Novel Diagnostic Methods for Infective Endocarditis
Abstract
:1. Introduction
2. Diagnosis of IE
2.1. Clinical Features
2.2. Microbiological Diagnosis—Blood Culture
3. Blood Culture-Negative Infective Endocarditis (BCNIE)
4. Serologic Tests
5. Histo-Pathology of Heart Valves after Cardiac Surgery
6. Molecular Techniques
7. Imaging Infective Endocarditis by Using Novel Techniques
8. Future Diagnostic/Research
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Delgado, V.; Marsan, N.A.; de Waha, S.; Bonaros, N.; Brida, M.; Burri, H.; Caselli, S.; Doenst, T.; Ederhy, S.; Erba, P.A.; et al. 2023 ESC Guidelines for the management of endocarditis: Developed by the task force on the management of endocarditis of the European Society of Cardiology (ESC) Endorsed by the European Association for Cardio-Thoracic Surgery (EACTS) and the European Association of Nuclear Medicine (EANM). Eur. Heart J. 2023, 44, 3948–4042, Correction in Eur. Heart J. 2023, 44, 4780; Correction in Eur. Heart J. 2024, 45, 56. [Google Scholar] [CrossRef]
- Rajani, R.; Klein, J.L. Infective endocarditis: A contemporary update. Clin. Med. 2020, 20, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Harky, A.; Zaim, S.; Mallya, A.; George, J.J. Optimizing outcomes in infective endocarditis: A comprehensive literature review. J. Card. Surg. 2020, 35, 1600–1608. [Google Scholar] [CrossRef] [PubMed]
- Young, W.J.; Jeffery, D.A.; Hua, A.; Primus, C.; Wani, R.S.; Das, S.; Wong, K.; Uppal, R.; Thomas, M.; Davies, C.; et al. Echocardiography in Patients with Infective Endocarditis and the Impact of Diagnostic Delays on Clinical Outcomes. Am. J. Cardiol. 2018, 122, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Erba, P.A.; Lancellotti, P.; Vilacosta, I.; Gaemperli, O.; Rouzet, F.; Hacker, M.; Signore, A.; Slart, R.H.J.A.; Habib, G. Recommendations on nuclear and multimodality imaging in IE and CIED infections. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1795–1815. [Google Scholar] [CrossRef]
- Murdoch, D.R.; Corey, G.R.; Hoen, B.; Miro, J.M.; Fowler, V.G., Jr.; Bayer, A.S.; Karchmer, A.W.; Olaison, L.; Pappas, P.A.; Moreillon, P.; et al. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: The International Collaboration on Endocarditis-Prospective Cohort Study. Arch. Intern. Med. 2009, 169, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-L.; Tromp, J.; Teramoto, K.; Tse, Y.-K.; Yu, S.-Y.; Lam, L.-Y.; Li, K.-Y.; Wu, M.-Z.; Ren, Q.-W.; Wong, P.-F.; et al. Temporal trends and patterns of infective endocarditis in a Chinese population: A territory-wide study in Hong Kong (2002–2019). Lancet Reg. Health-West. Pac. 2022, 22, 100417. [Google Scholar] [CrossRef]
- Eleyan, L.; Khan, A.A.; Musollari, G.; Chandiramani, A.S.; Shaikh, S.; Salha, A.; Tarmahomed, A.; Harky, A. Infective endocarditis in paediatric population. Eur. J. Pediatr. 2021, 180, 3089–3100. [Google Scholar] [CrossRef]
- Kiriyama, H.; Daimon, M.; Nakanishi, K.; Kaneko, H.; Nakao, T.; Morimoto-Ichikawa, R.; Miyazaki, S.; Morita, H.; Daida, H.; Komuro, I. Comparison Between Healthcare-Associated and Community-Acquired Infective Endocarditis at Tertiary Care Hospitals in Japan. Circ. J. 2020, 84, 670–676. [Google Scholar] [CrossRef]
- Luca, A.-C.; Curpan, A.-S.; Adumitrachioaiei, H.; Ciobanu, I.; Dragomirescu, C.; Manea, R.-S.; Vlad, E.; Surguci-Copaceanu, A. Difficulties in Diagnosis and Therapy of Infective Endocarditis in Children and Adolescents—Cohort Study. Healthcare 2021, 9, 760. [Google Scholar] [CrossRef]
- Habib, G.; Erba, P.A.; Iung, B.; Donal, E.; Cosyns, B.; Laroche, C.; Popescu, B.A.; Prendergast, B.; Tornos, P.; Sadeghpour, A.; et al. Clinical presentation, aetiology and outcome of infective endocarditis. Results of the ESC-EORP EURO-ENDO (European infective endocarditis) registry: A prospective cohort study. Eur. Heart J. 2020, 40, 3222–3232, Erratum in Eur. Heart J. 2020, 41, 2091. [Google Scholar] [CrossRef] [PubMed]
- Grable, C.; Yusuf, S.W.; Song, J.; Viola, G.M.; Ulhaq, O.; Banchs, J.; Jensen, C.T.; Goel, H.; Hassan, S.A. Characteristics of infective endocarditis in a cancer population. Open Heart 2021, 8, e001664, Erratum in Open Heart 2021, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- de Isla, L.P.; Zamorano, J.; Lennie, V.; Vázquez, J.; Ribera, J.M.; Macaya, C. Negative blood culture infective endocarditis in the elderly: Long-term follow-up. Gerontology 2007, 53, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.Y.; Zhu, W.; Aurigemma, G.P.; Furukawa, N.; Teshale, E.H.; Huang, Y.-L.A.; Peters, P.J.; Hoover, K.W. Infective Endocarditis among Persons Aged 18–64 Years Living with Human Immunodeficiency Virus, Hepatitis C Infection, or Opioid Use Disorder, United States, 2007−2017. Clin. Infect. Dis. 2021, 72, 1767–1781. [Google Scholar] [CrossRef] [PubMed]
- N’guyen, Y.; Duval, X.; Revest, M.; Saada, M.; Erpelding, M.-L.; Selton-Suty, C.; Bouchiat, C.; Delahaye, F.; Chirouze, C.; Alla, F.; et al. Time interval between infective endocarditis first symptoms and diagnosis: Relationship to infective endocarditis characteristics, microorganisms and prognosis. Ann. Med. 2017, 49, 117–125. [Google Scholar] [CrossRef]
- Rushani, D.; Kaufman, J.S.; Ionescu-Ittu, R.; Mackie, A.S.; Pilote, L.; Therrien, J.; Marelli, A.J. Infective endocarditis in children with congenital heart disease: Cumulative incidence and predictors. Circulation 2013, 128, 1412–1419. [Google Scholar] [CrossRef]
- van Melle, J.P.; Roos-Hesselink, J.W.; Bansal, M.; Kamp, O.; Meshaal, M.; Pudich, J.; Luksic, V.R.; Rodriguez-Alvarez, R.; Sadeghpour, A.; Hanzevacki, J.S.; et al. Infective endocarditis in adult patients with congenital heart disease. Int. J. Cardiol. 2023, 370, 178–185. [Google Scholar] [CrossRef]
- Suarez, J.F.; Subramanian, A.K. Infective endocarditis in solid organ transplant: A review. Curr. Opin. Organ Transplant. 2022, 27, 263–268. [Google Scholar] [CrossRef]
- Vasudev, R.; Shah, P.; Bikkina, M.; Shamoon, F. Infective endocarditis in HIV. Int. J. Cardiol. 2016, 214, 216–217. [Google Scholar] [CrossRef]
- Nel, S.; Naidoo, D. An echocardiographic study of infective endocarditis, with special reference to patients with HIV. Cardiovasc. J. Afr. 2014, 25, 50–57. [Google Scholar] [CrossRef]
- Lamy, B.; Dargère, S.; Arendrup, M.C.; Parienti, J.-J.; Tattevin, P. How to Optimize the Use of Blood Cultures for the Diagnosis of Bloodstream Infections? A State-of-the Art. Front. Microbiol. 2016, 7, 697. [Google Scholar] [CrossRef] [PubMed]
- Fida, M.; Dylla, B.L.; Sohail, M.R.; Pritt, B.S.; Schuetz, A.N.; Patel, R. Role of prolonged blood culture incubation in infective endocarditis diagnosis. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 197–198. [Google Scholar] [CrossRef] [PubMed]
- La Scola, B.; Raoult, D. Direct identification of bacteria in positive blood culture bottles by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry. PLoS ONE 2009, 4, e8041. [Google Scholar] [CrossRef]
- Burckhardt, I.; Zimmermann, S. Susceptibility Testing of Bacteria Using Maldi-Tof Mass Spectrometry. Front. Microbiol. 2018, 9, 1744. [Google Scholar] [CrossRef]
- McHugh, J.; Abu Saleh, O. Updates in Culture-Negative Endocarditis. Pathogens 2023, 12, 1027. [Google Scholar] [CrossRef] [PubMed]
- Raoult, D.; Casalta, J.P.; Richet, H.; Khan, M.; Bernit, E.; Rovery, C.; Branger, S.; Gouriet, F.; Imbert, G.; Bothello, E.; et al. Contribution of systematic serological testing in diagnosis of infective endocarditis. J. Clin. Microbiol. 2005, 43, 5238–5242. [Google Scholar] [CrossRef]
- Hoen, B.; Selton-Suty, C.; Lacassin, F.; Etienne, J.; Briançon, S.; Leport, C.; Canton, P. Infective endocarditis in patients with negative blood cultures: Analysis of 88 cases from a one-year nationwide survey in France. Clin. Infect. Dis. 1995, 20, 501–506. [Google Scholar] [CrossRef]
- Baron, E.J.; Scott, J.D.; Tompkins, L.S. Prolonged incubation and extensive subculturing do not increase recovery of clinically significant microorganisms from standard automated blood cultures. Clin. Infect. Dis. 2005, 41, 1677–1680. [Google Scholar] [CrossRef]
- Petti, C.A.; Bhally, H.S.; Weinstein, M.P.; Joho, K.; Wakefield, T.; Reller, L.B.; Carroll, K.C. Utility of extended blood culture incubation for isolation of Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, and Kingella organisms: A retrospective multicenter evaluation. J. Clin. Microbiol. 2006, 44, 257–259. [Google Scholar] [CrossRef]
- Meena, D.S.; Kumar, D.; Agarwal, M.; Bohra, G.K.; Choudhary, R.; Samantaray, S.; Sharma, S.; Midha, N.; Garg, M.K. Clinical features, diagnosis and treatment outcome of fungal endocarditis: A systematic review of reported cases. Mycoses 2022, 65, 294–302. [Google Scholar] [CrossRef]
- Buitrago, M.J.; Bernal-Martinez, L.; Castelli, M.V.; Rodriguez-Tudela, J.L.; Cuenca-Estrella, M. Performance of panfungal- and specific-PCR-based procedures for etiological diagnosis of invasive fungal diseases on tissue biopsy specimens with proven infection: A 7-year retrospective analysis from a reference laboratory. J. Clin. Microbiol. 2014, 52, 1737–1740. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.R.; Boulware, D.R.; Bahr, N.C.; Clancy, C.J.; Harrison, T.S.; Kauffman, C.A.; Le, T.; Miceli, M.H.; Mylonakis, E.; Nguyen, M.H.; et al. Noninvasive Testing and Surrogate Markers in Invasive Fungal Diseases. Open Forum Infect. Dis. 2022, 9, ofac112, Erratum in Open Forum Infect. Dis. 2022, 9, ofac369. [Google Scholar] [CrossRef] [PubMed]
- Mylonakis, E.; Zacharioudakis, I.M.; Clancy, C.J.; Nguyen, M.H.; Pappas, P.G. Efficacy of T2 Magnetic Resonance Assay in Monitoring Candidemia after Initiation of Antifungal Therapy: The Serial Therapeutic and Antifungal Monitoring Protocol (STAMP) Trial. J. Clin. Microbiol. 2018, 56, e01756-17. [Google Scholar] [CrossRef] [PubMed]
- Fournier, P.; Thuny, F.; Richet, H.; Lepidi, H.; Casalta, J.; Arzouni, J.; Maurin, M.; Célard, M.; Mainardi, J.; Caus, T.; et al. Comprehensive diagnostic strategy for blood culture–negative endocarditis: A prospective study of 819 new cases. Clin. Infect. Dis. 2010, 51, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Houpikian, P.; Raoult, D. Blood culture-negative endocarditis in a reference center: Etiologic diagnosis of 348 cases. Medicine 2005, 84, 162–173. [Google Scholar] [CrossRef] [PubMed]
- McGee, M.; Brienesse, S.; Chong, B.; Levendel, A.; Lai, K. Tropheryma whipplei Endocarditis: Case Presentation and Review of the Literature. Open Forum Infect. Dis. 2018, 6, ofy330. [Google Scholar] [CrossRef] [PubMed]
- Østergaard, L.; Smerup, M.H.; Iversen, K.; Jensen, A.D.; Dahl, A.; Chamat-Hedemand, S.; Bruun, N.E.; Butt, J.H.; Bundgaard, H.; Torp-Pedersen, C.; et al. Differences in mortality in patients undergoing surgery for infective endocarditis according to age and valvular surgery. BMC Infect. Dis. 2020, 20, 705. [Google Scholar] [CrossRef]
- Morris, A.J.; Drinkovic, D.; Pottumarthy, S.; Strickett, M.G.; MacCulloch, D.; Lambie, N.; Kerr, A.R. Gram stain, culture, and histopathological examination findings for heart valves removed because of infective endocarditis. Clin. Infect. Dis. 2003, 36, 697–704. [Google Scholar] [CrossRef]
- Subedi, S.; Jennings, Z.; Chen, S.-A. Laboratory Approach to the Diagnosis of Culture-Negative Infective Endocarditis. Heart Lung Circ. 2017, 26, 763–771. [Google Scholar] [CrossRef]
- Brandão, T.J.D.; Januario-Da-Silva, C.A.; Correia, M.G.; Zappa, M.; Abrantes, J.A.; Dantas, A.M.R.; Golebiovski, W.; Barbosa, G.I.F.; Weksler, C.; Lamas, C.C. Histopathology of valves in infective endocarditis, diagnostic criteria and treatment considerations. Infection 2017, 45, 199–207. [Google Scholar] [CrossRef]
- Liesman, R.M.; Pritt, B.S.; Maleszewski, J.J.; Patel, R. Laboratory Diagnosis of Infective Endocarditis. J. Clin. Microbiol. 2017, 55, 2599–2608. [Google Scholar] [CrossRef] [PubMed]
- Mancini, N.; Carletti, S.; Ghidoli, N.; Cichero, P.; Burioni, R.; Clementi, M. The Era of molecular and other non-culture-based methods in diagnosis of sepsis. Clin. Microbiol. Rev. 2010, 23, 235–251. [Google Scholar] [CrossRef] [PubMed]
- Edouard, S.; Nabet, C.; Lepidi, H.; Fournier, P.-E.; Raoult, D. Bartonella, a common cause of endocarditis: A report on 106 cases and review. J. Clin. Microbiol. 2015, 53, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Vondracek, M.; Sartipy, U.; Aufwerber, E.; Julander, I.; Lindblom, D.; Westling, K. 16S rDNA sequencing of valve tissue improves microbiological diagnosis in surgically treated patients with infective endocarditis. J. Infect. 2011, 62, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Rice, P.A.; Madico, G.E. Polymerase chain reaction to diagnose infective endocarditis: Will it replace blood cultures? Circulation 2005, 111, 1352–1354. [Google Scholar] [CrossRef]
- Boussier, R.; Rogez, S.; François, B.; Denes, E.; Ploy, M.-C.; Garnier, F. Two-step bacterial broad-range polymerase chain reaction analysis of heart valve tissue improves bacteriological diagnosis of infective endocarditis. Diagn. Microbiol. Infect. Dis. 2013, 75, 240–244. [Google Scholar] [CrossRef]
- Armstrong, C.; Kuhn, T.C.; Dufner, M.; Ehlermann, P.; Zimmermann, S.; Lichtenstern, C.; Soethoff, J.; Katus, H.A.; Leuschner, F.; Heininger, A. The diagnostic benefit of 16S rDNA PCR examination of infective endocarditis heart valves: A cohort study of 146 surgical cases confirmed by histopathology. Clin. Res. Cardiol. 2021, 110, 332–342. [Google Scholar] [CrossRef]
- Kim, M.-S.; Chang, J.; Choi, S.-H.; Jung, S.-H.; Lee, J.-W.; Sung, H. Utility of a Direct 16S rDNA PCR and Sequencing for Etiological Diagnosis of Infective Endocarditis. Ann. Lab. Med. 2017, 37, 505–510. [Google Scholar] [CrossRef]
- Baddour, L.M.; Wilson, W.R.; Bayer, A.S.; Fowler, V.G., Jr.; Tleyjeh, I.M.; Rybak, M.J.; Barsic, B.; Lockhart, P.B.; Gewitz, M.H.; Levison, M.E.; et al. Infective Endocarditis in Adults: Diagnosis, Antimicrobial Therapy, and Management of Complications: A Scientific Statement for Healthcare Professionals from the American Heart Association. Circulation 2015, 132, 1435–1486, Correction in Circulation 2016, 134, e113; Correction in Circulation 2018, 138, e78–e79. [Google Scholar] [CrossRef]
- Miller, R.J.H.; Chow, B.; Pillai, D.; Church, D. Development and evaluation of a novel fast broad-range 16S ribosomal DNA PCR and sequencing assay for diagnosis of bacterial infective endocarditis: Multi-year experience in a large Canadian healthcare zone and a literature review. BMC Infect. Dis. 2016, 16, 146. [Google Scholar] [CrossRef]
- Peeters, B.; Herijgers, P.; Beuselinck, K.; Verhaegen, J.; Peetermans, W.; Herregods, M.-C.; Desmet, S.; Lagrou, K. Added diagnostic value and impact on antimicrobial therapy of 16S rRNA PCR and amplicon sequencing on resected heart valves in infective endocarditis: A prospective cohort study. Clin. Microbiol. Infect. 2017, 23, 888.e1–888.e5. [Google Scholar] [CrossRef] [PubMed]
- Maneg, D.; Sponsel, J.; Müller, I.; Lohr, B.; Penders, J.; Madlener, K.; Hunfeld, K.-P. Advantages and Limitations of Direct PCR Amplification of Bacterial 16S-rDNA from Resected Heart Tissue or Swabs Followed by Direct Sequencing for Diagnosing Infective Endocarditis: A Retrospective Analysis in the Routine Clinical Setting. BioMed Res. Int. 2016, 2016, 7923874. [Google Scholar] [CrossRef] [PubMed]
- Marsch, G.; Orszag, P.; Mashaqi, B.; Kuehn, C.; Haverich, A. Antibiotic therapy following polymerase chain reaction diagnosis of infective endocarditis: A single centre experience. Interact. Cardiovasc. Thorac. Surg. 2015, 20, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Rampini, S.K.; Bloemberg, G.V.; Keller, P.M.; Büchler, A.C.; Dollenmaier, G.; Speck, R.F.; Böttger, E.C. Broad-range 16S rRNA gene polymerase chain reaction for diagnosis of culture-negative bacterial infections. Clin. Infect. Dis. 2011, 53, 1245–1251. [Google Scholar] [CrossRef]
- Müller Premru, M.; Lejko Zupanc, T.; Klokočovnik, T.; Ruzić Sabljić, E.; Cerar, T. Broad-Range 16S rDNA PCR on Heart Valves in Infective Endocarditis. J. Heart Valve Dis. 2016, 25, 221–226. [Google Scholar] [PubMed]
- Rodríguez-García, R.; Rodríguez-Esteban, M.; Fernández-Suárez, J.; Morilla, A.; García-Carús, E.; Telenti, M.; Morales, C.; Albaiceta, G.M.; Fernández, J. Evaluation of 16S rDNA Heart Tissue PCR as a Complement to Blood Cultures for the Routine Etiological Diagnosis of Infective Endocarditis. Diagnostics 2021, 11, 1372. [Google Scholar] [CrossRef]
- Johansson, G.; Sunnerhagen, T.; Ragnarsson, S.; Rasmussen, M. Clinical Significance of a 16S-rDNA Analysis of Heart Valves in Patients with Infective Endocarditis: A Retrospective Study. Microbiol. Spectr. 2023, 11, e0113623. [Google Scholar] [CrossRef]
- Mularoni, A.; Mikulska, M.; Barbera, F.; Graziano, E.; Medaglia, A.A.; Di Carlo, D.; Monaco, F.; Bellavia, D.; Cascio, A.; Raffa, G.; et al. Molecular Analysis with 16S rRNA PCR/Sanger Sequencing and Molecular Antibiogram Performed on DNA Extracted from Valve Improve Diagnosis and Targeted Therapy of Infective Endocarditis: A Prospective Study. Clin. Infect. Dis. 2023, 76, e1484–e1491. [Google Scholar] [CrossRef]
- Faraji, R.; Behjati-Ardakani, M.; Faraji, N.; Moshtaghioun, S.M.; Kalantar, S.M.; Pedarzadeh, A.; Zandi, H.; Sarebanhassanabadi, M.; Ahmadi, N.; Firoozabadi, A.D. Molecular Diagnosis of Bacterial Definite Infective Endocarditis by Real-Time Polymerase Chain Reaction. Cardiol. Res. 2018, 9, 99–106. [Google Scholar] [CrossRef]
- Harris, K.A.; Yam, T.; Jalili, S.; Williams, O.M.; Alshafi, K.; Gouliouris, T.; Munthali, P.; NiRiain, U.; Hartley, J.C. Service evaluation to establish the sensitivity, specificity and additional value of broad-range 16S rDNA PCR for the diagnosis of infective endocarditis from resected endocardial material in patients from eight UK and Ireland hospitals. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 2061–2066. [Google Scholar] [CrossRef]
- Garg, P.; Chan, S.; Peeceeyen, S.; Youssef, G.; Graves, S.R.; Sullivan, R. Culture-negative polymicrobial chronic Q fever prosthetic valve infective endocarditis utilizing 16S ribosomal RNA polymerase chain reaction on explanted valvular tissue. Int. J. Infect. Dis. 2022, 121, 138–140. [Google Scholar] [CrossRef] [PubMed]
- Imoto, W.; Takahashi, Y.; Yamada, K.; Hojo, K.; Kawase, T.; Sakon, Y.; Kuwabara, G.; Yamairi, K.; Shibata, W.; Oshima, K.; et al. Corynebacterium jeikeium-induced infective endocarditis and perivalvular abscess diagnosed by 16S ribosomal RNA sequence analysis: A case report. J. Infect. Chemother. 2021, 27, 906–910. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.H.; Horvath, R.; Amodeo, M. Culture-negative Capnocytophaga canimorsus meningitis diagnosed by 16s ribosomal RNA polymerase chain reaction in an immunocompetent veterinarian and a review of the literature. Intern. Med. J. 2023, 53, 1054–1057. [Google Scholar] [CrossRef] [PubMed]
- Martins-Baltar, A.; Meyer, S.; Barraud, O.; Garnier, F.; Ploy, M.-C.; Vignon, P.; François, B. Routine use of 16S rRNA PCR and subsequent sequencing from blood samples in septic shock: About two case reports of Capnocytophaga canimorsus infection in immunocompetent patients. BMC Infect. Dis. 2022, 22, 355. [Google Scholar] [CrossRef] [PubMed]
- Iİstanbullu, K.; Köksal, N.; Çetinkaya, M.; Özkan, H.; Yakut, T.; Karkucak, M.; Doğan, H. The potential utility of real-time pcr of the 16S-rRNA gene in the diagnosis of neonatal sepsis. Turk. J. Pediatr. 2019, 61, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N.; Kryukov, K.; Nakagawa, S.; Takeuchi, J.S.; Takeshita, M.; Kirimura, Y.; Mitsuhashi, S.; Ishihara, T.; Aoki, H.; Inokuchi, S.; et al. Detection of pathogenic bacteria in the blood from sepsis patients using 16S rRNA gene amplicon sequencing analysis. PLoS ONE 2018, 13, e0202049. [Google Scholar] [CrossRef]
- Yang, J.; Li, Z.; Liu, Y.; Guo, S. Tracking bacterial DNA patterns in septic progression using 16s rRNA gene amplicon sequencing analysis. Int. J. Clin. Exp. Pathol. 2021, 14, 753–767. [Google Scholar] [PubMed]
- Blauwkamp, T.A.; Thair, S.; Rosen, M.J.; Blair, L.; Lindner, M.S.; Vilfan, I.D.; Kawli, T.; Christians, F.C.; Venkatasubrahmanyam, S.; Wall, G.D.; et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat. Microbiol. 2019, 4, 663–674. [Google Scholar] [CrossRef]
- Lamoureux, C.; Surgers, L.; Fihman, V.; Gricourt, G.; Demontant, V.; Trawinski, E.; N’debi, M.; Gomart, C.; Royer, G.; Launay, N.; et al. Prospective Comparison between Shotgun Metagenomics and Sanger Sequencing of the 16S rRNA Gene for the Etiological Diagnosis of Infections. Front. Microbiol. 2022, 13, 761873. [Google Scholar] [CrossRef]
- Flurin, L.; Wolf, M.J.; Fisher, C.R.; Cevallos, E.J.C.; Vaillant, J.J.; Pritt, B.S.; DeSimone, D.C.; Patel, R. Pathogen Detection in Infective Endocarditis Using Targeted Metagenomics on Whole Blood and Plasma: A Prospective Pilot Study. J. Clin. Microbiol. 2022, 60, e0062122. [Google Scholar] [CrossRef]
- Santibáñez, P.; García-García, C.; Portillo, A.; Santibáñez, S.; García-Álvarez, L.; de Toro, M.; Oteo, J.A. What Does 16S rRNA Gene-Targeted Next Generation Sequencing Contribute to the Study of Infective Endocarditis in Heart-Valve Tissue? Pathogens 2021, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Flurin, L.; Fisher, C.R.; Wolf, M.J.; Pritt, B.S.; DeSimone, D.C.; Patel, R. Comparison of Blood-Based Shotgun and Targeted Metagenomic Sequencing for Microbiological Diagnosis of Infective Endocarditis. Open Forum Infect. Dis. 2023, 10, ofad546. [Google Scholar] [CrossRef] [PubMed]
- Blomström-Lundqvist, C.; Traykov, V.; Erba, P.A.; Burri, H.; Nielsen, J.C.; Bongiorni, M.G.; Poole, J.; Boriani, G.; Costa, R.; Deharo, J.-C.; et al. European Heart Rhythm Association (EHRA) international consensus document on how to prevent, diagnose, and treat cardiac implantable electronic device infections—Endorsed by the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS), the Latin American Heart Rhythm Society (LAHRS), International Society for Cardiovascular Infectious Diseases (ISCVID), and the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2020, 41, 2012–2032. [Google Scholar] [CrossRef] [PubMed]
- Habib, G.; Lancellotti, P.; Erba, P.-A.; Sadeghpour, A.; Meshaal, M.; Sambola, A.; Furnaz, S.; Citro, R.; Ternacle, J.; Donal, E.; et al. The ESC-EORP EURO-ENDO (European Infective Endocarditis) registry. Eur. Heart J.-Qual. Care Clin. Outcomes 2019, 5, 202–207, Erratum in Eur. Heart J. Qual. Care Clin. Outcomes 2020, 6, 91. [Google Scholar] [CrossRef]
- Juneau, D.; Golfam, M.; Hazra, S.; Erthal, F.; Zuckier, L.S.; Bernick, J.; Wells, G.A.; Beanlands, R.S.; Chow, B.J. Molecular Imaging for the diagnosis of infective endocarditis: A systematic literature review and meta-analysis. Int. J. Cardiol. 2018, 253, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Signore, A.; Jamar, F.; Israel, O.; Buscombe, J.; Martin-Comin, J.; Lazzeri, E. Clinical indications, image acquisition and data interpretation for white blood cells and anti-granulocyte monoclonal antibody scintigraphy: An EANM procedural guideline. Eur. J. Nucl. Med. 2018, 45, 1816–1831. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.L.; Doyle, M.P.; McNamara, N.; Tardo, D.; Mathew, M.; Robinson, B. Epidemiology of infective endocarditis before versus after change of international guidelines: A systematic review. Ther. Adv. Cardiovasc. Dis. 2021, 15, 17539447211002687. [Google Scholar] [CrossRef]
- De Vries, E.F.; Roca, M.; Jamar, F.; Israel, O.; Signore, A. Guidelines for the labelling of leucocytes with 99mTc-HMPAO. Inflammation/Infection Taskgroup of the European Association of Nuclear Medicine. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 842–848, Erratum in Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 1235. [Google Scholar] [CrossRef]
- Erba, P.A.; Conti, U.; Lazzeri, E.; Sollini, M.; Doria, R.; De Tommasi, S.M.; Bandera, F.; Tascini, C.; Menichetti, F.; Dierckx, R.A.; et al. Added value of 99mTc-HMPAO–labeled leukocyte SPECT/CT in the characterization and management of patients with infectious endocarditis. J. Nucl. Med. 2012, 53, 1235–1243. [Google Scholar] [CrossRef]
- Hyafil, F.; Rouzet, F.; Lepage, L.; Benali, K.; Raffoul, R.; Duval, X.; Hvass, U.; Iung, B.; Nataf, P.; Lebtahi, R.; et al. Role of radiolabelled leucocyte scintigraphy in patients with a suspicion of prosthetic valve endocarditis and inconclusive echocardiography. Eur. Heart J.-Cardiovasc. Imaging 2013, 14, 586–594. [Google Scholar] [CrossRef]
- Rouzet, F.; Chequer, R.; Benali, K.; Lepage, L.; Ghodbane, W.; Duval, X.; Iung, B.; Vahanian, A.; Le Guludec, D.; Hyafil, F. Respective performance of 18F-FDG PET and radiolabeled leukocyte scintigraphy for the diagnosis of prosthetic valve endocarditis. J. Nucl. Med. 2014, 55, 1980–1985. [Google Scholar] [CrossRef] [PubMed]
- Holcman, K.; Szot, W.; Rubiś, P.; Leśniak-Sobelga, A.; Hlawaty, M.; Wiśniowska-Śmiałek, S.; Małecka, B.; Ząbek, A.; Boczar, K.; Stępień, A.; et al. 99mTc-HMPAO-labeled leukocyte SPECT/CT and transthoracic echocardiography diagnostic value in infective endocarditis. Int. J. Cardiovasc. Imaging 2019, 35, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Kooshki, N.; Grambow-Velilla, J.; Mahida, B.; Benali, K.; Nguyen, C.; Cimadevilla, C.; Braham, W.; Pisani, A.; Iung, B.; Raffoul, R.; et al. Diagnostic performance of White Blood Cell SPECT imaging against intra-operative findings in patients with a suspicion of prosthetic valve endocarditis. J. Nucl. Cardiol. 2022, 29, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Holcman, K.; Rubiś, P.; Stępień, A.; Graczyk, K.; Podolec, P.; Kostkiewicz, M. The Diagnostic Value of 99mTc-HMPAO-Labelled White Blood Cell Scintigraphy and 18F-FDG PET/CT in Cardiac Device-Related Infective Endocarditis—A Systematic Review. J. Pers. Med. 2021, 11, 1016. [Google Scholar] [CrossRef] [PubMed]
- Erba, P.A.; Sollini, M.; Conti, U.; Bandera, F.; Tascini, C.; De Tommasi, S.M.; Zucchelli, G.; Doria, R.; Menichetti, F.; Bongiorni, M.G.; et al. Radiolabeled WBC scintigraphy in the diagnostic workup of patients with suspected device-related infections. JACC Cardiovasc. Imaging 2013, 6, 1075–1086. [Google Scholar] [CrossRef] [PubMed]
- Holcman, K.; Małecka, B.; Rubiś, P.; Ząbek, A.; Szot, W.; Boczar, K.; Leśniak-Sobelga, A.; Hlawaty, M.; Wiśniowska-Śmiałek, S.; Stępień, A.; et al. The role of 99mTc-HMPAO-labelled white blood cell scintigraphy in the diagnosis of cardiac device-related infective endocarditis. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 1022–1030. [Google Scholar] [CrossRef]
- Holcman, K.; Rubiś, P.; Ćmiel, B.; Ząbek, A.; Boczar, K.; Szot, W.; Kalarus, Z.; Graczyk, K.; Hanarz, M.; Małecka, B.; et al. To what extent does prior antimicrobial therapy affect the diagnostic performance of radiolabeled leukocyte scintigraphy in infective endocarditis? J. Nucl. Cardiol. 2023, 30, 343–353. [Google Scholar] [CrossRef]
- Mahmood, M.; Abu Saleh, O. The Role of 18-F FDG PET/CT in Imaging of Endocarditis and Cardiac Device Infections. Semin. Nucl. Med. 2020, 50, 319–330. [Google Scholar] [CrossRef]
- Slart, R.H.J.A.; Glaudemans, A.W.J.M.; Gheysens, O.; Lubberink, M.; Kero, T.; Dweck, M.R.; Habib, G.; Gaemperli, O.; Saraste, A.; Gimelli, A.; et al. Procedural recommendations of cardiac PET/CT imaging: Standardization in inflammatory-, infective-, infiltrative-, and innervation-(4Is) related cardiovascular diseases: A joint collaboration of the EACVI and the EANM: Summary. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 1320–1330. [Google Scholar] [CrossRef]
- Hove, D.T.; Slart, R.; Sinha, B.; Glaudemans, A.; Budde, R. 18F-FDG PET/CT in Infective Endocarditis: Indications and Approaches for Standardization. Curr. Cardiol. Rep. 2021, 23, 130. [Google Scholar] [CrossRef]
- Saby, L.; Laas, O.; Habib, G.; Cammilleri, S.; Mancini, J.; Tessonnier, L.; Casalta, J.-P.; Gouriet, F.; Riberi, A.; Avierinos, J.-F.; et al. Positron emission tomography/computed tomography for diagnosis of prosthetic valve endocarditis: Increased valvular 18F-fluorodeoxyglucose uptake as a novel major criterion. J. Am. Coll. Cardiol. 2013, 61, 2374–2382. [Google Scholar] [CrossRef] [PubMed]
- Philip, M.; Tessonier, L.; Mancini, J.; Mainardi, J.-L.; Fernandez-Gerlinger, M.-P.; Lussato, D.; Attias, D.; Cammilleri, S.; Weinmann, P.; Hagege, A.; et al. Comparison Between ESC and Duke Criteria for the Diagnosis of Prosthetic Valve Infective Endocarditis. JACC Cardiovasc. Imaging 2020, 13, 2605–2615. [Google Scholar] [CrossRef] [PubMed]
- Mikail, N.; Hyafil, F. Nuclear Imaging in Infective Endocarditis. Pharmaceuticals 2021, 15, 14. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.K.M.; Sánchez-Nadales, A.; Igbinomwanhia, E.; Cremer, P.; Griffin, B.; Xu, B. Diagnosis of Infective Endocarditis by Subtype Using 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: A Contemporary Meta-Analysis. Circ. Cardiovasc. Imaging 2020, 13, e010600. [Google Scholar] [CrossRef] [PubMed]
- Jerónimo, A.; Olmos, C.; Vilacosta, I.; Ortega-Candil, A.; Rodríguez-Rey, C.; Pérez-Castejón, M.J.; Fernández-Pérez, C.; Pérez-García, C.N.; García-Arribas, D.; Ferrera, C.; et al. Accuracy of 18F-FDG PET/CT in patients with the suspicion of cardiac implantable electronic device infections. J. Nucl. Cardiol. 2022, 29, 594–608. [Google Scholar] [CrossRef] [PubMed]
- Bensimhon, L.; Lavergne, T.; Hugonnet, F.; Mainardi, J.-L.; Latremouille, C.; Maunoury, C.; Lepillier, A.; Le Heuzey, J.-Y.; Faraggi, M. Whole body [18F]fluorodeoxyglucose positron emission tomography imaging for the diagnosis of pacemaker or implantable cardioverter defibrillator infection: A preliminary prospective study. Clin. Microbiol. Infect. 2011, 17, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Diemberger, I.; Bonfiglioli, R.; Martignani, C.; Graziosi, M.; Biffi, M.; Lorenzetti, S.; Ziacchi, M.; Nanni, C.; Fanti, S.; Boriani, G. Contribution of PET imaging to mortality risk stratification in candidates to lead extraction for pacemaker or defibrillator infection: A prospective single center study. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 194–205. [Google Scholar] [CrossRef]
- Dilsizian, V.; Budde, R.P.; Chen, W.; Mankad, S.V.; Lindner, J.R.; Nieman, K. Best Practices for Imaging Cardiac Device–Related Infections and Endocarditis: A JACC: Cardiovascular Imaging Expert Panel Statement. JACC Cardiovasc. Imaging 2022, 15, 891–911. [Google Scholar] [CrossRef]
- Gouws, A.C.; Kruger, H.G.; Gheysens, O.; Zeevaart, J.R.; Govender, T.; Naicker, T.; Ebenhan, T. Antibiotic-Derived Radiotracers for Positron Emission Tomography: Nuclear or “Unclear” Infection Imaging? Angew. Chem. Int. Ed. 2022, 61, e202204955. [Google Scholar] [CrossRef]
- Sellmyer, M.A.; Lee, I.; Hou, C.; Lieberman, B.P.; Zeng, C.; Mankoff, D.A.; Mach, R.H. Quantitative PET Reporter Gene Imaging with [11C]Trimethoprim. Mol. Ther. 2017, 25, 120–126. [Google Scholar] [CrossRef]
- Lee, I.K.; Jacome, D.A.; Cho, J.K.; Tu, V.; Young, A.J.; Dominguez, T.; Northrup, J.D.; Etersque, J.M.; Lee, H.S.; Ruff, A.; et al. Imaging sensitive and drug-resistant bacterial infection with [11C]-trimethoprim. J. Clin. Investig. 2022, 132, e156679. [Google Scholar] [CrossRef] [PubMed]
- Sellmyer, M.A.; Lee, I.; Hou, C.; Weng, C.-C.; Li, S.; Lieberman, B.P.; Zeng, C.; Mankoff, D.A.; Mach, R.H. Bacterial infection imaging with [18F]fluoropropyl-trimethoprim. Proc. Natl. Acad. Sci. USA 2017, 114, 8372–8377. [Google Scholar] [CrossRef] [PubMed]
- Koźmiński, P.; Gawęda, W.; Rzewuska, M.; Kopatys, A.; Kujda, S.; Dudek, M.K.; Halik, P.K.; Królicki, L.; Gniazdowska, E. Physicochemical and Biological Study of 99mTc and 68Ga Radiolabelled Ciprofloxacin and Evaluation of [99mTc]Tc-CIP as Potential Diagnostic Radiopharmaceutical for Diabetic Foot Syndrome Imaging. Tomography 2021, 7, 829–842. [Google Scholar] [CrossRef] [PubMed]
- Langer, O.; Brunner, M.; Zeitlinger, M.; Ziegler, S.; Dobrozemsky, G.; Lackner, E.; Joukhadar, C.; Mitterhauser, M.; Wadsak, W.; Minar, E.; et al. In vitro and in vivo evaluation of [18F]ciprofloxacin for the imaging of bacterial infections with PET. Eur. J. Nucl. Med. 2005, 32, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Satpati, D.; Arjun, C.; Krishnamohan, R.; Samuel, G.; Banerjee, S. 68Ga-labeled Ciprofloxacin Conjugates as Radiotracers for Targeting Bacterial Infection. Chem. Biol. Drug Des. 2016, 87, 680–686. [Google Scholar] [CrossRef]
- Gowrishankar, G.; Namavari, M.; Jouannot, E.B.; Hoehne, A.; Reeves, R.; Hardy, J.; Gambhir, S.S. Investigation of 6-[18F]-fluoromaltose as a novel PET tracer for imaging bacterial infection. PLoS ONE 2014, 9, e107951. [Google Scholar] [CrossRef]
- Ordonez, A.A.; Parker, M.F.; Miller, R.J.; Plyku, D.; Ruiz-Bedoya, C.A.; Tucker, E.W.; Luu, J.M.; Dikeman, D.A.; Lesniak, W.G.; Holt, D.P.; et al. 11C-Para-aminobenzoic acid PET imaging of S. aureus and MRSA infection in preclinical models and humans. J. Clin. Investig. 2022, 7, 154117. [Google Scholar] [CrossRef]
- Petrik, M.; Umlaufova, E.; Raclavsky, V.; Palyzova, A.; Havlicek, V.; Pfister, J.; Mair, C.; Novy, Z.; Popper, M.; Hajduch, M.; et al. 68Ga-labelled desferrioxamine-B for bacterial infection imaging. Eur. J. Nucl. Med. 2021, 48, 372–382. [Google Scholar] [CrossRef]
- Vilche, M.B.; Reyes, A.L.; Vasilskis, E.; Oliver, P.; Balter, H.S.; Engler, H.W. 68Ga-NOTA-UBI-29-41 as a PET Tracer for Detection of Bacterial Infection. J. Nucl. Med. 2016, 57, 622–627. [Google Scholar] [CrossRef]
- Mukherjee, A.; Bhatt, J.; Shinto, A.; Korde, A.; Kumar, M.; Kamaleshwaran, K.; Joseph, J.; Sarma, H.D.; Dash, A. 68Ga-NOTA-ubiquicidin fragment for PET imaging of infection: From bench to bedside. J. Pharm. Biomed. Anal. 2018, 159, 245–251. [Google Scholar] [CrossRef]
Molecular Method | Short Characteristic/Benefit |
---|---|
Organism-Specific PCR Assays | Detects specific microorganisms for which test is dedicated |
Broad-Range PCR with 16S rRNA Gene | Detects bacterial DNA in blood or plasma, has higher sensitivity and specificity for explanted tissue than for blood or plasma |
Targeted Metagenomic Sequencing (tMGS) | It is less cost-consuming comparing to the sMGS and the overall positivity was not from sMGS [72]. |
Shotgun Metagenomic Sequencing (sMGS) | Detects microbial cell-free DNA, it can also detect fungal species and resistent microorganisms, contrarly to tMGS [72]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burban, A.; Słupik, D.; Reda, A.; Szczerba, E.; Grabowski, M.; Kołodzińska, A. Novel Diagnostic Methods for Infective Endocarditis. Int. J. Mol. Sci. 2024, 25, 1245. https://doi.org/10.3390/ijms25021245
Burban A, Słupik D, Reda A, Szczerba E, Grabowski M, Kołodzińska A. Novel Diagnostic Methods for Infective Endocarditis. International Journal of Molecular Sciences. 2024; 25(2):1245. https://doi.org/10.3390/ijms25021245
Chicago/Turabian StyleBurban, Anna, Dorota Słupik, Aleksandra Reda, Ewa Szczerba, Marcin Grabowski, and Agnieszka Kołodzińska. 2024. "Novel Diagnostic Methods for Infective Endocarditis" International Journal of Molecular Sciences 25, no. 2: 1245. https://doi.org/10.3390/ijms25021245
APA StyleBurban, A., Słupik, D., Reda, A., Szczerba, E., Grabowski, M., & Kołodzińska, A. (2024). Novel Diagnostic Methods for Infective Endocarditis. International Journal of Molecular Sciences, 25(2), 1245. https://doi.org/10.3390/ijms25021245