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Abstract: Genome-wide association studies (GWAS) are commonly employed to study the genetic
basis of complex traits/diseases, and a key question is how much heritability could be explained
by all single nucleotide polymorphisms (SNPs) in GWAS. One widely used approach that relies on
summary statistics only is linkage disequilibrium score regression (LDSC); however, this approach
requires certain assumptions about the effects of SNPs (e.g., all SNPs contribute to heritability and
each SNP contributes equal variance). More flexible modeling methods may be useful. We previously
developed an approach recovering the “true” effect sizes from a set of observed z-statistics with an
empirical Bayes approach, using only summary statistics. However, methods for standard error
(SE) estimation are not available yet, limiting the interpretation of our results and the applicability
of the approach. In this study, we developed several resampling-based approaches to estimate the
SE of SNP-based heritability, including two jackknife and three parametric bootstrap methods. The
resampling procedures are performed at the SNP level as it is most common to estimate heritability
from GWAS summary statistics alone. Simulations showed that the delete-d-jackknife and parametric
bootstrap approaches provide good estimates of the SE. In particular, the parametric bootstrap
approaches yield the lowest root-mean-squared-error (RMSE) of the true SE. We also explored various
methods for constructing confidence intervals (CIs). In addition, we applied our method to estimate
the SNP-based heritability of 12 immune-related traits (levels of cytokines and growth factors) to
shed light on their genetic architecture. We also implemented the methods to compute the sum of
heritability explained and the corresponding SE in an R package SumVg. In conclusion, SumVg may
provide a useful alternative tool for calculating SNP heritability and estimating SE/CI, which does
not rely on distributional assumptions of SNP effects.

Keywords: genome-wide association studies; SNP heritability; genetic epidemiology; bioinformatics;
immunogenetics

1. Introduction

Genome-wide association studies (GWAS) have proven to be successful in dissect-
ing the genetic basis of a variety of diseases. A number of new susceptibility loci have
been discovered, providing novel insight into the pathophysiology of many diseases.
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Nevertheless, a large proportion of heritability still remains unexplained. It is natural to
question the maximum variance that could be explained by all variants in a GWAS (or meta-
analyses of GWAS), as we expect that many true susceptibility variants are “hidden” due to
limited power.

A number of methods have been developed to estimate total heritability according to
all measured SNPs (also known as SNP-based heritability). Regarding methods that require
individual-level data, in a pioneering work, Yang et al. [1] derived a method to estimate the
variance explained by all SNPs in a GWAS using a linear mixed model with random SNP
effects. The approach assumes that all SNPs have non-zero and normally distributed effects
(beta), with a mean effect of zero. Each SNP is assumed to contribute to the same level of
explained variance (i.e., variance explained by each SNP = total heritability/number of
SNPs). Other similar approaches have also been proposed. For example, LDAK [2] assumes
that a different heritability explains each SNP, depending on the minor allele frequencies
(MAF), linkage disequilibrium (LD) score and imputation quality of the SNP. Advanced
methods have also been developed to estimate SNP-based heritability using summary
statistics alone. (Here, summary statistics refer to GWAS results for each SNP, with effect
size (beta), standard error of beta and test statistics/p-values available, or at least two items
available.) LD score regression (LDSC) is one of the most widely used approaches for this
purpose [3]. LDSC assumes a mean effect (beta) of zero and equal variance explained by
each SNP (i.e., an infinitesimal model). SumHer [4] is an alternative approach based on
the LDAK assumptions. For a more detailed technical review, please refer to ref [5]. The
broader problem of SNP-based heritability estimation has also been discussed in several
other reviews or opinion pieces [6–9].

Prior to the development of LDSC, we have developed an alternative framework
(see ref [10]; referred to as “SumVg” in this paper) to achieve the same goal of estimating
SNP-based heritability using summary statistics alone. Essentially, we aimed to recover
the true effect sizes from a set of observed z-statistics based on formulas presented by
Robbins [11] (who attributed the idea to Maurice Kenneth Tweedie), Brown [12] and
Efron [13]. The corrected z-statistics are then converted to variance explained. There are
several advantages to this method. Most importantly, the SumVg approach does not rely on
any distributional assumptions of the effect sizes of susceptibility variants. In addition, it
does not assume an equal amount of heritability is explained by each SNP, or that all SNPs
contribute to the heritability (infinitesimal model). There are also no assumptions about
the relationship between allele frequencies and variance explained. The method is also
computationally fast. In addition, since the LDSC method directly leverages LD patterns,
a well-matched LD reference panel is usually required [14]. There is less reliance on LD
information when using SumVg as LD is mainly used for pruning.

Our method has been applied in a number of studies (for example see [15–23]). How-
ever, there are no methods available to quantify the standard error (SE) or precision of the
heritability estimates from SumVg, or the corresponding confidence intervals (CIs). There
is considerable technical difficulty in developing a reliable approach for estimating the SE
since usually only the summary data (instead of individual-level data) are available. If raw
data are available, a standard non-parametric bootstrap could be employed by sampling
individuals with a replacement. However, there are currently no methods for evaluating
the SE or CI of the point estimate of heritability when only summary statistics are available.

We summarize the contributions of this study below. In this work, we proposed
five re-sampling approaches to estimate the SE of the total heritability of all SNPs in
GWAS, based on summary statistics alone. Extensive simulations were performed to
compare and validate the performance of different methods. We also explored various
methods for constructing CIs. Secondly, we also developed an easy-to-use R program
to implement the SumVg approach with different flexible modeling options, available at
https://github.com/lab-hcso/Estimating-SE-of-total-heritability/ (accessed on 12 October
2023). Thirdly, we reported heritability estimates for 12 immune-related traits (levels of
cytokines and growth factors) [24] based on this approach, for which LDSC was unable to
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provide reasonable estimates. Such cytokines/growth factors are regulators of immune
responses and inflammation, and are important intermediate phenotypes for autoimmune,
inflammatory and infectious diseases [25]. As such, it is of scientific and clinical importance
to unravel the genetic architecture of these traits, and estimating their heritability may be
considered a useful contribution in its own right.

2. Results
2.1. Overview of Methods

We estimated the total heritability (Vg) explained by all variants in a GWAS panel
using the Tweedie’s formula [10], which corrects selection bias in the observed z-statistics.
To estimate the standard errors (SE), we proposed five resampling methods. The first two
are based on jackknife, namely delete-one and delete-d-jackknife (with d = n/5 observa-
tions removed each time). We also proposed three parametric bootstrap methods, where
z-statistics were sampled from a normal distribution based on the ‘corrected’ z-statistics,
and/or the local false discovery rate (fdr) (i.e., estimated probability that a SNP is null).
We also proposed several methods for constructing confidence intervals (CIs), including
normal approximation with various bootstrap bias corrections, as well as the percentile and
union of CI methods. We tested the performance of the SE and CI estimation methods in
simulations under different heritability and sample size scenarios. We applied our methods
to estimate SNP-based heritability and the SEs of 12 immune traits to reveal their genetic
architecture.

2.2. Simulation Results for SE Estimation

Standard errors (SEs) of heritability, as estimated by the jackknife and bootstrap
approaches, are listed in Table 1 and plotted in Figure 1. Bias, variance and root mean
square error (RMSE) of SEs were calculated over 100 simulations (Table 2; Figures 1 and 2).

Table 1. Standard error (SE) of the sum of variance explained (Vg) estimated by different resampling
approaches.

Sum_of_Vg Sample_Size Mean_Est TRUE_SE
SE

jack_del_1 jack_del_d paraboot fdrboot1 fdrboot2

0.295

5000 0.232 0.0482 0.0672 0.0524 0.0488 0.0519 0.0489
10,000 0.210 0.0265 0.0353 0.0295 0.0285 0.0312 0.0287
20,000 0.244 0.0158 0.0208 0.0185 0.0165 0.0156 0.0168
50,000 0.283 0.0076 0.0149 0.0167 0.0063 0.0081 0.0063
1 × 105 0.312 0.0063 0.0143 0.0172 0.0051 0.0055 0.0054
2 × 105 0.321 0.0045 0.0134 0.0161 0.0036 0.0038 0.0041

0.191

5000 0.207 0.0491 0.0706 0.0523 0.0486 0.0500 0.0485
10,000 0.147 0.0242 0.0357 0.0274 0.0263 0.0285 0.0265
20,000 0.158 0.0159 0.0208 0.0166 0.0156 0.0162 0.0160
50,000 0.174 0.0064 0.0113 0.0113 0.0061 0.0070 0.0061
1 × 105 0.195 0.0045 0.0110 0.0131 0.0040 0.0047 0.0041
2 × 105 0.207 0.0035 0.0103 0.0128 0.0031 0.0034 0.0035

0.101

5000 0.197 0.0521 0.0692 0.0524 0.0484 0.0496 0.0483
10,000 0.116 0.0260 0.0345 0.0265 0.0251 0.0257 0.0251
20,000 0.098 0.0143 0.0202 0.0159 0.0150 0.0153 0.0154
50,000 0.091 0.0058 0.0098 0.0078 0.0063 0.0057 0.0063
1 × 105 0.094 0.0032 0.0069 0.0076 0.0027 0.0036 0.0027
2 × 105 0.107 0.0028 0.0072 0.0083 0.0023 0.0027 0.0025

The main purpose of this table is to compare the true SEs against the SEs estimated by various resampling-based
methods. Sum_of_Vg, true total heritability explained (i.e., the real total heritability based on our data-generating
mechanism); Sample_size refers to the sample size of the GWAS; Mean_Est, the mean estimated heritability
explained based on our approach of corrected z-statistics; True_SE, the ‘true’ SE was based on repeating our
simulation experiments 100 times; jack_del_1, delete-1-jackknife; jack_del_d, delete-d-jackknife with d equal to
20,000; paraboot, parametric bootstrap approach as described in the text, based on simulating from a normal
distribution in which the mean was derived from the corrected z-statistics (without consideration of local false
discovery rates (fdr)); fdrboot1, a “weighted” bootstrap approach with consideration of the local fdr, using the
observed z-statistic as the mean in each simulation; fdrboot2, a “weighted” bootstrap approach with consideration
of the local fdr, using the corrected z-statistic as the mean in each simulation.



Int. J. Mol. Sci. 2024, 25, 1347 4 of 19

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 1. Cont.



Int. J. Mol. Sci. 2024, 25, 1347 5 of 19
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 1. Boxplots of SE estimated by different approaches. Vg is the sum of variance explained, N 
is the sample size, and the horizontal line refers to true SE calculated by repeating the experiments 
100 times based on the true data generating mechanism. jack_del_1, jack_del_d, paraboot, fdrboot1 
and fdrboot2 are different SE estimation approaches as described above. 

Figure 1. Boxplots of SE estimated by different approaches. Vg is the sum of variance explained, N
is the sample size, and the horizontal line refers to true SE calculated by repeating the experiments
100 times based on the true data generating mechanism. jack_del_1, jack_del_d, paraboot, fdrboot1
and fdrboot2 are different SE estimation approaches as described above.

The delete-[n/5]-jackknife worked reasonably well when the total heritability ex-
plained was low (when heritability = 0.101), but it tended to overestimate the SE when
the total heritability was higher, especially with larger sample sizes. The bias was also
positive across all simulation scenarios. The standard (delete-1) jackknife approach per-
formed the worst among all methods, producing inflated estimates of SE. The variance and
RMSE of this estimator were high compared to other approaches. The SE was, in general,
over-estimated at all heritability levels across all sample sizes. This may be explained by
the fact that the sum of variance explained is not a very smooth parameter, which impairs
the performance of delete-1-jackknife estimators.

The other methods, including the original parametric bootstrap (paraboot) and the
modified versions with consideration of local fdr, performed reasonably well and closely
resembled the true SE. With the exception of one simulation setting, the parametric boot-
strap methods achieved the lowest (absolute) bias for SE. For the variance and RMSE of SE,
parametric bootstrap also performed the best. In terms of RMSE, the parametric bootstrap
approaches modeling the local fdr (i.e., fdrboot1 and fdrboot2) outperformed the other
methods. The RMSE of different estimators were also observed to reduce with increasing
sample sizes.
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Table 2. Bias, variance and root mean squared error (RMSE) of SE estimated by different resampling approaches.

Sum_Vg N Bias of the Estimator for SE Variance of the Estimator for SE RMSE of the Estimator for SE
jack_del_1 jack_del_d paraboot fdrboot1 fdrboot2 jack_del_1 jack_del_d paraboot fdrboot1 fdrboot2 jack_del_1 jack_del_d paraboot fdrboot1 fdrboot2

0.295

5000 1.91 × 10−2 4.26 × 10−3 5.92 × 10−4 3.73 × 10−3 7.16 × 10−4 1.77 × 10−4 5.14 × 10−5 1.26 × 10−5 1.15 × 10−5 9.30 × 10−6 2.32 × 10−2 8.34 × 10−3 3.59 × 10−3 5.04 × 10−3 3.13 × 10−3

10,000 8.81 × 10−3 2.98 × 10−3 2.00 × 10−3 4.66 × 10−3 2.25 × 10−3 7.34 × 10−5 1.21 × 10−5 3.87 × 10−6 4.99 × 10−6 3.62 × 10−6 1.23 × 10−2 4.58 × 10−3 2.80 × 10−3 5.17 × 10−3 2.94 × 10−3

20,000 5.04 × 10−3 2.78 × 10−3 7.37 × 10−4 −1.46 × 10−4 1.07 × 10−3 9.06 × 10−5 2.27 × 10−6 8.33 × 10−7 1.12 × 10−6 1.00 × 10−6 1.08 × 10−2 3.16 × 10−3 1.17 × 10−3 1.07 × 10−3 1.47 × 10−3

50,000 7.25 × 10−3 9.03 × 10−3 −1.32 × 10−3 4.68 × 10−4 −1.30 × 10−3 1.29 × 10−4 1.45 × 10−6 1.36 × 10−7 1.93 × 10−7 1.30 × 10−7 1.35 × 10−2 9.11 × 10−3 1.37 × 10−3 6.42 × 10−4 1.35 × 10−3

1 × 105 7.97 × 10−3 1.09 × 10−2 −1.20 × 10−3 −8.78 × 10−4 −9.34 × 10−4 1.41 × 10−4 1.52 × 10−6 8.11 × 10−8 3.48 × 10−7 1.00 × 10−7 1.43 × 10−2 1.10 × 10−2 1.23 × 10−3 1.06 × 10−3 9.86 × 10−4

2 × 105 8.92 × 10−3 1.16 × 10−2 −8.57 × 10−4 −6.32 × 10−4 −3.72 × 10−4 1.37 × 10−4 8.70 × 10−7 3.49 × 10−8 1.30 × 10−7 4.06 × 10−8 1.47 × 10−2 1.16 × 10−2 8.77 × 10−4 7.27 × 10−4 4.23 × 10−4

0.191

5000 2.16 × 10−2 3.21 × 10−3 −5.02 × 10−4 9.69 × 10−4 −5.23 × 10−4 5.53 × 10−4 5.41 × 10−5 1.07 × 10−5 1.02 × 10−5 8.58 × 10−6 3.19 × 10−2 8.03 × 10−3 3.31 × 10−3 3.34 × 10−3 2.98 × 10−3

10,000 1.15 × 10−2 3.16 × 10−3 2.04 × 10−3 4.22 × 10−3 2.29 × 10−3 2.80 × 10−4 1.43 × 10−5 4.88 × 10−6 2.98 × 10−6 5.03 × 10−6 2.03 × 10−2 4.93 × 10−3 3.01 × 10−3 4.56 × 10−3 3.20 × 10−3

20,000 4.96 × 10−3 7.22 × 10−4 −2.41 × 10−4 3.15 × 10−4 9.85 × 10−5 1.19 × 10−4 2.70 × 10−6 1.09 × 10−6 1.31 × 10−6 7.64 × 10−7 1.20 × 10−2 1.79 × 10−3 1.07 × 10−3 1.19 × 10−3 8.80 × 10−4

50,000 4.90 × 10−3 4.83 × 10−3 −2.92 × 10−4 5.76 × 10−4 −2.97 × 10−4 1.10 × 10−4 8.17 × 10−7 1.66 × 10−7 1.50 × 10−7 1.24 × 10−7 1.16 × 10−2 4.91 × 10−3 5.01 × 10−4 6.94 × 10−4 4.60 × 10−4

1 × 105 6.45 × 10−3 8.56 × 10−3 −5.40 × 10−4 1.30 × 10−4 −4.33 × 10−4 1.32 × 10−4 1.68 × 10−6 6.30 × 10−8 1.32 × 10−7 8.37 × 10−8 1.32 × 10−2 8.65 × 10−3 5.96 × 10−4 3.85 × 10−4 5.21 × 10−4

2 × 105 6.85 × 10−3 9.28 × 10−3 −3.57 × 10−4 −1.41 × 10−4 −3.31 × 10−5 1.28 × 10−4 1.06 × 10−6 3.04 × 10−8 1.54 × 10−7 3.78 × 10−8 1.32 × 10−2 9.34 × 10−3 3.97 × 10−4 4.17 × 10−4 1.97 × 10−4

0.101

5000 1.71 × 10−2 3.38 × 10−4 −3.72 × 10−3 −2.54 × 10−3 −3.81 × 10−3 1.81 × 10−4 6.26 × 10−5 1.01 × 10−5 1.07 × 10−5 7.70 × 10−6 2.17 × 10−2 7.92 × 10−3 4.90 × 10−3 4.14 × 10−3 4.71 × 10−3

10,000 8.45 × 10−3 4.62 × 10−4 −8.81 × 10−4 −2.84 × 10−4 −9.03 × 10−4 1.66 × 10−4 1.45 × 10−5 3.49 × 10−6 1.66 × 10−6 2.46 × 10−6 1.54 × 10−2 3.83 × 10−3 2.07 × 10−3 1.32 × 10−3 1.81 × 10−3

20,000 5.92 × 10−3 1.56 × 10−3 7.21 × 10−4 1.04 × 10−3 1.08 × 10−3 1.44 × 10−4 4.20 × 10−6 8.80 × 10−7 1.22 × 10−6 8.17 × 10−7 1.34 × 10−2 2.57 × 10−3 1.18 × 10−3 1.52 × 10−3 1.41 × 10−3

50,000 4.03 × 10−3 2.04 × 10−3 4.91 × 10−4 −1.02 × 10−4 5.85 × 10−4 6.00 × 10−5 4.31 × 10−7 1.61 × 10−7 1.08 × 10−7 1.26 × 10−7 8.73 × 10−3 2.15 × 10−3 6.34 × 10−4 3.44 × 10−4 6.85 × 10−4

1 × 105 3.73 × 10−3 4.34 × 10−3 −5.10 × 10−4 4.31 × 10−4 −5.17 × 10−4 9.13 × 10−5 3.03 × 10−7 2.83 × 10−8 4.34 × 10−8 2.05 × 10−8 1.03 × 10−2 4.38 × 10−3 5.37 × 10−4 4.79 × 10−4 5.36 × 10−4

2 × 105 4.38 × 10−3 5.48 × 10−3 −5.31 × 10−4 −1.61 × 10−4 −3.81 × 10−4 1.00 × 10−4 3.41 × 10−7 2.22 × 10−8 7.06 × 10−8 2.88 × 10−8 1.09 × 10−2 5.51 × 10−3 5.52 × 10−4 3.11 × 10−4 4.17 × 10−4

The table shows the bias, variance and root mean squared error of SE estimated from our methods, as compared to the true SE. Sum_Vg, true total heritability explained; N, sample size.
The best performing method (for estimation of SE) in each scenario is in bold. For other abbreviations, please refer to Table 1.
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Figure 2. Bar plots of bias, variance and root mean squared error (RMSE) of SE estimated by different
approaches in simulations. Vg is the sum of variance explained, and N is the sample size. jack_del_1,
jack_del_d, paraboot, fdrboot1 and fdrboot2 are different SE estimation approaches as described
above.

2.3. Performance of Different CI Construction Methods

The full results are presented in Tables 3, S1 and S2. For standard CI (based on normal
approximation), the CIs built from the SE of delete-d-jackknife performed reasonably well
(in terms of coverage) for large sample sizes, although the coverage was not always ade-
quate for modest samples sizes, especially for N < 20,000. The coverage of CIs constructed
from other types of SEs were more variable, with good coverage for some scenarios but poor
coverage for others. Therefore, we primarily focus on the SE from delete-d-jackknife when
a standard CI is used. Interestingly, the bias-corrected standard CI, with bias correction
based on paraboot or fdrboot2, performed better in the several cases when the standard CI
had low coverage (<50%) (we assume that the SE from delete-d-jackknife was employed).
The performance of percentile CIs was highly variable across different scenarios.
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Table 3. Coverage probabilities of different union CI (UCI) approaches for 95% CI.

N Union CI Type Coverage (Vg = 0.295) Coverage (Vg = 0.191) Coverage (Vg = 0.101)

5000
Standard 0.75 0.97 0.77
Percentile 1 1 0.78

Standard + Percentile 1 1 0.78

10,000
Standard 0.6 0.67 0.94
Percentile 0.99 1 1

Standard + Percentile 0.99 1 1

20,000
Standard 0.89 0.84 0.96
Percentile 0.91 1 1

Standard + Percentile 0.97 1 1

50,000
Standard 1 1 0.9
Percentile 1 1 1

Standard + Percentile 1 1 1

1 × 105
Standard 1 1 1
Percentile 1 1 1

Standard + Percentile 1 1 1

2 × 105
Standard 0.96 1 1
Percentile 0.13 0.66 1

Standard+Percentile 0.96 1 1

Notes for Table 3: The following methods were explored: 1. Normal approximation (standard approach)
without bias correction (one estimator) or with bootstrap bias correction (3 estimators), and the union of CIs
was taken; (“Standard”). 2. Percentile approach without bias correction (3 estimators) and with bias correction
(3 estimators), and the union of CIs was taken; (“Percentile”). 3. Union of the final union CIs obtained from 1 and
2. (“Standard+Percentile”). Coverage refers to the coverage probabilities based on simulations.

In view of the highly variable performance of different CI construction methods, we
expect the union of CI (UCI) to perform better and be more robust across different scenarios.
We observed that UCI, no matter if it is constructed from the standard or percentile CI
estimators, in general, achieved good coverage across most simulation scenarios, although
in some cases the coverage was still below the desired level (95%). When we further took
the union of standard and percentile UCI estimators (i.e., Method 3 listed under ‘Union
CI’ in the Section 4), the coverage was adequate for almost all scenarios, except one case in
which both the sample size and the sum of variance explained (Vg) were low (N = 5000,
Vg = 0.101).

2.4. Results on Immune Traits

PLINK was applied to trim GWAS data for 12 immunological traits (Table 4) with
various r2 criteria to obtain roughly independent SNPs. We only included common variants
with an MAF > 0.01 for further analysis. Then, using SumVg, the “true” z-statistics
of trimmed SNPs were retrieved to capture the missing heritability. The jackknife and
bootstrap methods were used to compute the corresponding SEs (Table 5; Figure S1).

The total SNP-based heritability predicted by SumVg for the selected traits, in contrast
to the comparatively low or negative heritability estimates from LDSC, were around 10–20%
based on a collection of LD-pruned SNPs. We obtained a stable (and likely conservative)
estimate of heritability at r2 ~ 0.01 or 0.005. Lower r2 values (i.e., r2 < 0.0025 and r2 < 0.001)
had limited impact on final estimates of heritability. The delete-one jackknife consistently
produced the highest standard error, while the bootstrap and delete-d jackknife approaches
produced SEs that were more comparable to one another. Out of the 12 cytokines/growth
factors studied, the highest heritability was observed for the levels of IL-4 and IL-17.
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Table 4. Summary of the immune traits being studied.

Trait Abbreviation GWAS ID N SNP_h2 (LDSC) SNP_h2_se (LDSC)

Stem cell factor SCF ebi-a-GCST004429 8290 −0.06 0.055
Interleukin-4 IL4 ebi-a-GCST004453 8124 −0.0446 0.0595

Interleukin-17 IL17 ebi-a-GCST004442 7760 −0.0407 0.0623
Hepatocyte growth factor HGF ebi-a-GCST004449 8292 −0.0311 0.0579

Basic fibroblast growth factor FGFBasic ebi-a-GCST004459 7565 −0.0159 0.0597
Stromal cell-derived factor-1 alpha (CXCL12) SDF1a ebi-a-GCST004427 5998 −0.0116 0.0713

Interleukin-6 IL6 ebi-a-GCST004446 8189 −0.0071 0.0568
Platelet derived growth factor BB PDGFbb ebi-a-GCST004432 8293 −0.0043 0.0624

TNF-related apoptosis inducing ligand TRAIL ebi-a-GCST004424 8186 0.0125 0.0613
Interferon-gamma IFNg ebi-a-GCST004456 7701 0.0134 0.0624

Granulocyte colony-stimulating factor GCSF ebi-a-GCST004458 7904 0.0173 0.0601
Interleukin-10 IL10 ebi-a-GCST004444 7681 0.0186 0.0691

Trait, trait name of analyzed GWAS dataset; abbreviation, abbreviation of the trait name; GWAS ID, ID of GWAS
dataset for downloading from the IEU OpenGWAS Project; N, sample size; SNP_h2 (LDSC), SNP heritability
estimated by LDSC as reported in GWASAtlas; SNP_h2_se (LDSC), standard error of SNP heritability estimated
by LDSC as reported in GWASAtlas.

Table 5. SE of the sum of variance explained estimated by different resampling approaches, for
12 immune traits (under different r2 pruning thresholds).

Trait N LDSC SumVg
h2 se h2 r2 n_pruned_snp se_jack1 se_jack_del_d se_paraboot se_fdrboot1 se_fdrboot2

SCF 8290 −0.06 0.055

0.333 0.1 428,593 0.0926 0.0822 0.0679 0.0443 0.0514
0.185 0.05 251,008 0.0526 0.0456 0.0467 0.0502 0.0517
0.105 0.025 127,908 0.0307 0.0313 0.0272 0.0397 0.0335
0.100 0.01 61,938 0.0310 0.0200 0.0220 0.0252 0.0265
0.092 0.005 51,370 0.0229 0.0169 0.0201 0.0235 0.0230
0.101 0.002 48,088 0.0319 0.0153 0.0220 0.0226 0.0198
0.102 0.001 47,108 0.0316 0.0155 0.0223 0.0216 0.0188

IL4 8124 −0.0446 0.0595

0.503 0.1 427,005 0.1218 0.1133 0.0616 0.0563 0.0569
0.377 0.05 249,710 0.1000 0.0823 0.0484 0.0445 0.0453
0.302 0.025 127,248 0.0650 0.0594 0.0318 0.0365 0.0336
0.235 0.01 61,685 0.0529 0.0313 0.0247 0.0240 0.0236
0.215 0.005 51,196 0.0472 0.0278 0.0227 0.0217 0.0221
0.197 0.002 47,878 0.0571 0.0273 0.0228 0.0225 0.0253
0.187 0.001 46,911 0.0482 0.0244 0.0198 0.0226 0.0242

IL17 7760 −0.0407 0.0623

0.352 0.1 427,226 0.1240 0.0946 0.0692 0.0625 0.0609
0.228 0.05 250,259 0.0683 0.0668 0.0499 0.0495 0.0495
0.299 0.025 127,479 0.0877 0.0568 0.0360 0.0380 0.0323
0.234 0.01 61,756 0.0485 0.0340 0.0239 0.0267 0.0256
0.196 0.005 51,215 0.0475 0.0295 0.0237 0.0190 0.0249
0.195 0.002 47,887 0.0634 0.0231 0.0231 0.0226 0.0210
0.188 0.001 46,931 0.0568 0.0242 0.0183 0.0211 0.0215

HGF 8292 −0.0311 0.0579

0.366 0.1 428,318 0.0917 0.0864 0.0569 0.0642 0.0593
0.242 0.05 250,843 0.0812 0.0722 0.0483 0.0492 0.0491
0.205 0.025 127,850 0.0657 0.0488 0.0327 0.0326 0.0357
0.098 0.01 61,906 0.0379 0.0224 0.0225 0.0260 0.0242
0.115 0.005 51,301 0.0347 0.0199 0.0224 0.0230 0.0203
0.111 0.002 47,878 0.0414 0.0162 0.0189 0.0211 0.0215
0.108 0.001 46,934 0.0312 0.0171 0.0221 0.0208 0.0211

FGFBasic 7565 −0.0159 0.0597

0.269 0.1 427,284 0.0835 0.0902 0.0656 0.0530 0.0577
0.217 0.05 249,930 0.0891 0.0604 0.0473 0.0504 0.0468
0.117 0.025 127,587 0.0452 0.0431 0.0340 0.0363 0.0358
0.133 0.01 61,911 0.0408 0.0301 0.0232 0.0239 0.0275
0.135 0.005 51,259 0.0376 0.0243 0.0242 0.0267 0.0219
0.143 0.002 47,874 0.0362 0.0218 0.0185 0.0233 0.0245
0.126 0.001 46,914 0.0392 0.0206 0.0227 0.0214 0.0208

SDF1a 5998 −0.0116 0.0713

0.395 0.1 425,165 0.1120 0.1068 0.0731 0.0757 0.0870
0.256 0.05 248,727 0.0872 0.0750 0.0580 0.0565 0.0631
0.213 0.025 126,986 0.0707 0.0462 0.0431 0.0472 0.0468
0.163 0.01 61,680 0.0497 0.0380 0.0359 0.0349 0.0324
0.190 0.005 51,092 0.0708 0.0318 0.0250 0.0297 0.0270
0.165 0.002 47,702 0.0447 0.0270 0.0294 0.0304 0.0301
0.159 0.001 46,789 0.0512 0.0232 0.0279 0.0258 0.0308

IL6 8189 −0.0071 0.0568

0.422 0.1 427,566 0.0878 0.0896 0.0510 0.0575 0.0594
0.227 0.05 250,247 0.0620 0.0713 0.0402 0.0463 0.0468
0.158 0.025 127,503 0.0672 0.0457 0.0372 0.0300 0.0360
0.139 0.01 61,931 0.0606 0.0258 0.0220 0.0247 0.0220
0.114 0.005 51,332 0.0288 0.0176 0.0196 0.0227 0.0236
0.115 0.002 47,930 0.0302 0.0164 0.0191 0.0226 0.0202
0.117 0.001 46,944 0.0319 0.0175 0.0227 0.0209 0.0211
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Table 5. Cont.

Trait N LDSC SumVg
h2 se h2 r2 n_pruned_snp se_jack1 se_jack_del_d se_paraboot se_fdrboot1 se_fdrboot2

PDGFbb 8293 −0.0043 0.0624

0.432 0.1 427,743 0.0907 0.0993 0.0726 0.0653 0.0676
0.341 0.05 250,325 0.0670 0.0808 0.0600 0.0496 0.0576
0.307 0.025 127,567 0.0735 0.0554 0.0370 0.0334 0.0326
0.154 0.01 61,789 0.0372 0.0250 0.0213 0.0245 0.0243
0.125 0.005 51,140 0.0310 0.0226 0.0234 0.0230 0.0221
0.120 0.002 47,822 0.0258 0.0205 0.0214 0.0208 0.0233
0.117 0.001 46,853 0.0392 0.0192 0.0201 0.0209 0.0226

TRAIL 8186 0.0125 0.0613

0.559 0.1 423,391 0.0613 0.1018 0.0785 0.0790 0.0750
0.304 0.05 247,717 0.0543 0.1190 0.0526 0.0503 0.0439
0.242 0.025 126,350 0.0607 0.0647 0.0321 0.0362 0.0370
0.128 0.01 61,114 0.0316 0.0251 0.0242 0.0229 0.0277
0.127 0.005 50,633 0.0298 0.0231 0.0255 0.0239 0.0268
0.128 0.002 47,359 0.0332 0.0216 0.0233 0.0215 0.0266
0.121 0.001 46,415 0.0358 0.0195 0.0222 0.0229 0.0256

IFNg 7701 0.0134 0.0624

0.393 0.1 426,740 0.0946 0.0811 0.0528 0.0590 0.0594
0.241 0.05 249,818 0.0655 0.0628 0.0553 0.0520 0.0509
0.244 0.025 127,514 0.0734 0.0582 0.0330 0.0406 0.0320
0.138 0.01 61,890 0.0289 0.0303 0.0267 0.0239 0.0257
0.138 0.005 51,314 0.0424 0.0201 0.0222 0.0248 0.0293
0.141 0.002 47,918 0.0321 0.0204 0.0251 0.0248 0.0286
0.137 0.001 46,934 0.0253 0.0183 0.0223 0.0246 0.0233

GCSF 7904 0.0173 0.0601

0.246 0.1 427,393 0.0707 0.0820 0.0620 0.0604 0.0580
0.198 0.05 250,222 0.0636 0.0607 0.0402 0.0436 0.0486
0.164 0.025 127,583 0.0501 0.0415 0.0302 0.0360 0.0327
0.142 0.01 61,846 0.0434 0.0257 0.0280 0.0239 0.0257
0.122 0.005 51,266 0.0379 0.0196 0.0205 0.0247 0.0238
0.120 0.002 47,919 0.0413 0.0183 0.0219 0.0236 0.0201
0.112 0.001 46,939 0.0312 0.0159 0.0234 0.0207 0.0202

IL10 7681 0.0186 0.0691

0.331 0.1 427,218 0.0621 0.1019 0.0584 NA NA
0.310 0.05 250,109 0.0670 0.0858 0.0448 NA NA
0.198 0.025 127,543 0.0566 0.0463 0.0356 0.0382 0.0406
0.130 0.01 61,944 0.0328 0.0225 0.0251 0.0268 0.0258
0.141 0.005 51,257 0.0400 0.0220 0.0237 0.0282 0.0238
0.148 0.002 47,880 0.0433 0.0183 0.0204 0.0271 0.0231
0.142 0.001 46,898 0.0317 0.0194 0.0219 0.0261 0.0228

This table shows the estimated total SNP-based heritability and their SEs for 12 immune traits. We also show a
comparison of the estimates between LDSC and SumVg. Trait, N, LDSC (h2, se) have the same meaning as in
Table 4; h2, heritability estimated by SumVg across a set of r2 pruning thresholds; r2, the r2 pruning threshold;
n_pruned_snp, number of SNPs after LD pruning at the corresponding r2 threshold; se_jack_1, se_jack_del_d,
se_paraboot, se_fdrboot1 and se_fdrboot2 are SE estimated by different approaches as described above; “NA” was
shown when “locfdr” failed to estimate local false discovery rate. The estimates with r2 = 0.01 were highlighted,
as we observed that in general the heritability estimates stabilize at r2 ~ 0.01.

2.5. R Package Implementation

We also implemented the methods to compute the sum of heritability explained and
the corresponding SEs in an R package SumVg, available at https://github.com/lab-hcso/
Estimating-SE-of-total-heritability/ (accessed on 12 October 2023).

The computational speed of different resampling approaches using SumVg is pre-
sented in Table S3 (assuming 100,000 SNPs and 200 resampling iterations). The speed is
generally fast and the time taken was around 2–4 min for each resampling method, using a
single core (Intel Xeon Gold 6230 CPU @ 2.10 GHz).

3. Discussion

In this study, we presented an approach for estimating the SE of SNP-based heritability
estimates using SumVg, and our applications to immune phenotypes demonstrate the
usefulness of this approach.

Our main purpose is to provide an alternative approach for SNP-based heritability and
SE estimation, since different approaches have different statistical modeling assumptions,
or assumptions about the genetic architecture. In practice, it is almost impossible to know
the true genetic architecture of a disease/trait, and as such, it is very difficult to verify the
correctness of heritability estimates due to the lack of a ‘gold standard’. It will be more
reassuring if one observes similar heritability estimates from diverse methods. SumVg
may provide a useful alternative reference for heritability estimates, in conjunction with
existing approaches such as LDSC. SumVg may also be useful when standard approaches
are unable to give reasonable results (e.g., close to zero heritability for traits that are likely
to be heritable from previous studies, or negative estimates). It will be interesting to

https://github.com/lab-hcso/Estimating-SE-of-total-heritability/
https://github.com/lab-hcso/Estimating-SE-of-total-heritability/
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investigate the reasons underlying negative heritability estimates for LDSC; one possibility
is mis-specified model assumptions [26], but the exact reasons will require further studies.

We recommended pruning the SNPs (such that SNPs are roughly in linkage equilib-
rium) before applying our method of heritability estimation. One approach is to employ
a series of r2 thresholds (e.g., decreasing r2 from 0.1 to 0.001) and consider the point at
which heritability became stable. Our empirical applications showed that an r2 threshold
of ~0.01 may be sufficient. The resulting SNP-based heritability may be considered to be
a conservative estimate (due to the possibility of removing some causal variants during
LD-pruning). While not directly modeling LD is a limitation of this approach, the lower
reliance on accurate LD information may be advantageous in some cases, for example
when in-sample LD information is not available and only limited external reference data
are present. On the other hand, we are also investigating methods to model LD in the
SumVg framework. Since SumVg and LDSC are based on different modeling strategies
and assumptions, and that the main focus of this study is the development of new SE/CI
estimation approaches for SumVg (as well as applications to immune traits and presen-
tation of a new R package), we shall leave carrying out a detailed comparison between
SumVg and LDSC (or other SNP heritability estimation methods) for future work.

We have not investigated methods for SE estimation when raw genotype data are
available. When raw data is available, one potential approach is to simply resample the
individuals with a replacement (i.e., standard non-parametric bootstrap). However, such
an approach is computationally intensive and its performance over methods based on
summary statistics requires further research. The above resampling methods can also
potentially be sped up by splitting the job into multiple processes to be run in parallel,
although this approach has not been implemented in our software yet. We also wish to
point out that, as the resampling methods were supposed to apply to GWAS summary data,
in general the computational speed is fast, and the speed is not affected by sample sizes.

We have explored various approaches to construct CI, although we cannot yet find a
single approach that yields an optimal CI with good coverage across all scenarios. We shall
leave the development of more sophisticated and novel methodologies for CI construction
for future works. For practical purposes, the union CI appears to perform well in terms of
coverage across most scenarios (at the expense of wider CIs). On the other hand, we suspect
that the issue of CI construction may not be unique to the SumVg approach; other methods
for estimating SNP-based heritability typically require more stringent assumption on the
distribution of effects, and/or that all SNPs contribute to heritability. The violation of such
assumptions may lead to the estimates being biased and the inadequate coverage of CIs.
Here we have proposed a bootstrap correction of bias, which indeed led to improvement
in CI coverage in some cases, for example the standard CI under small sample sizes.
Nevertheless, bootstrap correction showed a variable performance across different scenarios
and did not always reduce bias in all cases. The above issues may warrant further studies.

Here we further highlight several important points to note and limitations of our
framework. Regarding the SumVg estimator of total SNP-based heritability, one future
research direction is to further explore its asymptotic theoretical properties. We did not
pursue this direction here. Of note, the key difficulty in Equation (1) (i.e., the Tweedie’s
formula) is to estimate f (x) and f ′(x) accurately. We primarily employed a kernel density
estimator here, although other density estimation approaches may also be attempted.
Notably, the kernel density estimator has been shown to be asymptotically consistent under
certain assumptions [27]. In the paper by Efron [28], the asymptotic regret (Reg) of the
empirical Bayes approach (i.e, using Tweedie’s formula) was studied by comparing the
Tweedie’s estimate with the Bayes estimate of the true effect size, for a fixed value of z at z0.
It was shown that Reg(z0) tends towards zero as N tends towards infinity, and the regret
depends on the squared error of l̂′(z0) as an estimator of l′(z0), where l′(z) = d

dz log f (z).
Future theoretical studies of SumVg and other SNP heritability estimation methods are
warranted.
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In the current work, we assume that the summary statistics have been corrected for
population stratification and other types of bias. If the original GWAS study suffered
from bias, e.g., confounding, selection/ascertainment bias, sampling bias, bias due to
missing data, etc., the resulting Vg estimate will also be affected. We suggest that the
above bias should be carefully addressed at the design and/or analysis stage of the GWAS,
for example by performing proper random sampling, inverse probability weighting to
address selection bias [29], proper imputation of missing data, etc. As with any method,
independent replication is also important.

Another limitation is that the proposed approach for calculating SNP heritability and
SE/CI estimation may not work well for very small sample sizes. Since GWAS sample sizes
are generally getting larger (most with N > 5000), we did not address the performance under
very small sample sizes here. In such cases, both the SNP heritability and SE estimates may
need to be viewed with greater caution. Meta-analysis of GWAS results across multiple
studies may be recommended. Future work may also explore more innovative approaches
to addressing small sample sizes, for example whether specifying a prior for the underlying
effect sizes (δ) may help. (The current approach does not require any specification of the
distribution of δ).

We also note that resampling methods often assume that the data points are indepen-
dent of each other. In our study, prior to the analysis, we processed the data to remove
strongly linked SNPs using LD pruning. The resulting SNPs are therefore roughly inde-
pendent though some residual LD might remain. As a future direction, it may be useful to
explore ways to fully tackle LD, for example by block bootstrap or jackknife [30]. However,
external LD data from reference panels would be required, and there may be risks of
LD mismatch between the studied and external samples. Further studies are required to
investigate these issues.

Different resampling methods like bootstrap and jackknife may have different assump-
tions and applicability to different kinds of data. We have conducted relatively extensive
simulations to compare performance of different methods across a range of heritability
levels and sample sizes, which helps evaluate their applicability. We believe the proposed
methods are generally applicable to most GWAS summary data. Note that the parametric
bootstrap approaches assume that the observed data (z-statistics) are drawn from a certain
specified parametric distribution. In our case, it is assumed that the δ and/or local fdr
are estimated reasonably well. For small sample sizes, this assumption may not hold
very well. The jackknife approaches do not require parametric assumptions; however,
delete-one-jackknife has been shown to produce inconsistent variance estimators for non-
smooth estimators such as the sample quantiles [31]. Delete-d-jackknife can resolve this
problem, but the choice of d may not be straightforward. We suggest that multiple types of
resampling methods should be performed; similar results across different methods may
provide reassurance to the validity of results. Future work may include more extensive
simulations for different genetic architectures and wider applications to complex traits.

There may be a concern that resampling methods may not handle extreme values
or skewed distributions well. As discussed above, we recommend the GWAS should
be conducted carefully in the first place. For example, skewed phenotypes may require
transformation before analysis, and confounding or other kinds of bias need to be addressed.
The SumVg method works on summary statistics. It is possible to perform further inverse-
rank transformation to the summary statistics if the distribution is skewed or outliers
are present, although this may create some bias to the Vg estimate. One may also trim
the outlying z-statistics, and increasing the number of resamples may also help. The
performance of these approaches will be a topic for further studies.

Importantly, we have also applied our approach to estimate the heritability of differ-
ent cytokines, which play important roles in immune response and the pathogenesis of
autoimmune, inflammatory and infectious diseases. Our analyses suggest that the studied
cytokines are moderately heritable in general.
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To summarize, SumVg is useful for triangulating evidence from different approaches
to support conclusions regarding SNP-based heritability. We present novel methods of
computing SE and CI and an easy-to-use software here, which we believe will be helpful
for other researchers. Our application to the cytokine levels also sheds light on the genetic
architecture of these clinically important immune traits.

4. Materials and Methods
4.1. Estimation of the Total Heritability Explained (Vg)

We previously proposed an approach [10] to estimate the sum of heritability explained
by all variants on a GWAS panel. Our approach leverages Tweedie’s formula for estimating
the true underlying effect sizes of SNPs, based on the observed GWAS summary statistics.
The principles are described in detail in the work by Efron [28].

4.1.1. Estimation of Total Vg Based on Tweedie’s Formula

More specifically, assuming we have a large number of normally distributed variables
(here z-statistics from a GWAS analysis), each with its own unobserved mean parameter δi,
then

zi ∼ N
(

δi, σ2
)

, i = 1, 2, . . . , k

where k is the total number of variables. The attention is focused on the more extreme
values, for example the top SNPs in high-dimensional genomics studies. As described by
Efron [28], ‘selection bias’ may be at play here. Intuitively, the more extreme z-statistics
might have been ‘lucky’ as random errors pushed them to deviate from zero; as such they
can ‘stand out’ among the other z-statistics. In other words, the true underlying effect sizes
of these top SNPs tend to be less extreme than the observed values. This phenomenon
is also known as the ‘winner’s curse’, for example see [32–34]. As a result, if we directly
used the observed z-statistics to estimate the true effect sizes, the performance may not be
optimal. Some form of ‘correction’ of the observed z-statistics are required.

Efron [28] proposed an empirical Bayes approach to reduce the selection bias, which
was first described by Robbins [11] who attributed the ideas to Tweedie. The method
assumes that

δ ∼ g( · ) and z|δ ∼ N
(

δ, σ2
)

In other words, we assume that δ was sampled from a prior ‘density’ g(.), then
z ~ N (δ, σ2) were observed, and the variance σ2 was known. There are no assumptions on
the form of the prior density g. According to the Tweedie’s formula,

E{δ | z} = z + σ2l′(z), where l′(z) =
d
dz

log f (z)

In our setting of GWAS analyses, we assume σ2 = 1, since we work with the summary
z-statistics. We estimated the true or ‘corrected’ effect sizes of SNPs using

E{δ|z} = z +
f ′(z)
f (z)

(1)

which is equivalent to the formula above when σ2 = 1. Here z denotes the observed
z-statistic, obtained from the estimated regression coefficient divided by the estimated SE

(i.e., β̂

ŜE
). δ is the z-statistic derived by the true effect size divided by the estimated SE of

the sample (βtrue/ŜE ), which can be considered a form of the ‘standardized’ true effect
size. We previously proposed to employ a kernel density estimator to compute f (z) [10],
which was shown to perform well in simulations. The total variance explained (Vg) can be
obtained by converting the underlying effects δ to the Vg scale (see below and ref [10]).
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4.1.2. Conversion of z-Statistics to Vg

For continuous traits, the conversion formula followed our previous work [10], which
can be derived from ANOVA table of regression,

Vg =
[E(δ|z)]2

n − 2 + [E(δ|z)]2

For binary outcomes, it is also possible to convert the z-statistics to Vg, provided that
the estimated SE (or beta) and minor allele frequencies (MAF) of the SNPs, as well as the
outcome prevalence, are available. We followed the methodology described in ref [35],
which described how to convert coefficients from a logistic model to the liability scale. Note
that the liability is assumed to have a variance of one. We followed Equation (4) from the
above paper [35] to derive the coefficient (τ1) under a liability scale. We converted τ1 to
the standardized coefficient (τstandard) by multiplying τ1 by sqrt(2 × MAF × (1 − MAF)),
which is the standard deviation (SD) of the allelic count (coded as 0, 1, 2). Total variance
explained is given by sum of the squared τstandard.

4.1.3. Assumptions

Regarding the assumptions of this approach, we emphasize that it does not require
prior assumptions about the underlying distributions of the true effect sizes δ, which is an
important advantage over other SNP-heritability estimation methods. On the other hand,
we assume that the summary statistics have been corrected for population stratification or
other confounding factors. The z-statistics are assumed to follow normal distributions; for
very small samples sizes, rare variants, highly imbalanced case to control ratio, or highly
skewed continuous outcomes, etc., caution should be taken as to whether the test statistic

β̂

ŜE
follows a normal distribution. We assume full GWAS summary statistics as input; if the

summary statistics have been selected based on their significance levels (e.g., some GWAS
only released the top SNPs, say top 10,000 SNPs), the proposed Tweedie’s formula may not
work well. The effect sizes may be overestimated in this case as the other SNPs have been
selected for being significant.

4.1.4. An Alternative Conditional Estimator

We also proposed an alternative approach by evaluating the expected effect size
conditioned on H1 (i.e., δ ̸= 0)

E(δ|z, H1) = E1(δ|z) =
E(δ|z)

Pr(H1|z)
=

E(δ|z)
1 − f dr(z)

(2)

where fdr is the local false discovery rate described in Efron [36]. The resulting estimate of
Vg can be obtained by first converting E(δ|z, H1) to the Vg scale (see Section 4.1.2), then
multiply by 1 − fdr(z).

The conditional estimator, however, is prone to large random variations as it involves
local fdr estimation of each SNP. In many subsequent applications of our heritability estima-
tion method [15–17], the unconditional estimator (Equation (1)) was primarily employed.
We shall hence focus on the unconditional estimator in this paper, although the resampling
approaches described below can readily be applied to other estimators in our previous
work [10] as well.

4.2. Estimation of the Standard Error (SE) of Vg
4.2.1. Standard and Delete-d-Jackknife to Estimate SE

In standard (delete-one) jackknife procedure [37], we estimate the standard error (SE)
by leaving out one observation at a time. The SE is defined by
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ŜEjack =

√
n − 1

n ∑
(

θ̂(i) − θ̂(.)

)2

where n is the sample size, θ̂(i) is the parameter estimate from the sample with the ith
observation removed and

θ̂(.) = ∑n
i=1

θ̂(i)

n
In our case, the parameter is the sum of heritability from all variants.
An extension is the delete-d-jackknife [31] where we leave out d observations at a time.

There are in total N =

(
n
d

)
possibilities of removing d out of n observations. In practice,

N is usually very large. One may simply randomly repeat the procedure m times only
(m ≤ N) instead of exhausting all possibilities of removing d out of n observations. The
standard error is given by

ŜEdel−d−jack =

√
n − d

dm ∑m
v=1

(
θ̂Sv −

1
m∑m

v=1 θ̂Sv

)2

where θ̂Sv denotes the parameter estimate in the vth jackknife replicate where d observations
are left out. The delete-d-jackknife (when d > 1) works better than the standard jackknife
for non-smooth parameters like the median [31].

There are no clear rules on the choice of d in delete-d-bootstrap. Chatterjee [38]
suggested n/5 as a reasonable choice for d based on the consideration of efficiency and
likely model conditions. We followed the suggestion by Chatterjee [38] and set d as n/5
(=20,000) in all simulations.

4.2.2. Parametric Bootstrap Approaches for Estimating SE

In parametric bootstrap, in each replication we simulated z-statistics based on δ̂, the
‘corrected’ z-statistics from original sample (this method is referred to as ‘paraboot’). We
have

zi,b ∼ N
(

δ̂i, 1
)

where zi,b denotes the ith z-statistic in the bth bootstrap replicate. For small effects, the δ̂
will be shrunken towards zero.

We further proposed a modified approach by also considering the local fdr (i.e.,
probably of null given z) of each z-statistic. In each replicate, we simulated z-statistics
according to the following scheme:

zi,b ∼ N
(

ẑi, 1
)

with a probability of 1−fd̂r(zi)

zi,b ∼ N(0, 1) with a probability of fd̂r(zi)

where ẑi denotes the observed z-statistics. The standard error is then computed from the
simulated z-statistics. This method is referred to as “fdrboot1”.

Alternatively, one may employ the corrected z-statistics instead of the observed z-
statistics as the mean in each simulation, i.e.,

zi,b ∼ N
(

δ̂i, 1
)

with a probability of 1−fd̂r(zi)

zi,b ∼ N(0, 1) with a probability of fd̂r(zi)

The method is also referred to as ‘fdrboot2’.
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4.3. Construction of Confidence Intervals (CIs): An Exploratory Analysis

The construction of a proper CI is a more demanding task as it requires the unbiased-
ness of the estimate and correct estimation of the variability of the estimate. Given the
difficulty of constructing accurate CIs, here we consider CI estimation as a secondary or
exploratory analysis which requires further investigation and methodological development.
We have explored a few approaches as described below.

4.3.1. Normal Approximation (Standard Approach)

Firstly, we explored the standard approach for constructing the 95% CI by using normal
approximation, i.e., V̂g± z0.975 × ŜE(Vg), where z0.975 is the quantile of a standard normal
distribution at the 97.5th percentile. Assuming a polygenic model, the total heritability
is the sum of variance explained contributed by many variants of small to modest effect
sizes. Hence, it is reasonable to assume normality according to the central limit theorem
(as is assumed by other SNP-heritability estimation tools). We examined the performance
of different CIs, with SE determined by various methods. Empirically, we found that SE
computed by the delete-d-jackknife performed reasonably well.

On the other hand, we also explored this using bootstrap to correct for bias of the
point estimates of Vg. In brief, the bias can be estimated by [39]

B̂ias = θ∗ − θ̂

where θ̂ denotes the observed Vg, and θ∗ is the mean of the bootstrapped estimates of Vg.
The bias-corrected estimator of Vg is given by

Bias corrected θ = θ̂ − B̂ias

The 95% CI is then based on ̂Bias corrected Vg ± z0.975 × ŜE. Since we proposed 3 boot-
strap procedures, there were 3 bootstrap bias-corrected CIs based on normal approximation.
The standard CI without bias correction was also included as another estimator.

4.3.2. Percentile Approach

Secondly, we explored the percentile CI approach, namely construction of 95% CIs
based on the 2.5th and 97.5th percentiles of the bootstrapped Vg. Again, bias correction
can be applied as follows

Lower 95% CI = 2θ̂ − θ∗(0.975)

Upper 95% CI = 2θ̂ − θ∗(0.025)

where θ∗(0.025) and θ∗(0.975) are the 2.5th and 97.5th percentiles of the bootstrapped replicates
of Vg, respectively. Bias correction was based on the same bootstrap method that was used
to derive the percentiles. Again, we also included the percentile CIs without bias correction.

4.3.3. Union CI

Thirdly, we explored a more robust CI estimator by taking the union of individual CIs
(UCI). The union of multiple CIs is constructed by taking the minimum of the lower CIs
across different methods as the final lower CI, and the maximum of different upper CIs
as the final upper CI. This union approach can ensure better robustness if CI construction
approaches perform differently under different scenarios. The UCI method has been widely
employed in instrumental variables regression to improve robustness of results in the
presence of pleiotropy [40].

In summary, the following methods were explored:

1. Normal approximation (standard approach), without bias correction (one estimator)
or with bootstrap bias correction (3 estimators), then take the union of CIs;
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2. Percentile approach, without bias correction (3 estimators) and with bias correction
(3 estimators), then take the union of CIs;

3. Union of the final CI obtained from 1 and 2.

4.4. Simulation Studies

We compare the SE estimated from the above methods with the ‘true’ SE obtained
from one hundred simulations with known data generating distributions. The details of
the simulations is as follows [10]. Briefly, a gamma distribution was used to simulate three
levels of variance explained (Vg = 0.101, 0.191, 0.295), which were converted to true effect
sizes (δ). Z-statistics for 100,000 independent SNPs (0.5% were non-null) with different
sample sizes (N = 5000, 10,000, 20,000, 50,000, 100,000, 200,000) were then simulated as
input for SumVg following the distribution N(δ,1). Two hundred replicates were run for
each bootstrap or jackknife procedure. We focus on quantitative traits in our simulations,
but the results should most likely apply to binary traits as well, as the only difference in
these two scenarios is the formula to convert z to variance explained (Vg). The performance
of different methods for CI construction was also evaluated.

4.5. Application to Immune Traits

A selected set of immune-related traits (levels of cytokines/growth factors) were
included for study, based on the GWAS by Ahola-Olli et al. [24]. We selected 12 continuous
immune traits with (1) sample size N > 5000 and (2) very low (≤3%) or negative SNP-
based heritability estimated by LDSC. The LDSC heritability were based on pre-calculated
values from GWASAtlas (https://atlas.ctglab.nl/; accessed 1 May 2023). SNPs in strong
LD were removed using the PLINK command “--indep-pairwise 100 25 r2” with a series
of r2 thresholds (0.1, 0.05, 0.025, 0.01, 0.005, 0.002, 0.001). The 1000G Phase3 EUR sample
was used as the reference panel to calculate LD among variants. Independent SNPs with
MAF > 0.01 were then applied to SumVg.
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