, the cells from
the upper surface of the membrane were wiped off using a cotton swab. The invaded
cells were stained with 0.4% crystal violet. Five fields were counted under a microscope
(Olympus, Tokyo, Japan). The quantification of the results was performed using ImageJ
[ImageJv1.8.0.322], followed by data analysis using GraphPad Prism [version 8.0.2].

4.12. Flow Cytometry Assay

Following transfection, CAL-27 and SAS cells were trypsinized using a trypsin solution
without ethylenediaminetetraacetic acid. The cells were then collected by centrifugation at
1000× g for 5 min, washed with ice-cold PBS, and fixed with 70% cold ethanol for storage
at 4 ◦C for 24 h. After another round of centrifugation and washing with cold PBS, the cells
were treated with 25 µL Propidium and 10 µL RNase A (Beyotime, Shanghai, China) at
37 ◦C in the dark for 30 min. For CD133 detection, cells were obtained and stained with
anti-CD133 (17–1338-42, Thermo Fisher Scientific, Waltham, MA, USA) at 4 ◦C in the dark
for 30 min. Cell-cycle analysis was conducted using NovoExpress [Version 1.6.2, Agilent,
Santa Clara, CA, USA], and the CD133 was analyzed using CytExpert software [Version
2.4.0.28, Beckman Coulter, Brea, CA, USA].

4.13. Western Blot Analysis

SAS cell was washed with PBS and lysed in RIPA buffer with PMSF (Solarbio, Beijing,
China) on ice. Cell lysates were centrifuged (12,000 rpm) at 4 ◦C for 10 min and then
quantified using the BCA Protein Assay Kit (Cwbio, Taizhou, China). The lysate was
denatured with sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE)
sample loading buffer (Solarbio, Beijing, China), followed by SDS–PAGE and electro-
transfer to polyvinylidene difluoride membranes (Cytiva, Washington, DC, USA). The
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membranes were incubated overnight at 4 ◦C with anti-β-actin (Proteintech Group, 66009-
1-Ig, 1:5000, Wuhan, China), anti-JAK1 (Proteintech Group, 66466-1-Ig, 1:4000, Wuhan,
China), anti-phospho-JAK1 (Servicebio, GB115604-100, 1:300, Wuhan, China), anti-HIF-1α
(Proteintech Group, 66730-1-Ig, 1:3000, Wuhan, China), anti-CDK2 (Proteintech Group,
60312-1-Ig, 1:2000, Wuhan, China), anti-Cyclin D1 (Proteintech Group, 60186-1-Ig, 1:1000,
Wuhan, China), anti-CD133(Proteintech Group, 66666-1-Ig, 1:3000, Wuhan, China), and
anti-ALDH1A1 (Proteintech Group, 60171-1-Ig, 1:5000, Wuhan, China) at the appropriate
dilution and then incubated with the secondary antibody at room temperature for 2 h. The
bands were visualized by employing an ECL detection reagent (Yeasen, Shanghai, China)
and independently quantified twice using ImageJ [ImageJv1.8.0.322] and ChemiScope
Analysis [Version 2.1.6.0] software. Subsequently, the obtained data were normalized to
β-actin.

4.14. Statistical Analysis

Statistical analyses and data visualization were performed using R software [version
3.6.3, R Core Team, Vienna, Austria] and Adobe Illustrator [Version 25.0.0.60, Adobe Inc.,
Mountain View, CA, USA], respectively. Cox regression analysis was employed to explore
the association between clinical variables and gene expression levels. Descriptive statistics
were presented as mean ± standard deviation. Statistical differences between groups
were assessed using two-tailed t-tests or analysis of variance. p-value < 0.05 was the
cutoff criterion.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25021031/s1.

Author Contributions: Conceptualization, M.S., K.H. and Y.L.; methodology, M.S.; software, K.H.;
validation, J.W., S.W. and W.Y.; formal analysis, J.W.; data curation, S.W.; writing—original draft
preparation, M.S.; writing—review and editing, Y.L. and H.W.; visualization, K.H.; supervision, H.W.;
funding acquisition, Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This project was supported by the Key Research and Development Program of Gansu
Province, China (International Scientific and Technological Cooperation Category) (No. 23YFWA0003),
the Fundamental Research Funds for the Central Universities, Lanzhou University (lzujbky-2023-
07 and lzujbky-2023-29), the Foundation of School/Hospital of Stomatology, Lanzhou University
(lzukqky-2022-p08), the Science and Technology Planning Project of Lanzhou, China (No. 2023-2-10),
and Lanzhou University Excellent Postgraduate Innovation Program (Supported by the Fundamental
Research Funds for the Central Universities) (lzujbky-2022-it15).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The results shown here are based on data generated by the ICGC
database: https://dcc.icgc.org/releases/current/Projects (accessed on 3 November 2022), the GEO
database: https://www.ncbi.nlm.nih.gov/geo (accessed on 17 October 2022) under the accession
numbers GSE172577, and the HPA database: https://www.proteinatlas.org (accessed on 21 January
2023).

Acknowledgments: We sincerely thank the experimental guidance from HK_Potions_Lab (https:
//mp.weixin.qq.com/s/SkjneqFslhkoKrTKs7QA3Q, Blog, WeChat Official Accounts) (accessed on 6
August 2023). Thanks to Jia Xu for the suggestions. All authors sincerely appreciate the sharing of
data from GEO, ICGC, and HPA databases.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/ijms25021031/s1
https://www.mdpi.com/article/10.3390/ijms25021031/s1
https://dcc.icgc.org/releases/current/Projects
https://www.ncbi.nlm.nih.gov/geo
https://www.proteinatlas.org
https://mp.weixin.qq.com/s/SkjneqFslhkoKrTKs7QA3Q
https://mp.weixin.qq.com/s/SkjneqFslhkoKrTKs7QA3Q


Int. J. Mol. Sci. 2024, 25, 1031 18 of 20

References
1. Fan, T.; Wang, X.; Zhang, S.; Deng, P.; Jiang, Y.; Liang, Y.; Jie, S.; Wang, Q.; Li, C.; Tian, G.; et al. NUPR1 promotes the proliferation

and metastasis of oral squamous cell carcinoma cells by activating TFE3-dependent autophagy. Signal Transduct. Target. Ther.
2022, 7, 130. [CrossRef] [PubMed]

2. Peña-Oyarzún, D.; Reyes, M.; Hernández-Cáceres, M.; Kretschmar, C.; Morselli, E.; Ramirez-Sarmiento, C.; Lavandero, S.; Torres,
V.; Criollo, A. Role of Autophagy in the Microenvironment of Oral Squamous Cell Carcinoma. Front. Oncol. 2020, 10, 602661.
[CrossRef] [PubMed]

3. Warnakulasuriya, S. Global epidemiology of oral and oropharyngeal cancer. Oral. Oncol. 2009, 45, 309–316. [CrossRef] [PubMed]
4. Wang, J.; Wang, Y.; Kong, F.; Han, R.; Song, W.; Chen, D.; Bu, L.; Wang, S.; Yue, J.; Ma, L. Identification of a six-gene prognostic

signature for oral squamous cell carcinoma. J. Cell Physiol. 2020, 235, 3056–3068. [CrossRef] [PubMed]
5. Sung, H.; Ferlay, J.; Siegel, R.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

6. Cao, M.; Shi, E.; Wang, H.; Mao, L.; Wu, Q.; Li, X.; Liang, Y.; Yang, X.; Wang, Y.; Li, C. Personalized Targeted Therapeutic Strategies
against Oral Squamous Cell Carcinoma. An Evidence-Based Review of Literature. Int. J. Nanomed. 2022, 17, 4293–4306. [CrossRef]
[PubMed]

7. Fan, H.; Zhu, Z.; Zhang, W.; Yin, Y.; Tang, Y.; Liang, X.; Zhang, L. Light stimulus responsive nanomedicine in the treatment of oral
squamous cell carcinoma. Eur. J. Med. Chem. 2020, 199, 112394. [CrossRef] [PubMed]

8. Cao, L.; Wu, Y.; Shan, Y.; Tan, B.; Liao, J. A review: Potential application and outlook of photothermal therapy in oral cancer
treatment. Biomed. Mater. 2022, 17, 022008. [CrossRef]

9. Shi, F.; Luo, D.; Zhou, X.; Sun, Q.; Shen, P.; Wang, S. Combined effects of hyperthermia and chemotherapy on the regulate
autophagy of oral squamous cell carcinoma cells under a hypoxic microenvironment. Cell Death Discov. 2021, 7, 227. [CrossRef]

10. Gebremedhin, S.; Singh, A.; Koons, S.; Bernt, W.; Konopka, K.; Duzgunes, N. Gene delivery to carcinoma cells via novel non-viral
vectors: Nanoparticle tracking analysis and suicide gene therapy. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2014, 60, 72–79.
[CrossRef]

11. Rogers, S.; Brown, J.; Woolgar, J.; Lowe, D.; Magennis, P.; Shaw, R.; Sutton, D.; Errington, D.; Vaughan, D. Survival following
primary surgery for oral cancer. Oral. Oncol. 2009, 45, 201–211. [CrossRef] [PubMed]

12. Metsäniitty, M.; Hasnat, S.; Salo, T.; Salem, A. Oral Microbiota-A New Frontier in the Pathogenesis and Management of Head and
Neck Cancers. Cancers 2021, 14, 46. [CrossRef]

13. Fukumoto, C.; Uchida, D.; Kawamata, H. Diversity of the Origin of Cancer Stem Cells in Oral Squamous Cell Carcinoma and Its
Clinical Implications. Cancers 2022, 14, 3588. [CrossRef]

14. Amôr, N.; Buzo, R.; Ortiz, R.; Lopes, N.; Saito, L.; Mackenzie, I.; Rodini, C. In vitro and in vivo characterization of cancer stem
cell subpopulations in oral squamous cell carcinoma. J. Oral Pathol. Med. 2021, 50, 52–59. [CrossRef] [PubMed]

15. Bao, S.; Wu, Q.; McLendon, R.; Hao, Y.; Shi, Q.; Hjelmeland, A.; Dewhirst, M.; Bigner, D.; Rich, J. Glioma stem cells promote
radioresistance by preferential activation of the DNA damage response. Nature 2006, 444, 756–760. [CrossRef] [PubMed]

16. Pavlopoulou, A.; Oktay, Y.; Vougas, K.; Louka, M.; Vorgias, C.; Georgakilas, A. Determinants of resistance to chemotherapy and
ionizing radiation in breast cancer stem cells. Cancer Lett. 2016, 380, 485–493. [CrossRef]

17. Abad, E.; Graifer, D.; Lyakhovich, A. DNA damage response and resistance of cancer stem cells. Cancer Lett. 2020, 474, 106–117.
[CrossRef]

18. Sistigu, A.; Musella, M.; Galassi, C.; Vitale, I.; De Maria, R. Tuning Cancer Fate: Tumor Microenvironment’s Role in Cancer Stem
Cell Quiescence and Reawakening. Front. Immunol. 2020, 11, 2166. [CrossRef]

19. Lequerica-Fernández, P.; Suárez-Canto, J.; Rodriguez-Santamarta, T.; Rodrigo, J.P.; Suárez-Sánchez, F.J.; Blanco-Lorenzo, V.;
Domínguez-Iglesias, F.; García-Pedrero, J.M.; de Vicente, J.C. Prognostic Relevance of CD4+, CD8+ and FOXP3+ TILs in Oral
Squamous Cell Carcinoma and Correlations with PD-L1 and Cancer Stem Cell Markers. Biomedicines 2021, 9, 653. [CrossRef]

20. Venugopal, D.C.; Caleb, C.L.; Kirupakaran, N.P.; Shyamsundar, V.; Ravindran, S.; Yasasve, M.; Krishnamurthy, A.; Harikrishnan,
T.; Sankarapandian, S.; Ramshankar, V. Clinicopathological Significance of Cancer Stem Cell Markers (OCT-3/4 and SOX-2) in
Oral Submucous Fibrosis and Oral Squamous Cell Carcinoma. Biomedicines 2023, 11, 1040. [CrossRef]

21. Varun, B.R.; Jayanthi, P.; Ramani, P. Cancer stem cells: A comprehensive review on identification and therapeutic implications.
J. Oral Maxillofac. Pathol. 2020, 24, 190. [PubMed]

22. Han, Y.K.; Park, H.Y.; Park, S.-G.; Hwang, J.J.; Park, H.R.; Yi, J.M. Promoter Methylation of Cancer Stem Cell Surface Markers as
an Epigenetic Biomarker for Prognosis of Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2022, 23, 14624. [CrossRef] [PubMed]

23. Wan, S.; Moure, U.A.E.; Liu, R.; Liu, C.; Wang, K.; Deng, L.; Liang, P.; Cui, H. Combined bulk RNA-seq and single-cell RNA-seq
identifies a necroptosis-related prognostic signature associated with inhibitory immune microenvironment in glioma. Front.
Immunol. 2022, 13, 1013094. [CrossRef]

24. Lin, V.C.; Huang, S.-P.; Huang, C.-Y.; Yu, C.-C.; Yin, H.-L.; Huang, T.-Y.; Lee, C.-H.; Lu, T.-L.; Bao, B.-Y. Cancer Stem Cell Gene
Variants Predict Disease Recurrence in Patients Treated with Radical Prostatectomy for Prostate Cancer. Int. J. Med. Sci. 2017, 14,
1301–1306. [CrossRef] [PubMed]

25. Kawai, T.; Yasuchika, K.; Ishii, T.; Katayama, H.; Yoshitoshi, E.Y.; Ogiso, S.; Kita, S.; Yasuda, K.; Fukumitsu, K.; Mizumoto, M.; et al.
Keratin 19, a Cancer Stem Cell Marker in Human Hepatocellular Carcinoma. Clin. Cancer Res. 2015, 21, 3081–3091. [CrossRef]

https://doi.org/10.1038/s41392-022-00939-7
https://www.ncbi.nlm.nih.gov/pubmed/35462576
https://doi.org/10.3389/fonc.2020.602661
https://www.ncbi.nlm.nih.gov/pubmed/33363032
https://doi.org/10.1016/j.oraloncology.2008.06.002
https://www.ncbi.nlm.nih.gov/pubmed/18804401
https://doi.org/10.1002/jcp.29210
https://www.ncbi.nlm.nih.gov/pubmed/31538341
https://doi.org/10.3322/caac.21660
https://www.ncbi.nlm.nih.gov/pubmed/33538338
https://doi.org/10.2147/IJN.S377816
https://www.ncbi.nlm.nih.gov/pubmed/36134201
https://doi.org/10.1016/j.ejmech.2020.112394
https://www.ncbi.nlm.nih.gov/pubmed/32402938
https://doi.org/10.1088/1748-605X/ac5a23
https://doi.org/10.1038/s41420-021-00538-5
https://doi.org/10.1016/j.ejps.2014.03.003
https://doi.org/10.1016/j.oraloncology.2008.05.008
https://www.ncbi.nlm.nih.gov/pubmed/18674959
https://doi.org/10.3390/cancers14010046
https://doi.org/10.3390/cancers14153588
https://doi.org/10.1111/jop.13101
https://www.ncbi.nlm.nih.gov/pubmed/32816395
https://doi.org/10.1038/nature05236
https://www.ncbi.nlm.nih.gov/pubmed/17051156
https://doi.org/10.1016/j.canlet.2016.07.018
https://doi.org/10.1016/j.canlet.2020.01.008
https://doi.org/10.3389/fimmu.2020.02166
https://doi.org/10.3390/biomedicines9060653
https://doi.org/10.3390/biomedicines11041040
https://www.ncbi.nlm.nih.gov/pubmed/32508482
https://doi.org/10.3390/ijms232314624
https://www.ncbi.nlm.nih.gov/pubmed/36498950
https://doi.org/10.3389/fimmu.2022.1013094
https://doi.org/10.7150/ijms.21428
https://www.ncbi.nlm.nih.gov/pubmed/29104488
https://doi.org/10.1158/1078-0432.CCR-14-1936


Int. J. Mol. Sci. 2024, 25, 1031 19 of 20

26. Pindiprolu, S.H.; Pindiprolu, S.K.S.S. CD133 receptor mediated delivery of STAT3 inhibitor for simultaneous elimination of cancer
cells and cancer stem cells in oral squamous cell carcinoma. Med. Hypotheses 2019, 129, 109241. [CrossRef] [PubMed]

27. Grimm, M.; Krimmel, M.; Polligkeit, J.; Alexander, D.; Munz, A.; Kluba, S.; Keutel, C.; Hoffmann, J.; Reinert, S.; Hoefert, S. ABCB5
expression and cancer stem cell hypothesis in oral squamous cell carcinoma. Eur. J. Cancer 2012, 48, 3186–3197. [CrossRef]

28. Ohnishi, Y.; Yasui, H.; Nozaki, M.; Nakajima, M. Molecularly-targeted therapy for the oral cancer stem cells. Jpn. Dent. Sci. Rev.
2018, 54, 88–103. [CrossRef]

29. Wu, L.; Yang, J.; She, P.; Kong, F.; Mao, Z.; Wang, S. Single-cell RNA sequencing and traditional RNA sequencing reveals the role
of cancer-associated fibroblasts in oral squamous cell carcinoma cohort. Front. Oncol. 2023, 13, 1195520. [CrossRef]

30. Hinson, J.P.; Kapas, S.; Smith, D.M. Adrenomedullin, a multifunctional regulatory peptide. Endocr. Rev. 2000, 21, 138–167.
31. Liu, L.-L.; Chen, S.-L.; Huang, Y.-H.; Yang, X.; Wang, C.-H.; He, J.-H.; Yun, J.-P.; Luo, R.-Z. Adrenomedullin inhibits tumor

metastasis and is associated with good prognosis in triple-negative breast cancer patients. Am. J. Transl. Res. 2020, 12, 773–786.
32. Dai, K.; Tanaka, M.; Kamiyoshi, A.; Sakurai, T.; Ichikawa-Shindo, Y.; Kawate, H.; Cui, N.; Wei, Y.; Tanaka, M.; Kakihara, S.; et al.

Deficiency of the adrenomedullin-RAMP3 system suppresses metastasis through the modification of cancer-associated fibroblasts.
Oncogene 2020, 39, 1914–1930. [CrossRef] [PubMed]

33. Tanaka, M.; Koyama, T.; Sakurai, T.; Kamiyoshi, A.; Ichikawa-Shindo, Y.; Kawate, H.; Liu, T.; Xian, X.; Imai, A.; Zhai, L.; et al. The
endothelial adrenomedullin-RAMP2 system regulates vascular integrity and suppresses tumour metastasis. Cardiovasc. Res. 2016,
111, 398–409. [CrossRef]

34. Simonetti, G.; Angeli, D.; Petracci, E.; Fonzi, E.; Vedovato, S.; Sperotto, A.; Padella, A.; Ghetti, M.; Ferrari, A.; Robustelli, V.;
et al. Adrenomedullin Expression Characterizes Leukemia Stem Cells and Associates With an Inflammatory Signature in Acute
Myeloid Leukemia. Front. Oncol. 2021, 11, 684396. [CrossRef]

35. Li, M.; Hong, L.I.; Liao, M.; Guo, G. Expression and clinical significance of focal adhesion kinase and adrenomedullin in epithelial
ovarian cancer. Oncol. Lett. 2015, 10, 1003–1007. [CrossRef] [PubMed]

36. Zhang, Z.-L.; Huang, S.-X.; Lin, S.; Chai, L. Plasma adrenomedullin levels and nasopharyngeal carcinoma prognosis. Clin. Chim.
Acta 2015, 440, 172–176. [CrossRef] [PubMed]

37. Noack Watt, K.E.; Achilleos, A.; Neben, C.L.; Merrill, A.E.; Trainor, P.A. The Roles of RNA Polymerase I and III Subunits Polr1c
and POLR1D in Craniofacial Development and in Zebrafish Models of Treacher Collins Syndrome. PLoS Genet. 2016, 12, e1006187.
[CrossRef]

38. Jorgensen, P.; Rupes, I.; Sharom, J.R.; Schneper, L.; Broach, J.R.; Tyers, M. A dynamic transcriptional network communicates
growth potential to ribosome synthesis and critical cell size. Genes Dev. 2004, 18, 2491–2505. [CrossRef]

39. Trainor, P.A.; Merrill, A.E. Ribosome biogenesis in skeletal development and the pathogenesis of skeletal disorders. Biochim.
Biophys. Acta 2014, 1842, 769–778. [CrossRef]

40. Tian, Y.; Sun, F.; Zhong, Y.; Huang, W.; Wang, G.; Liu, C.; Xiao, Y.; Wu, J.; Mu, L. Expression and Clinical Significance of POLR1D
in Colorectal Cancer. Oncology 2020, 98, 138–145. [CrossRef]

41. Zhou, Q.; Perakis, S.O.; Ulz, P.; Mohan, S.; Riedl, J.M.; Talakic, E.; Lax, S.; Tötsch, M.; Hoefler, G.; Bauernhofer, T.; et al. Cell-free
DNA analysis reveals POLR1D-mediated resistance to bevacizumab in colorectal cancer. Genome Med. 2020, 12, 20. [CrossRef]
[PubMed]

42. Yang, S.; Luo, F.; Wang, J.; Mao, X.; Chen, Z.; Wang, Z.; Guo, F. Effect of prostaglandin reductase 1 (PTGR1) on gastric carcinoma
using lentivirus-mediated system. Int. J. Clin. Exp. Pathol. 2015, 8, 14493–14499. [PubMed]

43. Sánchez-Rodríguez, R.; Torres-Mena, J.E.; De-la-Luz-Cruz, M.; Bernal-Ramos, G.A.; Villa-Treviño, S.; Chagoya-Hazas, V.; Landero-
López, L.; García-Román, R.; Rouimi, P.; Del-Pozo-Yauner, L.; et al. Increased expression of prostaglandin reductase 1 in
hepatocellular carcinomas from clinical cases and experimental tumors in rats. Int. J. Biochem. Cell Biol. 2014, 53, 186–194.
[CrossRef] [PubMed]

44. Huang, X.; Zhou, W.; Zhang, Y.; Liu, Y. High Expression of PTGR1 Promotes NSCLC Cell Growth via Positive Regulation of
Cyclin-Dependent Protein Kinase Complex. Biomed. Res. Int. 2016, 2016, 5230642. [CrossRef] [PubMed]

45. Xue, L.; Zhu, Z.; Wang, Z.; Li, H.; Zhang, P.; Wang, Z.; Chen, Q.; Chen, H.; Chong, T. Knockdown of prostaglandin reductase 1
(PTGR1) suppresses prostate cancer cell proliferation by inducing cell cycle arrest and apoptosis. Biosci. Trends 2016, 10, 133–139.
[CrossRef]

46. Wang, X.; Yin, G.; Zhang, W.; Song, K.; Zhang, L.; Guo, Z. Prostaglandin Reductase 1 as a Potential Therapeutic Target for Cancer
Therapy. Front. Pharmacol. 2021, 12, 717730. [CrossRef]

47. Liu, M.; Liu, Y.; Deng, L.; Wang, D.; He, X.; Zhou, L.; Wicha, M.S.; Bai, F.; Liu, S. Transcriptional profiles of different states of
cancer stem cells in triple-negative breast cancer. Mol. Cancer 2018, 17, 65. [CrossRef]

48. Chu, H.-W.; Chang, K.-P.; Yen, W.-C.; Liu, H.-P.; Chan, X.-Y.; Liu, C.-R.; Hung, C.-M.; Wu, C.-C. Identification of salivary
autoantibodies as biomarkers of oral cancer with immunoglobulin A enrichment combined with affinity mass spectrometry.
Proteomics 2023, 23, e2200321. [CrossRef]

49. Colombo, P.; Read, M.; Fried, M. The human L35a ribosomal protein (RPL35A) gene is located at chromosome band 3q29-qter.
Genomics 1996, 32, 148–150. [CrossRef]

50. Shenoy, N.; Kessel, R.; Bhagat, T.D.; Bhattacharyya, S.; Yu, Y.; McMahon, C.; Verma, A. Alterations in the ribosomal machinery in
cancer and hematologic disorders. J. Hematol. Oncol. 2012, 5, 32. [CrossRef]

https://doi.org/10.1016/j.mehy.2019.109241
https://www.ncbi.nlm.nih.gov/pubmed/31371076
https://doi.org/10.1016/j.ejca.2012.05.027
https://doi.org/10.1016/j.jdsr.2017.11.001
https://doi.org/10.3389/fonc.2023.1195520
https://doi.org/10.1038/s41388-019-1112-z
https://www.ncbi.nlm.nih.gov/pubmed/31754214
https://doi.org/10.1093/cvr/cvw166
https://doi.org/10.3389/fonc.2021.684396
https://doi.org/10.3892/ol.2015.3278
https://www.ncbi.nlm.nih.gov/pubmed/26622614
https://doi.org/10.1016/j.cca.2014.11.021
https://www.ncbi.nlm.nih.gov/pubmed/25433141
https://doi.org/10.1371/journal.pgen.1006187
https://doi.org/10.1101/gad.1228804
https://doi.org/10.1016/j.bbadis.2013.11.010
https://doi.org/10.1159/000504174
https://doi.org/10.1186/s13073-020-0719-6
https://www.ncbi.nlm.nih.gov/pubmed/32087735
https://www.ncbi.nlm.nih.gov/pubmed/26823768
https://doi.org/10.1016/j.biocel.2014.05.017
https://www.ncbi.nlm.nih.gov/pubmed/24853774
https://doi.org/10.1155/2016/5230642
https://www.ncbi.nlm.nih.gov/pubmed/27429979
https://doi.org/10.5582/bst.2016.01045
https://doi.org/10.3389/fphar.2021.717730
https://doi.org/10.1186/s12943-018-0809-x
https://doi.org/10.1002/pmic.202200321
https://doi.org/10.1006/geno.1996.0093
https://doi.org/10.1186/1756-8722-5-32


Int. J. Mol. Sci. 2024, 25, 1031 20 of 20

51. Wu, F.; Sun, D.; Liao, Y.; Shang, K.; Lu, C. RPL35A is a key promotor involved in the development and progression of gastric
cancer. Cancer Cell Int. 2021, 21, 497. [CrossRef]

52. Fu, Q.; Yu, Z. Phosphoglycerate kinase 1 (PGK1) in cancer: A promising target for diagnosis and therapy. Life Sci. 2020, 256,
117863. [CrossRef] [PubMed]

53. Zhao, C.; Zhou, Y.; Ma, H.; Wang, J.; Guo, H.; Liu, H. A four-hypoxia-genes-based prognostic signature for oral squamous cell
carcinoma. BMC Oral Health 2021, 21, 232. [CrossRef] [PubMed]

54. Hu, H.; Zhu, W.; Qin, J.; Chen, M.; Gong, L.; Li, L.; Liu, X.; Tao, Y.; Yin, H.; Zhou, H.; et al. Acetylation of PGK1 promotes liver
cancer cell proliferation and tumorigenesis. Hepatology 2017, 65, 515–528. [CrossRef] [PubMed]

55. Li, Y.; Wang, S.; Zhang, X.; Yang, R.; Wei, X.; Yan, R.; Jiang, Y.; Shen, W. Expression Characteristics and Significant Prognostic
Values of PGK1 in Breast Cancer. Front. Mol. Biosci. 2021, 8, 695420. [CrossRef]

56. Ge, J.; Li, J.; Na, S.; Wang, P.; Zhao, G.; Zhang, X. miR-548c-5p inhibits colorectal cancer cell proliferation by targeting PGK1.
J. Cell Physiol. 2019, 234, 18872–18878. [CrossRef]

57. Cao, H.; Yu, H.; Feng, Y.; Chen, L.; Liang, F. Curcumin inhibits prostate cancer by targeting PGK1 in the FOXD3/miR-143 axis.
Cancer Chemother. Pharmacol. 2017, 79, 985–994. [CrossRef]

58. Kappler, M.; Kotrba, J.; Kaune, T.; Bache, M.; Rot, S.; Bethmann, D.; Wichmann, H.; Güttler, A.; Bilkenroth, U.; Horter, S.; et al.
P4HA1: A single-gene surrogate of hypoxia signatures in oral squamous cell carcinoma patients. Clin. Transl. Radiat. Oncol. 2017,
5, 6–11. [CrossRef]

59. Cao, X.; Cao, Y.; Zhao, H.; Wang, P.; Zhu, Z. Prolyl 4-hydroxylase P4HA1 Mediates the Interplay Between Glucose Metabolism
and Stemness in Pancreatic Cancer Cells. Curr. Stem Cell Res. Ther. 2023, 18, 712–719. [CrossRef]

60. Peng, Y.; Xiao, L.; Rong, H.; Ou, Z.; Cai, T.; Liu, N.; Li, B.; Zhang, L.; Wu, F.; Lan, T.; et al. Single-cell profiling of tumor-infiltrating
TCF1/TCF7+ T cells reveals a T lymphocyte subset associated with tertiary lymphoid structures/organs and a superior prognosis
in oral cancer. Oral Oncol. 2021, 119, 105348. [CrossRef]

61. Hu, J.; Chen, Z.; Bao, L.; Zhou, L.; Hou, Y.; Liu, L.; Xiong, M.; Zhang, Y.; Wang, B.; Tao, Z.; et al. Single-Cell Transcriptome
Analysis Reveals Intratumoral Heterogeneity in ccRCC, which Results in Different Clinical Outcomes. Mol. Ther. J. Am. Soc. Gene
Ther. 2020, 28, 1658–1672. [CrossRef] [PubMed]

62. Danaher, P.; Warren, S.; Dennis, L.; D’Amico, L.; White, A.; Disis, M.; Geller, M.; Odunsi, K.; Beechem, J.; Fling, S. Gene expression
markers of Tumor Infiltrating Leukocytes. J. Immunother. Cancer 2017, 5, 18. [CrossRef] [PubMed]

63. Zhang, C.; He, H.; Hu, X.; Liu, A.; Huang, D.; Xu, Y.; Chen, L.; Xu, D. Development and validation of a metastasis-associated
prognostic signature based on single-cell RNA-seq in clear cell renal cell carcinoma. Aging 2019, 11, 10183–10202. [CrossRef]
[PubMed]

64. Liu, X.; Jin, S.; Hu, S.; Li, R.; Pan, H.; Liu, Y.; Lai, P.; Xu, D.; Sun, J.; Liu, Z.; et al. Single-cell transcriptomics links malignant T cells
to the tumor immune landscape in cutaneous T cell lymphoma. Nat. Commun. 2022, 13, 1158. [CrossRef]

65. Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics
J. Integr. Biol. 2012, 16, 284–287. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s12935-021-02199-x
https://doi.org/10.1016/j.lfs.2020.117863
https://www.ncbi.nlm.nih.gov/pubmed/32479953
https://doi.org/10.1186/s12903-021-01587-z
https://www.ncbi.nlm.nih.gov/pubmed/33941139
https://doi.org/10.1002/hep.28887
https://www.ncbi.nlm.nih.gov/pubmed/27774669
https://doi.org/10.3389/fmolb.2021.695420
https://doi.org/10.1002/jcp.28525
https://doi.org/10.1007/s00280-017-3301-1
https://doi.org/10.1016/j.ctro.2017.05.002
https://doi.org/10.2174/1574888X17666220827113434
https://doi.org/10.1016/j.oraloncology.2021.105348
https://doi.org/10.1016/j.ymthe.2020.04.023
https://www.ncbi.nlm.nih.gov/pubmed/32396851
https://doi.org/10.1186/s40425-017-0215-8
https://www.ncbi.nlm.nih.gov/pubmed/28239471
https://doi.org/10.18632/aging.102434
https://www.ncbi.nlm.nih.gov/pubmed/31747386
https://doi.org/10.1038/s41467-022-28799-3
https://doi.org/10.1089/omi.2011.0118

	Introduction 
	Results 
	Identification of CSCMGs Expression Profiles 
	Establishment of the 6-GPS Based on CSCMGs 
	Construction and Assessment of Nomogram 
	Validation of the Prognostic Signature 
	Expression Levels of 6-GPS 
	Analysis of the Functional Characteristics of 6-GPS 
	Inhibition of OSCC Cell Proliferation, Migration, and Invasion upon ADM and POLR1D Genes Knockdown 
	The Mechanistic Role of ADM and POLR1D in OSCC Cells 

	Discussion 
	Materials and Methods 
	Data Download and Preprocessing 
	Identification of CSCs Marker Genes by scRNA-seq Analysis 
	Construction of 6-GPS Based on CSCMGs 
	Development of a Prognostic Nomogram and Assessment of Its Predictive Performance 
	Validation of the Prognostic Signature 
	Pathway and Function Enrichment Analysis 
	Correlation between ADM/POLR1D and the Cellular Response to Hypoxia 
	Cell Culture and Transfection 
	RT-qPCR 
	Cell Proliferation Assay 
	Cellular Migration and Invasion Assays 
	Flow Cytometry Assay 
	Western Blot Analysis 
	Statistical Analysis 

	References

