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Abstract: Multiple studies have shown that cell-free DNA (cfDNA) from cancer patients differ
in both fragment length and fragment end motif (FEM) from healthy individuals, yet there is a
lack of understanding of how the two factors combined are associated with cancer and gene tran-
scription. In this study, we conducted cfDNA fragmentomics evaluations using plasma from lung
cancer patients (n = 12) and healthy individuals (n = 7). A personal gene expression profile was
established from plasma using H3K36me3 cell-free chromatin immunoprecipitation sequencing
(cfChIP-seq). The genes with the highest expression displayed an enrichment of short cfDNA frag-
ments (median = 19.99%, IQR: 16.94–27.13%, p < 0.0001) compared to the genes with low expression.
Furthermore, distinct GC-rich FEMs were enriched after cfChIP. Combining the frequency of short
cfDNA fragments with the presence of distinct FEMs resulted in an even further enrichment of the
most expressed genes (median = 37.85%, IQR: 30.10–39.49%, p < 0.0001). An in vitro size selection
of <150 bp cfDNA could isolate cfDNA representing active genes and the size-selection enrichment
correlated with the cfChIP-seq enrichment (Spearman r range: 0.499–0.882, p < 0.0001). This study
expands the knowledge regarding cfDNA fragmentomics and sheds new light on how gene activity
is associated with both cfDNA fragment lengths and distinct FEMs.

Keywords: liquid biopsies; fragmentomics; cell-free chromatin immunoprecipitation; gene expression;
histone modifications; fragment end motifs

1. Introduction

Cell-free DNA (cfDNA) in liquid biopsies has been studied extensively in recent years
to improve the sensitivity of methods for detecting somatic variants [1–4]. Plasma cfDNA
originating from tumors is known as circulating tumor DNA (ctDNA), and mutations in
ctDNA are important biomarkers for cancer therapies [5–7]. However, the use of liquid
biopsies is limited by a relatively low ctDNA fraction, below 0.01% in some cases [8].
ctDNA is most frequently identified by somatic mutations, but other features of ctDNA
have been studied to increase the sensitivity of methods for detecting ctDNA in early-stage
cancers [9–11] and minimal residual disease [4,12], for which the ctDNA content is low.
These features are related to the fragmentation of cfDNA before circulatory release. First,
short cfDNA fragments (<150 bp) contain a larger fraction of mutated fragments than the
total cfDNA pool [10,13–16]. Little is known about why ctDNA is shorter than cfDNA
originating from noncancer cells, although the underlying chromatin structure [17–19] and
the level of the endonuclease, DNASE1L3 [20], are known to affect cfDNA fragmentation.
Second, the levels of distinct cfDNA fragment end motifs (FEMs) differ between cancer
patients and healthy individuals [9,21,22]. These observations have been used to develop
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machine learning models to discriminate between plasma samples from healthy individuals
and cancer patients [9,21].

In addition, the fragmentation of cfDNA near transcription start sites (TSSs) and
transcription-factor binding sites (TFBSs) has been coupled to gene activity [17–19,23,24].
With promoter regions in an open chromatin state, active genes are more accessible to
endonucleases, leading to lower cfDNA sequencing coverage and a more diverse fragment
length profile [23]. Previously, the cell-free chromatin immunoprecipitation (cfChIP) tech-
nique was demonstrated to identify active genes in cfDNA. cfChIP offers a new opportunity
to identify active genes in liquid biopsies by the immunoprecipitation of trimethylated
histone 3 lysine 36 (H3K36me3) nucleosomes from plasma [25–28].

cfDNA fragmentomics is a growing field in liquid biopsies; however, no comprehen-
sive explanation has been proposed for the relationship between the length of cfDNA or
FEMs and gene activity. Next-generation sequencing (NGS) of cfDNA applied to cfChIP
has given us an opportunity to create a personal gene expression profile based on liquid
biopsies. In the present paper, we took advantage of the ability to obtain information on
gene activity and used this information to determine the correlation of gene activity with
cfDNA features such as FEM and fragment length (Figure 1). We hereby demonstrated that
the combination of cfDNA fragment length and FEM data is superior for predicting the
expression patterns of corresponding genes in lung cancer patients and healthy individuals.
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Figure 1. Experimental setup of the study. Plasma samples from 12 lung cancer patients and 7 
healthy individuals were subjected to input cfDNA purification (middle), H3K36me3 cfChIP (left), 
or in vitro size selection (right). Thes samples were sequenced via Cancer Personalized Profiling by 
deep sequencing (CAPP-seq) 197 genes. cfChIP samples were used to estimate gene activity for each 
individual. The input cfDNA samples were used to detect mutations in cell-free DNA. In vitro size 
selection was used to investigate the properties of short cfDNA fragments. The data from each type 
of sample were analyzed in relation to fragment length, fragment end motifs (FEMs), nucleosomal 
footprint, and enrichment correlation. 

2. Results 
2.1. ctDNA Is Shorter Than cfDNA of Noncancer Origin 

We performed Cancer Personalized Profiling by deep sequencing (CAPP-seq)cfDNA 
from twelve stage IV lung cancer patients and seven healthy individuals (Figure 1). The 
cancer patients had shorter cfDNA than the healthy individuals (Figure 2A). Among the 
12 cancer patients, ctDNA was detected in 9/12 patients based on the detection of muta-
tions via CAPP-seq. An analysis of all the cfDNA in mutation-positive cancer patients 
demonstrated that the length of cfDNA was shorter than that of the cfDNA from muta-
tion-negative patients (Figure 2B). Quantifying the fraction of short cfDNA (<150 bp) re-
vealed similar results for mutation-negative cancer patients and healthy individuals, 

Figure 1. Experimental setup of the study. Plasma samples from 12 lung cancer patients and 7 healthy
individuals were subjected to input cfDNA purification (middle), H3K36me3 cfChIP (left), or in vitro
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size selection (right). Thes samples were sequenced via Cancer Personalized Profiling by deep
sequencing (CAPP-seq) 197 genes. cfChIP samples were used to estimate gene activity for each
individual. The input cfDNA samples were used to detect mutations in cell-free DNA. In vitro size
selection was used to investigate the properties of short cfDNA fragments. The data from each type
of sample were analyzed in relation to fragment length, fragment end motifs (FEMs), nucleosomal
footprint, and enrichment correlation.

2. Results
2.1. ctDNA Is Shorter Than cfDNA of Noncancer Origin

We performed Cancer Personalized Profiling by deep sequencing (CAPP-seq)cfDNA
from twelve stage IV lung cancer patients and seven healthy individuals (Figure 1). The
cancer patients had shorter cfDNA than the healthy individuals (Figure 2A). Among
the 12 cancer patients, ctDNA was detected in 9/12 patients based on the detection of
mutations via CAPP-seq. An analysis of all the cfDNA in mutation-positive cancer patients
demonstrated that the length of cfDNA was shorter than that of the cfDNA from mutation-
negative patients (Figure 2B). Quantifying the fraction of short cfDNA (<150 bp) revealed
similar results for mutation-negative cancer patients and healthy individuals, whereas
mutation-positive patients had a greater fraction of short cfDNA fragments than both
healthy individuals (p = 0.031) and mutation-negative patients (p = 0.025) (Figure 2C).
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cfDNA shorter than 150 bp in healthy individuals (n = 7, orange), mutation-negative (n = 3, red) and 
mutation-positive (n = 9, purple) lung cancer patients. Groups were compared using an unpaired t-
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ctDNA mutations. (E) The relative mutant/WT cfDNA fraction in bins (10 bp) from 50 to 400 bp. 
Each point represents the relative mutant/WT cfDNA enrichment compared to the molecular allele 
fraction (MAF) of the unselected cfDNA pool. Purple indicates cfDNA fragment lengths with mu-
tant enrichment, and orange represents WT cfDNA enrichment. (F) Pairwise comparison of the frac-
tions under 150 bp for WT cfDNA (n = 9, orange) and mutated fragments (n = 9, purple). Groups 
were compared using a paired t-test. 

We hypothesize that ctDNA of known cancer cell origin is shorter than cfDNA orig-
inating from noncancer cells from the same individual. We combined cfDNA fragments 
from the nine patients with mutation-positive plasma samples and compared the frag-
ment length of the mutated ctDNA with that of the wild-type (WT) cfDNA fragments at 
the same genomic position in these samples (Figure 2D, Supplementary Figure S1). This 
revealed an increase in mutated fragments with a length less than 150 bp and with a length 
of approximately 300 bp compared to the corresponding cfDNA. We used in silico size-
selection in bins of 10 bp from 50 to 400 bp to evaluate the effect of cfDNA fragment length 
on the mutant/WT DNA ratio. For each bin, the mutant/WT DNA ratio was normalized 
to the ratio in the original combined sample (Figure 2E). This revealed the enrichment of 
mutant ctDNA from 50 to 150 bp and from 200 to 340 bp, whereas WT cfDNA was most 
prevalent from 150 to 200 bp and from 340 to 400 bp. A pairwise comparison of mutated 
ctDNA and WT cfDNA also revealed that the abundance of mutated fragments below 150 
bp was greater than that of WT cfDNA in the same genomic region (Figure 2F). Collec-
tively, the results in Figure 2 demonstrate that the length of ctDNA with verified muta-
tions is shorter than WT cfDNA from the same samples and that cancer patients have a 
greater fraction of short cfDNA than healthy individuals. 

Figure 2. cfDNA fragment lengths in cancer patients and healthy individuals. (A) The cfDNA
fragment size distribution in lung cancer patients (n = 12, purple) and healthy individuals (n = 7,
orange). Short cfDNA (0–150 bp) is marked in green. (B) cfDNA fragment size distribution in
mutation-positive (n = 9, purple) and mutation-negative (n = 3, orange) lung cancer patients.
(C) Fraction of cfDNA shorter than 150 bp in healthy individuals (n = 7, orange), mutation-negative
(n = 3, red) and mutation-positive (n = 9, purple) lung cancer patients. Groups were compared using
an unpaired t-test. (D) Size distribution of mutated and WT cfDNA fragments in the 9 patient samples
containing ctDNA mutations. (E) The relative mutant/WT cfDNA fraction in bins (10 bp) from 50 to
400 bp. Each point represents the relative mutant/WT cfDNA enrichment compared to the molecular
allele fraction (MAF) of the unselected cfDNA pool. Purple indicates cfDNA fragment lengths with
mutant enrichment, and orange represents WT cfDNA enrichment. (F) Pairwise comparison of the
fractions under 150 bp for WT cfDNA (n = 9, orange) and mutated fragments (n = 9, purple). Groups
were compared using a paired t-test.

We hypothesize that ctDNA of known cancer cell origin is shorter than cfDNA orig-
inating from noncancer cells from the same individual. We combined cfDNA fragments
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from the nine patients with mutation-positive plasma samples and compared the fragment
length of the mutated ctDNA with that of the wild-type (WT) cfDNA fragments at the same
genomic position in these samples (Figure 2D, Supplementary Figure S1). This revealed
an increase in mutated fragments with a length less than 150 bp and with a length of ap-
proximately 300 bp compared to the corresponding cfDNA. We used in silico size-selection
in bins of 10 bp from 50 to 400 bp to evaluate the effect of cfDNA fragment length on the
mutant/WT DNA ratio. For each bin, the mutant/WT DNA ratio was normalized to the
ratio in the original combined sample (Figure 2E). This revealed the enrichment of mutant
ctDNA from 50 to 150 bp and from 200 to 340 bp, whereas WT cfDNA was most prevalent
from 150 to 200 bp and from 340 to 400 bp. A pairwise comparison of mutated ctDNA
and WT cfDNA also revealed that the abundance of mutated fragments below 150 bp was
greater than that of WT cfDNA in the same genomic region (Figure 2F). Collectively, the
results in Figure 2 demonstrate that the length of ctDNA with verified mutations is shorter
than WT cfDNA from the same samples and that cancer patients have a greater fraction of
short cfDNA than healthy individuals.

2.2. cfDNA Originating from Genes with High Expression Is Shorter Than cfDNA from Genes
with Low Expression

Next, we performed cfChIP-seq on 12 cancer patients. The cfChIP-seq of H3K36me3-
containing nucleosomes resulted in the enrichment of cfDNA fragments from genes with
active transcription [25–30]. A comparison of the cfDNA fragment lengths in cfChIP
samples with those in input cfDNA samples from cancer patients revealed the enrichment
of shorter cfDNA fragments (Supplementary Figure S2A). Similarly, with a cutoff of 150 bp,
we also demonstrated that the fraction under 150 bp was larger in the cfChIP samples
than in the matching input samples (Figure 3A, p = 0.0093). These results suggest that
increased gene activity contributes to the circulatory release of shorter cfDNA fragments.
To verify that cfChIP did not result in the artificial trimming of cfDNA fragments, we
established two gene sets for each patient representing highly expressed and genes with
low levels of expression. We used these gene sets to filter reads from the input cfDNA
sample and analyzed the cfDNA fragment lengths of the two gene groups (Supplementary
Figure S2B). Quantifying the fraction under 150 bp in the two gene sets revealed that highly
expressed genes were systematically represented with shorter cfDNA fragments compared
to genes with low expression (Figure 3B, p = 8.1 × 10−6). Results from healthy individuals
(n = 4) revealed a similar pattern (Supplementary Figure S3), implying that the shortening
of cfDNA from active genes is not cancer-specific but is related to cfDNA biology in all
individuals. cfChIP data could be obtained from four of the seven healthy individuals as
the remaining three healthy individuals had insufficient cfChIP yields for an NGS analysis.

Next, we grouped all genes in the CAPP-seq panel into 10 quantiles (Q) based on
cfChIP enrichment for each patient (n = 12). In each quantile, the fraction of input cfDNA
less than 150 bp was estimated and normalized to Q1, which contained the genes with
the lowest cfChIP-based activity (Figure 3C). A stepwise increase in gene activity (Q1 to
Q10) resulted in a greater fraction of short fragments (Friedman’s ANOVA: p < 0.0001). Q10
had a median increase in the <150 bp fraction of 19.99% [IQR: 16.94–27.13%, p < 0.0001]
compared to that of Q1. These findings were also observed in the validation dataset
comprising of healthy individuals (Figure 3D). Here, Q10 had a median increase of
16.01% [IQR: 15.60–16.83%, p < 0.0001] in the <150 bp fraction compared to inactive genes.
To validate these findings, we performed both in vitro size selection and cfChIP-seq on
11 lung cancer plasma samples (Figure 1). Compared with the input samples, the size selec-
tion resulted in a large increase in the <150 bp cfDNA fraction (Supplementary Figure S4).
Following sequencing, the gene enrichment with size selection was estimated using the
same gene enrichment applied to the cfChIP samples [28]. The genes were divided into
quantiles Q1 to Q10 based on cfChIP enrichment, and the normalized size-selection enrich-
ment in each quantile is displayed in Figure 3E. An increase in gene activity (Q1 to Q10)
resulted in greater in vitro size-selection enrichment (Friedman’s ANOVA: p < 0.0001). The
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Q10 median increase in vitro size-selection enrichment was 158.84% (IQR: 125.29–170.11%,
p < 0.0001) compared to Q1. A correlation of cfChIP gene enrichment with in vitro size-
selection gene enrichment revealed a positive correlation (Spearman r range: 0.499–0.882,
p < 2.2× 10−16; Figure 3F, Supplementary Figure S5). This finding indicates that the in vitro
size selection of plasma cfDNA can be used to predict gene activity from a liquid biopsy.
In silico size selection at different fragment length cutoffs also resulted in a positive corre-
lation with cfChIP (Supplementary Figure S6). The highest correlation was observed for
the fraction of fragments less than 160 bp (Spearman r median: 0.403, range: 0.158–0.528),
whereas the correlation was reduced for cutoffs above 160 bp.
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Figure 3. Fragment length analysis of cfDNA in active genes. (A) Pairwise comparison of the fraction
under 150 bp for input (n = 12, orange) and cfChIP (n = 12, purple) samples. (B) Pairwise comparison of
the fraction under 150 bp for genes with low expression (n = 12, orange) and high expression (n = 12,
purple). (C) Normalized fraction under 150 bp for genes in the cfChIP quantiles Q1 to Q10 for lung
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cancer patients (n = 12). (D) Normalized fraction under 150 bp for cfDNA in healthy individuals. The
fragments are grouped as inactive or in quantiles Q1 to Q10. (E) Normalized in vitro size-selection en-
richment for genes in the cfChIP quantiles Q1 to Q10 for lung cancer patients (n = 11). For (C,E), each
quantile is normalized to the fraction in Q1, whereas quantiles in (D) are normalized to inactive
genes. (F) Representative example of cfChIP enrichment compared to size-selection enrichment.
NAC.3 represents the median Spearman’s correlation between the 11 samples. (G) Distribution
of fragment end cleavage relative to the nucleosome dyad in lung cancer patients (n = 12). Pur-
ple represents highly expressed genes and orange represents genes with low levels of expression.
(H) Pairwise comparison of the core/linker end fraction for genes with low expression (n = 12,
orange) and high expression (n = 12, purple). For (A,B,H), groups were compared using a paired
t-test. **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001.

We hypothesize that the underlying chromatin structure could explain the differences
in fragment lengths between active and inactive genes. To investigate this possibility, we
estimated the cleavage of cfDNA relative to nucleosome centers which were determined in
a previous study [24]. Figure 3G displays the frequency of fragment ends in the core and
linker regions of a nucleosome for highly expressed genes and genes with low levels of
expression. Compared with the genes with low levels of expression, the highly expressed
genes have an increased core/linker end fraction (p = 0.0004, Figure 3H). This finding
demonstrates that gene activity results in changes in chromatin structure which are reflected
in cfDNA fragment end distributions and fragment lengths.

2.3. The Active Genes Have Distinct cfDNA FEMs

A comparison of the cfDNA fragment end motifs in the input samples from healthy
individuals (n = 7) and cancer patients (n = 12) revealed differences between the two types
of samples (Figure 4A). In addition, we compared the FEM frequencies between paired
input and cfChIP samples. These findings demonstrated that 24 FEMs were enriched in
the cfChIP samples from cancer patients (Figure 4B), healthy individuals (Supplementary
Figure S7A), and all individuals combined (Supplementary Figure S7B). Uniform Manifold
Approximation and Projection (UMAP) embedding based on FEM frequencies in input
and cfChIP samples from both cancer patients and healthy individuals resulted in distinct
clusters (Figure 4C). Samples from healthy individuals were grouped together but were
also separated into input and samples containing active genes based on cfChIP enrichment.
Moreover, cancer input and cancer cfChIP samples were also separated into two clusters.
This finding is in accordance with our results that cfChIP and input samples have distinct
FEM frequencies (Figure 4B). The genes associated with low expression and high expression
also had a distinct enrichment of FEMs (Figure 4D, Supplementary Figure S7C,D). The FEMs
enriched in the cfChIP samples were generally GC-rich compared to those enriched in input
samples (Supplementary Figure S8). Similarly, compared with genes with low expression,
genes with high expression were also enriched in GC-rich FEMs (Supplementary Figure
S8). Interestingly, a significant overlap in enriched FEMs for cfChIP samples and highly
expressed genes was observed (p = 5.08 × 10−6). UMAP embedding FEM frequencies in
genes with low and high expression separated the two gene sets into two groups (Figure 4E).
The two clusters represent genes with low and high expression, respectively, indicating
that cfDNA fragments from genes with low expression have distinct FEMs compared to
cfDNA originating from active genes.

2.4. Short Fragments Have Distinct FEMs and Originate from Active Genes

To determine whether subsets of the 64 possible 3 bp long FEMs of cfDNA could
predict gene expression, we defined the 24 FEMs enriched in the 12 lung cancer cfChIP
samples as “cfChIP motifs” (Figure 4B). The nine FEMs enriched in the input samples were
defined as “input motifs”. For each lung cancer patient, we grouped all genes based on
cfChIP quantiles and quantified the fraction of cfDNA fragments with cfChIP and input
motifs (Figure 5A,B). The fraction of fragments with cfChIP motifs increased from Q1
to Q10 (Friedman’s ANOVA: p < 0.0001). Q10 had a median increase in the fraction of
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fragments with cfChIP motifs of 10.87% [IQR: 5.95–15.78%, p < 0.001] compared to that
of Q1 (Figure 5A). In contrast, the fraction of fragments with input motifs was consistent
from Q1 to Q10 (Friedman’s ANOVA: p = 0.48; Figure 5B). Similarly, we defined high-
expression and low-expression motifs based on the FEMs enriched in highly expressed
genes and genes with low levels of expression, respectively (Figure 4D). The fraction of
input cfDNA fragments with motifs from highly expressed genes increased from Q1 to
Q10 (Friedman’s ANOVA: p < 0.0001, Supplementary Figure S9A). Correspondingly, the
fraction of fragments with motifs from genes associated with low expression decreased
from Q1 to Q10 (Friedman’s ANOVA: p < 0.0001; Supplementary Figure S9B). Given
that distinct FEMs were identified in active genes and that active genes are enriched in
short cfDNA fragments, we investigated the FEMs in size-selected samples compared to
unselected samples (Figure 5C). Many of the FEMs enriched in the size-selected samples
were GC-rich, similar to the cfChIP motifs, and 12/15 (80%) FEMs enriched in the size-
selected samples were also enriched in the cfChIP samples (p = 0.00018; Figure 5D). These
results indicate that cfDNA originating from active genes contains more short fragments
(<150 bp) and a specific subset of FEMs. We combined this knowledge to quantify the
fraction of input cfDNA fragments shorter than 150 bp and with cfChIP motifs in gene
quantiles based on cfChIP enrichment (Figure 5E). A stepwise increase was observed
from Q1 to Q10 (Friedman’s ANOVA: p < 0.0001). This indicates that increases in gene
activity affect cfDNA fragmentation, resulting in short cfDNA molecules with distinct
FEMs. Q10 had a median increase in the fraction of fragments less than 150 bp and with
cfChIP motifs of 37.85% [IQR: 30.10–39.49%, p < 0.0001] compared to Q1. Combining
both fragment lengths and FEMs resulted in greater enrichment in Q10 than fragment
lengths alone (median increase = 16.78%, IQR: 8.60–18.20%, p < 0.0001; Figure 3C) or cfChIP
motifs alone (median increase = 20.35%, IQR: 16.87–32.40%, p < 0.0001; Figure 5A). Similar
results were observed in the validation dataset comprising healthy individuals (Figure 5F).
Here, the median increase in Q10 compared to that in inactive genes was 18.84% [IQR:
17.49–20.07%, p < 0.0001], which was also greater than when evaluating fragment lengths
alone (median increase = 2.16%, IQR: 1.18–3.51%, p < 0.0001; Figure 3D) or FEMs alone
(median increase = 15.76%, IQR: 14.40–16.48%, p < 0.0001; Supplementary Figure S10).
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(A) Differences in FEM frequencies between cancer patients (n = 12) and healthy individuals (n = 7).
(B) Differences in FEMs in paired input and cfChIP cancer samples (n = 12). (C) Uniform Manifold
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Approximation and Projection (UMAP) based on FEM frequencies in the input and cfChIP samples.
(D) Differences in FEMs for genes expressed at low and high levels in cancer input samples (n = 12).
(E) UMAP based on the FEM frequencies in genes expressed at low and high levels. For (A,B), and
(D), FEMs with a q-value less than 0.05 are labeled with the motif. Dashed lines indicate q = 0.05,
q = 0.01, and q = 0.001. For (C,E), cancer patients are represented as circles, and healthy individuals
are represented as triangles. The colors indicate the type of sample.
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patient (n = 12), the genes in the cfChIP quantiles were determined. For each quantile, the fraction
of fragments with fragment end motifs enriched in cfChIP (A) or input (B) samples was calculated.
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(C) Differences in fragment end motifs in paired unselected and size-selected cancer samples (n = 11).
(D) Venn diagram representing the overlap in significant fragment end motifs in the analyses of
cfChIP compared to input samples and unselected compared to size-selected samples. (E) Normalized
fraction of fragments less than 150 bp with cfChIP motifs for genes in cfChIP quantiles Q1 to Q10
for lung cancer patients (n = 12). (F) Normalized fraction of fragments less than 150 bp with cfChIP
motifs for genes in the validation dataset. The fragments are grouped as inactive or in quantiles Q1
to Q10. For (A,B,E), each quantile is normalized to the fraction in Q1, whereas quantiles in (F) are
normalized to inactive genes. ns: p > 0.05, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001.

3. Discussion

In this study, we conducted cfChIP-seq on plasma from non-small cell lung cancer
(NSCLC) and small cell lung cancer (SCLC) patients to generate a personal gene expres-
sion profile for each individual. In a previous study, we described how cfChIP-seq on
these patients can be used to study gene expression differences between the two types
of lung cancers [28]. We demonstrated how cfChIP-seq on NSCLC patients resulted in
the enrichment of genes known to be upregulated in NSCLC, such as EGFR and RIN3,
whereas SCLC patients had increased gene enrichment of, e.g., KIF19 and SMAD4, which
are upregulated in SCLC tumors. This highlights the fact that cfChIP-seq results reflect
tumor gene expression and the fragmentomic features identified in this study arise from
the tumor cells.

Previous studies used cfDNA fragment end motif frequencies in machine learning
algorithms for early cancer detection and treatment response evaluation [9,21,22,31]. In
this study, we focused on the effect of gene activity on FEMs. In a recent study [32], the
authors linked FEM frequencies to the methylation status of cfDNA fragments, which
indirectly reflects the gene activity in the cell of origin. The authors demonstrated how FEM
frequencies vary at different CpG sites, reflecting the methylation status, and they used this
knowledge to perform a tissue of origin analyses. It is likely that the FEMs identified in our
study that are connected to gene activity are also affected by the methylation of the gene.
Future studies are required to expand the body of knowledge concerning the associations
between gene activity, methylation status, and cfDNA FEMs.

The ability of cfDNA fragmentomics to infer gene expression has been developed in
recent years. These studies have focused primarily on the cfDNA fragmentation profiles
surrounding TSS [19,23], open chromatin regions [17], and TFBSs [18,33]. Given that the
H3K36me3 modification, which was used in our cfChIP assays, is located primarily in
the gene body of active genes [29,30], and that the applied NGS panel is not focused
around the TSS [28], our results preferentially reflected the cfDNA fragmentation within
the gene body. Nevertheless, we observed that increased gene activity results in shorter
cfDNA fragments, which is in accordance with the findings of a previous study [23]. Our
results, based on cfChIP-seq, were verified using an in vitro size-selection enrichment of
cfDNA, as the results from these two approaches were found to be correlated. Combining
FEMs with fragment lengths increased the association with cfDNA fragments originating
from active genes, indicating that increased gene activity results in both shorter fragments
and distinct fragment end motifs. FEMs are a new field in liquid biopsy research, and
multiple factors, including nuclease activity [20,34,35] and methylation [32], can affect
FEMs. Future whole genome sequencing (WGS)-based studies of FEMs and cfChIP in
combination with in vitro cfDNA size selection could further validate our findings and
provide comprehensive insights into the relationship between cfDNA fragmentomics and
underlying gene activity.

cfDNA fragment size distribution differs between cancer patients and healthy indi-
viduals [4,15,36], which was also observed in this study. Previous studies have identified
how cancer patients have increased amounts of short fragments [4,15] and high molecular
fragments caused by cell necrosis [37]. In addition, we evaluated the lengths of the mutated
ctDNA fragments and compared them to WT cfDNA fragments in the same patient. A lim-
itation of these analyses is that only 9 of the 12 lung cancer patients were mutation-positive
and the number of ctDNA mutations was low (median = 3, range 0–6). However, we are
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able to demonstrate an enrichment of mutated ctDNA in short cfDNA fragments. This
result is in alignment with a previous study [10].

A limitation of our study is the relatively few individuals included (twelve cancer
patients and seven healthy individuals) and the size of our gene panel used for targeted
NGS. In addition, only stage IV lung cancer patients with a high ctDNA fraction were
analyzed. As a result, our findings need to be repeated in larger patient cohorts and
expanded to include other types of cancer, patients of different ethnicities and ages, as well
as the full spectrum of cancer stages. Likewise, it would be interesting to perform these
experiments using a broader NGS approach, such as WGS, to generalize the information
obtained from cfDNA fragmentomics. Despite this, we were able to replicate our findings
in cfDNA from healthy individuals using WGS data from a previous study [24] in which
the expected gene activity was based on data from peripheral blood mononuclear cells
(PBMCs). These findings suggest that our results are applicable to other types of NGS
methods and that the fragmentomic features identified in our study can be generalized
to other samples. Future studies will demonstrate how gene expression based on liquid
biopsies can be used to monitor tumor development and identify treatment responses using
longitudinal plasma samples from the same individuals.

4. Materials and Methods
4.1. Plasma Samples

Plasma samples from twelve stage IV lung cancer patients diagnosed with either
NSCLC (n = 8) or SCLC (n = 4) and from seven healthy individuals were used. Peripheral
blood was drawn in 10 mL EDTA tubes from each individual and centrifuged at room
temperature within 2 h at 1400× g for 15 min. Plasma was aliquoted and stored at −80 ◦C.
The plasma was split and subjected to (1) input cfDNA purification, (2) cfChIP, or (3) cfDNA
purification and in vitro size selection (Figure 1). One NSCLC patient had insufficient
remaining plasma for in vitro size selection, and therefore, 11/12 lung cancer patients were
subjected to in vitro size selection. All three types of samples were subjected to NGS via
CAPP-seq [2], as described in detail below. The amount of plasma and the resulting number
of reads for each sample are presented in Supplementary Table S1.

4.2. Cell-Free Chromatin Immunoprecipitaiton (cfChIP) Enrichment

cfChIP-seq was performed as described by Maansson et al. [28] (Figure 1, left).
H3K36me3 cfChIP enrichment was calculated for each gene, and the results were used as a
surrogate for gene activity [25,27]. In brief, the plasma was cleared of circulating antibod-
ies using empty protein A/G magnetic beads (ThermoFisher Scientific, 88802, Waltham,
MA, USA). The cleared plasma was added to protein A/G magnetic beads coated with
anti-H3K36me3 antibodies (Abcam 9050, Cambridge, United Kingdom) and incubated
overnight at 4 ◦C. The beads were then washed, and the precipitated DNA was eluted. The
cfChIP sample and the input plasma cfDNA were purified using an Apostle MiniMax High
Efficiency cfDNA Isolation Kit (Beckman Coulter, Indianapolis, IN, USA) and subjected to
CAPP-seq. Deduplicated cfChIP BAM files were used for a H3K36me3 enrichment analysis.
For each gene, the number of reads was normalized to the total number of reads and the
NGS coverage of that particular gene [28].

4.3. In Vitro Size Selection

A PippinHT (Sage Science, Beverly, MA, USA) instrument was used to perform the
in vitro size-selection of cfDNA (Figure 1, right). First, 20 µL of purified cfDNA from each
plasma sample was added to a 3% agarose gel cassette. The range mode of the system was
set to collect cfDNA within 95–230 bp with a pause at 152 bp, resulting in the collection of
two cfDNA fractions. The two fractions corresponded to cfDNA fragments with lengths
of 95–152 bp and 152–230 bp, respectively. The cfDNA fragments were eluted in 30 µL
of electrophoresis buffer. The fraction with short fragments (95–152 bp) was subjected
to CAPP-seq.
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4.4. CAPP-Seq

CAPP-seq is based on hybridization-capture NGS [2]. The sequencing library was pre-
pared using the AVENIO ctDNA surveillance kit (Roche Sequencing Solutions, Mannheim,
Germany), covering 198 kb in 197 hypermutated genes [38]. The gene fragments were se-
quenced using a NextSeq 500 (Illumina, San Diego, CA, USA), and the data were analyzed
using the AVENIO Oncology Analysis Software (v. 2.0.0). Deduplicated BAM files based on
unique molecular identifiers (UMIs) were used for a cfChIP enrichment analysis, whereas
position-deduplicated BAM files were used to estimate fragment lengths and FEMs.

4.5. ctDNA Detection

Mutations in cfDNA were identified using the AVENIO Oncology Analysis software
v. 2.0.0 (Roche Sequencing Solutions, Mannheim, Germany), as described previously [39].
The excluded variants included synonymous variants and variants present in the Exome
Aggregation Consortium (ExaC) with an allele frequency > 0.10%, the 1000 Genomes
Project, or the Single Nucleotide Polymorphism database (dbSNP Common). The included
variants needed to be present in the Catalog of Somatic Mutations in Cancers (COSMIC)
database, The Cancer Genome Atlas (TCGA), or the Loci of Interest list. Mutated cfDNA
fragments were isolated as described previously [12], and fragments covering the same
genomic position without the mutation were defined as WT fragments.

4.6. Fragment Length and FEM Analyses

Position-deduplicated BAM files were used for fragment length and FEM analyses.
Fragment lengths were estimated using the start and end positions of paired-end sequenc-
ing reads. Reads with no fragment length information or a fragment length of 0 were
excluded from the analysis. Reads containing N nucleotides in either of the fragment
termini were removed. The frequencies of 5′-3′ 3-mers at each end of a fragment were
determined. The frequencies at both ends of the fragments were combined, and the fraction
of each possible 3-mer (n = 43 = 64) for each sample was calculated. The FEM frequencies
for all 64 possible motifs were used for a Uniform Manifold Approximation and Projection
(UMAP) analysis.

4.7. High/Low-Expressed Genes and cfChIP Quantiles

Gene expression was estimated using cfChIP-seq for each individual, and the 15 most
enriched genes were considered to be highly expressed, whereas the 15 least enriched genes
were considered to be expressed at low levels. Furthermore, genes were grouped in cfChIP
quantiles for each patient. Each quantile contained 19 or 20 genes such that Q1 contained
the genes with the lowest enrichment and Q10 contained the most enriched genes. Reads
from cfDNA input samples in either high/low-expressed genes or cfChIP quantiles were
filtered, and fragment lengths and FEMs were analyzed.

4.8. Nucleosomal Positioning Analysis

For each cfDNA fragment in high- or low-expressed genes, we estimated the dis-
tance from the nearest nucleosome center to the cfDNA fragment ends as described previ-
ously [15]. Information regarding nucleosome positions was based on the CH01 nucleosome
track from Snyder et al. [24]. This track is based on the pooled whole-genome sequencing
of cfDNA from multiple healthy individuals. We identified input cfDNA fragments over-
lapping with nucleosome centers and calculated the distance from each nucleosome center
to the start and end of the fragment. For fragments overlapping with multiple nucleosome
centers, only the nearest nucleosome to each start and end was considered. We defined the
nucleosome core as −75 to +75 bp relative to the nucleosome dyad and the linker region as
−75 to −95 or +75 or +95 bp relative to the nucleosome dyad. Based on these regions, we
calculated a core/linker end fraction as the number of fragment ends in the core region
relative to the number of fragment ends in the linker region.
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4.9. Validation Data

cfDNA WGS data published by Snyder et al. [24] were used to validate the findings
in this study. The BH01 (GSM1833219) cfDNA-seq dataset representing the deep WGS of
an unknown number of healthy individuals was down sampled to 20 0.9X WGS samples.
This dataset is referred to as the “validation dataset”. Furthermore, RNA-seq data from
PBMCs (GSE107011, n = 13) [40] were used to determine gene expression patterns in healthy
individuals. Reads in the validation dataset were grouped into gene sets based on PBMC
gene activity. Genes with no expression (log2(TPM + 1) = 0 in all samples) were classified
as “inactive” (n = 2262). The remaining genes were grouped into quantiles with 1747 to
1751 genes in each quantile. Q1 contained the genes with the lowest average log2(TPM + 1),
and Q10 contained the genes with the highest average log2(TPM + 1).

4.10. Statistical Analysis

All the data analyses were performed in R version 4.3.0. BAM files were loaded
into R using the chromstaR [41] package. cfDNA fragments were analyzed using the
GenomicRanges [42] Biostrings [43], and Rsamtools [44] packages. Plots and graphs were
created using the dplyr [45], ggpubr [46], and ggplot2 [47] packages. Differences in both
fragment lengths and FEMs between the input and cfChIP samples were evaluated with
a paired t-test. A comparison of highly expressed genes and genes with low levels of
expression from the same individual was also performed with a paired t-test. Differences
between cancer patients and healthy individuals as well as between mutation-positive
and mutation-negative patients were tested using an unpaired t-test. Global differences in
fragmentation for cfChIP quantiles were tested using Friedman’s ANOVA, and if p < 0.05,
Q2–Q10 were compared individually to Q1 using paired t-tests. For the FEM analysis,
p-values were adjusted for multiple testing using the false discovery rate (FDR) [48],
and q-values < 0.05 were considered significant. Significant overlap between FEM sets
was determined using a hypergeometric test, where p < 0.05 was considered to indicate
statistical significance.

5. Conclusions

In this study, we identified key fragmentomic features related to cfDNA from active
genes. Based on the cfChIP-seq of cfDNA, which is a novel technique for measuring gene
activity in liquid biopsies, we created a personal gene expression profile and used this
information to detect differences in fragmentomics between highly expressed genes and
genes with low levels of expression. Here, we demonstrated that active transcription is
associated with shorter cfDNA fragments and more GC-rich FEMs. Interestingly, combining
the frequency of short fragments and distinct FEMs resulted in greater enrichment in highly
expressed genes than evaluating fragment lengths or FEMs separately. This was also
observed in the validation dataset from healthy individuals. This study provides novel
insights into the biology behind cfDNA fragmentomics and demonstrates that FEMs are an
important new characteristic of cfDNA which can increase the utility of liquid biopsies for
determining gene activity under various pathological conditions.
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