Gene Expression Profiling of Post Mortem Midbrain of Parkinson’s Disease Patients and Healthy Controls
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Human Post Mortem Midbrain Samples
4.2. RNA Isolation from Human Midbrain Samples
4.3. RNA Sequencing and Functional Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalia, L.V.; Lang, A.E. Parkinson’s Disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Quik, M. Smoking, Nicotine and Parkinson’s Disease. Trends Neurosci. 2004, 27, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s Disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef] [PubMed]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS Clinical Diagnostic Criteria for Parkinson’s Disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.E.; Obeso, J.A. Time to Move beyond Nigrostriatal Dopamine Deficiency in Parkinson’s Disease. Ann. Neurol. 2004, 55, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Obeso, J.A.; Stamelou, M.; Goetz, C.G.; Poewe, W.; Lang, A.E.; Weintraub, D.; Burn, D.; Halliday, G.M.; Bezard, E.; Przedborski, S.; et al. Past, Present, and Future of Parkinson’s Disease: A Special Essay on the 200th Anniversary of the Shaking Palsy. Mov. Disord. 2017, 32, 1264–1310. [Google Scholar] [CrossRef] [PubMed]
- Figorilli, M.; Lanza, G.; Congiu, P.; Lecca, R.; Casaglia, E.; Mogavero, M.P.; Puligheddu, M.; Ferri, R. Neurophysiological Aspects of REM Sleep Behavior Disorder (RBD): A Narrative Review. Brain Sci. 2021, 11, 1588. [Google Scholar] [CrossRef] [PubMed]
- Joza, S.; Hu, M.T.; Jung, K.-Y.; Kunz, D.; Stefani, A.; Dušek, P.; Terzaghi, M.; Arnaldi, D.; Videnovic, A.; Schiess, M.C.; et al. Progression of Clinical Markers in Prodromal Parkinson’s Disease and Dementia with Lewy Bodies: A Multicentre Study. Brain 2023, 146, 3258–3272. [Google Scholar] [CrossRef]
- Jankovic, J. Parkinson’s Disease: Clinical Features and Diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 368–376. [Google Scholar] [CrossRef]
- Bhidayasiri, R.; Sringean, J.; Reich, S.G.; Colosimo, C. Red Flags Phenotyping: A Systematic Review on Clinical Features in Atypical Parkinsonian Disorders. Park. Relat. Disord. 2019, 59, 82–92. [Google Scholar] [CrossRef]
- Caproni, S.; Colosimo, C. Diagnosis and Differential Diagnosis of Parkinson Disease. Clin. Geriatr. Med. 2020, 36, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Piras, I.S.; Bleul, C.; Schrauwen, I.; Talboom, J.; Llaci, L.; De Both, M.D.; Naymik, M.A.; Halliday, G.; Bettencourt, C.; Holton, J.L.; et al. Transcriptional Profiling of Multiple System Atrophy Cerebellar Tissue Highlights Differences between the Parkinsonian and Cerebellar Sub-Types of the Disease. Acta Neuropathol. Commun. 2020, 8, 76. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.E. A Critical Appraisal of the Premotor Symptoms of Parkinson’s Disease: Potential Usefulness in Early Diagnosis and Design of Neuroprotective Trials. Mov. Disord. 2011, 26, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Salemi, M.; Mogavero, M.P.; Lanza, G.; Mongioì, L.M.; Calogero, A.E.; Ferri, R. Examples of Inverse Comorbidity between Cancer and Neurodegenerative Diseases: A Possible Role for Noncoding RNA. Cells 2022, 11, 1930. [Google Scholar] [CrossRef] [PubMed]
- Fisicaro, F.; Lanza, G.; Cantone, M.; Ferri, R.; Pennisi, G.; Nicoletti, A.; Zappia, M.; Bella, R.; Pennisi, M. Clinical and Electrophysiological Hints to TMS in De Novo Patients with Parkinson’s Disease and Progressive Supranuclear Palsy. J. Pers. Med. 2020, 10, 274. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.-C.; Ulane, C.M.; Burke, R.E. Clinical Progression in Parkinson Disease and the Neurobiology of Axons. Ann. Neurol. 2010, 67, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Burke, R.E.; O’Malley, K. Axon Degeneration in Parkinson’s Disease. Exp. Neurol. 2013, 246, 72–83. [Google Scholar] [CrossRef]
- Dauer, W.; Przedborski, S. Parkinson’s Disease: Mechanisms and Models. Neuron 2003, 39, 889–909. [Google Scholar] [CrossRef]
- Braak, H.; Sandmann-Keil, D.; Gai, W.; Braak, E. Extensive Axonal Lewy Neurites in Parkinson’s Disease: A Novel Pathological Feature Revealed by Alpha-Synuclein Immunocytochemistry. Neurosci. Lett. 1999, 265, 67–69. [Google Scholar] [CrossRef]
- Braak, H.; Del Tredici, K.; Rüb, U.; de Vos, R.A.I.; Jansen Steur, E.N.H.; Braak, E. Staging of Brain Pathology Related to Sporadic Parkinson’s Disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef]
- Fearnley, J.M.; Lees, A.J. Ageing and Parkinson’s Disease: Substantia Nigra Regional Selectivity. Brain 1991, 114 Pt 5, 2283–2301. [Google Scholar] [CrossRef]
- Hirsch, E.C.; Breidert, T.; Rousselet, E.; Hunot, S.; Hartmann, A.; Michel, P.P. The Role of Glial Reaction and Inflammation in Parkinson’s Disease. Ann. N. Y. Acad. Sci. 2003, 991, 214–228. [Google Scholar] [CrossRef]
- Haque, M.E.; Akther, M.; Jakaria, M.; Kim, I.-S.; Azam, S.; Choi, D.-K. Targeting the Microglial NLRP3 Inflammasome and Its Role in Parkinson’s Disease. Mov. Disord. 2020, 35, 20–33. [Google Scholar] [CrossRef]
- De Rivero Vaccari, J.P.; Dietrich, W.D.; Keane, R.W. Therapeutics Targeting the Inflammasome after Central Nervous System Injury. Transl. Res. 2016, 167, 35–45. [Google Scholar] [CrossRef]
- Martinon, F.; Burns, K.; Tschopp, J. The Inflammasome: A Molecular Platform Triggering Activation of Inflammatory Caspases and Processing of proIL-Beta. Mol. Cell 2002, 10, 417–426. [Google Scholar] [CrossRef]
- Broz, P.; Dixit, V.M. Inflammasomes: Mechanism of Assembly, Regulation and Signalling. Nat. Rev. Immunol. 2016, 16, 407–420. [Google Scholar] [CrossRef]
- Malik, A.; Kanneganti, T.-D. Inflammasome Activation and Assembly at a Glance. J. Cell Sci. 2017, 130, 3955–3963. [Google Scholar] [CrossRef]
- Van Opdenbosch, N.; Lamkanfi, M. Caspases in Cell Death, Inflammation, and Disease. Immunity 2019, 50, 1352–1364. [Google Scholar] [CrossRef]
- Franklin, B.S.; Bossaller, L.; De Nardo, D.; Ratter, J.M.; Stutz, A.; Engels, G.; Brenker, C.; Nordhoff, M.; Mirandola, S.R.; Al-Amoudi, A.; et al. The Adaptor ASC Has Extracellular and “prionoid” Activities That Propagate Inflammation. Nat. Immunol. 2014, 15, 727–737. [Google Scholar] [CrossRef]
- Cabrera Ranaldi, E.D.L.R.M.; Nuytemans, K.; Martinez, A.; Luca, C.C.; Keane, R.W.; de Rivero Vaccari, J.P. Proof-of-Principle Study of Inflammasome Signaling Proteins as Diagnostic Biomarkers of the Inflammatory Response in Parkinson’s Disease. Pharmaceuticals 2023, 16, 883. [Google Scholar] [CrossRef]
- Codolo, G.; Plotegher, N.; Pozzobon, T.; Brucale, M.; Tessari, I.; Bubacco, L.; de Bernard, M. Triggering of Inflammasome by Aggregated α-Synuclein, an Inflammatory Response in Synucleinopathies. PLoS ONE 2013, 8, e55375. [Google Scholar] [CrossRef]
- De Rivero Vaccari, J.P.; Dietrich, W.D.; Keane, R.W. Activation and Regulation of Cellular Inflammasomes: Gaps in Our Knowledge for Central Nervous System Injury. J. Cereb. Blood. Flow Metab. 2014, 34, 369–375. [Google Scholar] [CrossRef]
- Funayama, M.; Nishioka, K.; Li, Y.; Hattori, N. Molecular Genetics of Parkinson’s Disease: Contributions and Global Trends. J. Hum. Genet. 2023, 68, 125–130. [Google Scholar] [CrossRef]
- Nalls, M.A.; Pankratz, N.; Lill, C.M.; Do, C.B.; Hernandez, D.G.; Saad, M.; DeStefano, A.L.; Kara, E.; Bras, J.; Sharma, M.; et al. Large-Scale Meta-Analysis of Genome-Wide Association Data Identifies Six New Risk Loci for Parkinson’s Disease. Nat. Genet. 2014, 46, 989–993. [Google Scholar] [CrossRef]
- Bandres-Ciga, S.; Diez-Fairen, M.; Kim, J.J.; Singleton, A.B. Genetics of Parkinson’s Disease: An Introspection of Its Journey towards Precision Medicine. Neurobiol. Dis. 2020, 137, 104782. [Google Scholar] [CrossRef]
- Dulski, J.; Uitti, R.J.; Ross, O.A.; Wszolek, Z.K. Genetic Architecture of Parkinson’s Disease Subtypes—Review of the Literature. Front. Aging Neurosci. 2022, 14, 1023574. [Google Scholar] [CrossRef]
- Redenšek, S.; Dolžan, V.; Kunej, T. From Genomics to Omics Landscapes of Parkinson’s Disease: Revealing the Molecular Mechanisms. OMICS 2018, 22, 1–16. [Google Scholar] [CrossRef]
- Simunovic, F.; Yi, M.; Wang, Y.; Macey, L.; Brown, L.T.; Krichevsky, A.M.; Andersen, S.L.; Stephens, R.M.; Benes, F.M.; Sonntag, K.C. Gene Expression Profiling of Substantia Nigra Dopamine Neurons: Further Insights into Parkinson’s Disease Pathology. Brain 2009, 132, 1795–1809. [Google Scholar] [CrossRef]
- Salemi, M.; Cosentino, F.; Lanza, G.; Cantone, M.; Salluzzo, M.G.; Giurato, G.; Borgione, E.; Marchese, G.; Santa Paola, S.; Lanuzza, B.; et al. MRNA Expression Profiling of Mitochondrial Subunits in Subjects with Parkinson’s Disease. Arch. Med. Sci. 2023, 19, 678–686. [Google Scholar] [CrossRef]
- Salemi, M.; Lanza, G.; Mogavero, M.P.; Cosentino, F.I.I.; Borgione, E.; Iorio, R.; Ventola, G.M.; Marchese, G.; Salluzzo, M.G.; Ravo, M.; et al. A Transcriptome Analysis of MRNAs and Long Non-Coding RNAs in Patients with Parkinson’s Disease. Int. J. Mol. Sci. 2022, 23, 1535. [Google Scholar] [CrossRef] [PubMed]
- Zaccaria, A.; Antinori, P.; Licker, V.; Kövari, E.; Lobrinus, J.A.; Burkhard, P.R. Multiomic Analyses of Dopaminergic Neurons Isolated from Human Substantia Nigra in Parkinson’s Disease: A Descriptive and Exploratory Study. Cell Mol. Neurobiol. 2022, 42, 2805–2818. [Google Scholar] [CrossRef]
- Okuzumi, A.; Hatano, T.; Fukuhara, T.; Ueno, S.; Nukina, N.; Imai, Y.; Hattori, N. α-Synuclein Seeding Assay Using RT-QuIC. Methods Mol. Biol. 2021, 2322, 3–16. [Google Scholar] [CrossRef]
- Rike, W.A.; Stern, S. Proteins and Transcriptional Dysregulation of the Brain Extracellular Matrix in Parkinson’s Disease: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 7435. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Q.; Tang, M.; Fu, N.; Shao, W.; Zhang, S.; Yin, Y.; Zeng, R.; Wang, X.; Hu, G.; et al. Upregulation of alphaB-Crystallin Expression in the Substantia Nigra of Patients with Parkinson’s Disease. Neurobiol. Aging 2015, 36, 1686–1691. [Google Scholar] [CrossRef]
- Dumitriu, A.; Golji, J.; Labadorf, A.T.; Gao, B.; Beach, T.G.; Myers, R.H.; Longo, K.A.; Latourelle, J.C. Integrative Analyses of Proteomics and RNA Transcriptomics Implicate Mitochondrial Processes, Protein Folding Pathways and GWAS Loci in Parkinson Disease. BMC Med. Genom. 2016, 9, 5. [Google Scholar] [CrossRef]
- González-Casacuberta, I.; Juárez-Flores, D.L.; Morén, C.; Garrabou, G. Bioenergetics and Autophagic Imbalance in Patients-Derived Cell Models of Parkinson Disease Supports Systemic Dysfunction in Neurodegeneration. Front. Neurosci. 2019, 13, 894. [Google Scholar] [CrossRef]
- Gilbert, R.M.; Standaert, D.G. Bridging the Gaps: More Inclusive Research Needed to Fully Understand Parkinson’s Disease. Mov. Disord. 2020, 35, 231–234. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Li, S.; Zhang, J.; Zheng, J.; Hou, W.; Zhao, H.; Guo, Y.; Liu, X.; Dou, K.; et al. N-Myc Downstream-Regulated Gene 2, a Novel Estrogen-Targeted Gene, Is Involved in the Regulation of Na+/K+-ATPase. J. Biol. Chem. 2011, 286, 32289–32299. [Google Scholar] [CrossRef]
- Mauri, N.; Kleiter, M.; Dietschi, E.; Leschnik, M.; Högler, S.; Wiedmer, M.; Dietrich, J.; Henke, D.; Steffen, F.; Schuller, S.; et al. A SINE Insertion in ATP1B2 in Belgian Shepherd Dogs Affected by Spongy Degeneration with Cerebellar Ataxia (SDCA2). G3 2017, 7, 2729–2737. [Google Scholar] [CrossRef] [PubMed]
- Marchiano, S.; Nakamura, K.; Reinecke, H.; Neidig, L.; Lai, M.; Kadota, S.; Perbellini, F.; Yang, X.; Klaiman, J.M.; Blakely, L.P.; et al. Gene Editing to Prevent Ventricular Arrhythmias Associated with Cardiomyocyte Cell Therapy. Cell Stem. Cell 2023, 30, 396–414.e9. [Google Scholar] [CrossRef] [PubMed]
- Khananshvili, D. The SLC8 Gene Family of Sodium-Calcium Exchangers (NCX)—Structure, Function, and Regulation in Health and Disease. Mol. Asp. Med. 2013, 34, 220–235. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Bermejo, L.; Almela, P.; Navarro-Zaragoza, J.; Fernández Villalba, E.; González-Cuello, A.-M.; Laorden, M.-L.; Herrero, M.-T. Cardiac Changes in Parkinson’s Disease: Lessons from Clinical and Experimental Evidence. Int. J. Mol. Sci. 2021, 22, 13488. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Wang, L.; Ren, W.-Y.; Xu, H.-X.; Wu, N.N.; Yu, D.-H.; Reiter, R.J.; Zha, W.-L.; Guo, Q.-D.; Ren, J. SGLT2 Inhibitor Empagliflozin Alleviates Cardiac Remodeling and Contractile Anomalies in a FUNDC1-Dependent Manner in Experimental Parkinson’s Disease. Acta Pharmacol. Sin. 2023. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Porter, J.E.; Wold, L.E.; Aberle, N.S.; Muralikrishnan, D.; Haselton, J.R. Depressed Contractile Function and Adrenergic Responsiveness of Cardiac Myocytes in an Experimental Model of Parkinson Disease, the MPTP-Treated Mouse. Neurobiol. Aging 2004, 25, 131–138. [Google Scholar] [CrossRef]
- Piqueras-Flores, J.; López-García, A.; Moreno-Reig, Á.; González-Martínez, A.; Hernández-González, A.; Vaamonde-Gamo, J.; Jurado-Román, A. Structural and Functional Alterations of the Heart in Parkinson’s Disease. Neurol. Res. 2018, 40, 53–61. [Google Scholar] [CrossRef]
- Bardutz, H.; Singh, J.; Rehman, Z.; Bernat, P. Parkinson’s Disease and the Cardiac Cycle: A Rapid Literature Review and Case Series. Life 2023, 13, 1003. [Google Scholar] [CrossRef]
- Oleksakova, J.; Javorka, M.; Czippelova, B.; Mazgutova, N.; Grofik, M.; Babalova, L.; Skacik, P.; Kurca, E. Autonomic Control of Heart and Vessels in Patients with Very Early Stage of Parkinson Disease. Physiol. Meas. 2023, 44, 054002. [Google Scholar] [CrossRef]
- Nagel, F.; Falkenburger, B.H.; Tönges, L.; Kowsky, S.; Pöppelmeyer, C.; Schulz, J.B.; Bähr, M.; Dietz, G.P.H. Tat-Hsp70 Protects Dopaminergic Neurons in Midbrain Cultures and in the Substantia Nigra in Models of Parkinson’s Disease. J. Neurochem. 2008, 105, 853–864. [Google Scholar] [CrossRef]
- Schaaf, M.B.E.; Keulers, T.G.; Vooijs, M.A.; Rouschop, K.M.A. LC3/GABARAP Family Proteins: Autophagy-(Un)Related Functions. FASEB J. 2016, 30, 3961–3978. [Google Scholar] [CrossRef]
- Le Grand, J.N.; Bon, K.; Fraichard, A.; Zhang, J.; Jouvenot, M.; Risold, P.-Y.; Boyer-Guittaut, M.; Delage-Mourroux, R. Specific Distribution of the Autophagic Protein GABARAPL1/GEC1 in the Developing and Adult Mouse Brain and Identification of Neuronal Populations Expressing GABARAPL1/GEC1. PLoS ONE 2013, 8, e63133. [Google Scholar] [CrossRef]
- Wakabayashi, K.; Tanji, K. Multiple system atrophy and autophagy. Rinsho Shinkeigaku 2014, 54, 966–968. [Google Scholar] [CrossRef] [PubMed]
- El Haddad, S.; Serrano, A.; Moal, F.; Normand, T.; Robin, C.; Charpentier, S.; Valery, A.; Brulé-Morabito, F.; Auzou, P.; Mollet, L.; et al. Disturbed Expression of Autophagy Genes in Blood of Parkinson’s Disease Patients. Gene 2020, 738, 144454. [Google Scholar] [CrossRef] [PubMed]
- Fanger, N.A.; Wardwell, K.; Shen, L.; Tedder, T.F.; Guyre, P.M. Type I (CD64) and Type II (CD32) Fc Gamma Receptor-Mediated Phagocytosis by Human Blood Dendritic Cells. J. Immunol. 1996, 157, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Joshi, T.; Butchar, J.P.; Tridandapani, S. Fcγ Receptor Signaling in Phagocytes. Int. J. Hematol. 2006, 84, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Okun, E.; Mattson, M.P.; Arumugam, T.V. Involvement of Fc Receptors in Disorders of the Central Nervous System. Neuromolecular Med. 2010, 12, 164–178. [Google Scholar] [CrossRef] [PubMed]
- Bian, L.-H.; Yao, Z.-W.; Wang, Z.-Y.; Wang, X.-M.; Li, Q.-Y.; Yang, X.; Li, J.-Y.; Wei, X.-J.; Wan, G.-H.; Wang, Y.-Q.; et al. Nardosinone Regulates the Slc38a2 Gene to Alleviate Parkinson’s Symptoms in Rats through the GABAergic Synaptic and cAMP Pathways. Biomed. Pharmacother. 2022, 153, 113269. [Google Scholar] [CrossRef] [PubMed]
- Lezi, E.; Swerdlow, R.H. Mitochondria in Neurodegeneration. Adv. Exp. Med. Biol. 2012, 942, 269–286. [Google Scholar] [CrossRef] [PubMed]
- Power, J.H.T.; Barnes, O.L.; Chegini, F. Lewy Bodies and the Mechanisms of Neuronal Cell Death in Parkinson’s Disease and Dementia with Lewy Bodies. Brain Pathol. 2017, 27, 3–12. [Google Scholar] [CrossRef]
- Parker, W.D.; Boyson, S.J.; Parks, J.K. Abnormalities of the Electron Transport Chain in Idiopathic Parkinson’s Disease. Ann. Neurol. 1989, 26, 719–723. [Google Scholar] [CrossRef]
- Schapira, A.H.; Cooper, J.M.; Dexter, D.; Jenner, P.; Clark, J.B.; Marsden, C.D. Mitochondrial Complex I Deficiency in Parkinson’s Disease. Lancet 1989, 1, 1269. [Google Scholar] [CrossRef]
- Bindoff, L.A.; Birch-Machin, M.; Cartlidge, N.E.; Parker, W.D.; Turnbull, D.M. Mitochondrial Function in Parkinson’s Disease. Lancet 1989, 2, 49. [Google Scholar] [CrossRef] [PubMed]
- Parker, W.D.; Parks, J.K.; Swerdlow, R.H. Complex I Deficiency in Parkinson’s Disease Frontal Cortex. Brain Res. 2008, 1189, 215–218. [Google Scholar] [CrossRef]
- McCoy, M.K.; Cookson, M.R. Mitochondrial Quality Control and Dynamics in Parkinson’s Disease. Antioxid. Redox Signal. 2012, 16, 869–882. [Google Scholar] [CrossRef] [PubMed]
- Nave, K.-A.; Trapp, B.D. Axon-Glial Signaling and the Glial Support of Axon Function. Annu. Rev. Neurosci. 2008, 31, 535–561. [Google Scholar] [CrossRef] [PubMed]
- Weng, A.; Rabin, E.E.; Flozak, A.S.; Chiarella, S.E.; Aillon, R.P.; Gottardi, C.J. Alpha-T-Catenin Is Expressed in Peripheral Nerves as a Constituent of Schwann Cell Adherens Junctions. Biol. Open 2022, 11, bio059634. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhan, J.; Cai, Q.; Xu, F.; Chai, R.; Lam, K.; Luan, Z.; Zhou, G.; Tsang, S.; Kipp, M.; et al. The Water Transport System in Astrocytes-Aquaporins. Cells 2022, 11, 2564. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.L.; Faridounnia, M.; Armao, D.; Snider, N.T. Stability Dynamics of Neurofilament and GFAP Networks and Protein Fragments. Curr. Opin. Cell Biol. 2023, 85, 102266. [Google Scholar] [CrossRef]
- Rose, C.R.; Ziemens, D.; Verkhratsky, A. On the Special Role of NCX in Astrocytes: Translating Na+-Transients into Intracellular Ca2+ Signals. Cell Calcium 2020, 86, 102154. [Google Scholar] [CrossRef]
- Valori, C.F.; Guidotti, G.; Brambilla, L.; Rossi, D. Astrocytes: Emerging Therapeutic Targets in Neurological Disorders. Trends Mol. Med. 2019, 25, 750–759. [Google Scholar] [CrossRef]
- Kechin, A.; Boyarskikh, U.; Kel, A.; Filipenko, M. cutPrimers: A New Tool for Accurate Cutting of Primers from Reads of Targeted Next Generation Sequencing. J. Comput. Biol. 2017, 24, 1138–1143. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Eils, R.; Schlesner, M. Complex Heatmaps Reveal Patterns and Correlations in Multidimensional Genomic Data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef] [PubMed]
- Krämer, A.; Green, J.; Pollard, J.; Tugendreich, S. Causal Analysis Approaches in Ingenuity Pathway Analysis. Bioinformatics 2014, 30, 523–530. [Google Scholar] [CrossRef]
Gene ID | Fold Change | Gene ID | Fold Change |
---|---|---|---|
ETNPPL | −7.435 | AC093330.1 | −2.718 |
MTND4P12 | −5.475 | MAP4 | −2.693 |
CP | −5.444 | SLC1A2 | −2.651 |
MLC1 | −5.02 | TXNIP | −2.625 |
PPDPF | −4.631 | AGT | −2.61 |
PAQR6 | −4.469 | RHOBTB3 | −2.604 |
ACBD7 | −4.345 | CST3 | −2.562 |
MOBP | −4.315 | SPARCL1 | −2.55 |
AQP1 | −4.069 | MTND2P28 | −2.544 |
TAGLN | −4.001 | HIPK2 | −2.427 |
MBP | −3.977 | ZEB2 | −2.425 |
PAIP2B | −3.892 | NDRG2 | −2.408 |
PPP1R1B | −3.766 | MTURN | −2.382 |
MTATP6P1 | −3.736 | DAAM2 | −2.381 |
MT-C02 | −3.5 | NFIX | −2.343 |
ELOVL7 | −3.456 | FADS2 | −2.325 |
SCARA3 | −3.419 | ATP1B2 | −2.268 |
MT-C03 | −3.338 | HEPACAM | −2.263 |
TP53INP2 | −3.336 | SHTN1 | −2.203 |
FAM107A | −3.168 | FAR1 | −2.182 |
SEPTIN4 | −3.158 | AHCYL1 | −2.157 |
ALAD | −3.122 | EPAS1 | −2.075 |
MT-CO1 | −3.116 | PHLDB1 | −2.058 |
IRAG1 | −3.089 | GFAP | −2.043 |
PLAAT3 | −3.056 | MAP4K4 | −2.041 |
MT-CYB | −3.045 | PADI2 | −1.938 |
CTNNA3 | −2.949 | CNP | −1.916 |
FAT3 | −2.906 | PKP4 | −1.874 |
BCAS1 | −2.857 | WNK1 | −1.714 |
TSC22D4 | −2.767 |
Gene ID | Fold Change | Gene ID | Fold Change |
---|---|---|---|
IL10RA | 12.026 | FYB1 | 4.204 |
AMPH | 9.664 | ARHGDIB | 4.111 |
HS6ST3 | 8.405 | SLC38A2 | 4.104 |
VSNL1 | 7.195 | GNB5 | 3.998 |
COLGALT1 | 6.373 | NAA30 | 3.930 |
PRDM11 | 6.234 | SLC8A1 | 3.409 |
L1CAM | 6.208 | DYNLL1 | 2.680 |
GPR34 | 6.141 | HSPH1 | 2.666 |
ZNF618 | 5.543 | SPP1 | 2.660 |
RCSD1 | 5.419 | BSN | 2.518 |
CRCP | 5.257 | GABARAPL1 | 2.471 |
INA | 4.831 | YWHAG | 2.443 |
PTPRT | 4.812 | QDPR | 2.060 |
GUCY1B1 | 4.422 | DNAJC5 | 2.042 |
SLC5A3 | 4.338 | NEAT1 | 1.926 |
SRGN | 4.250 | TNPO1 | 1.890 |
SCN8A | 4.236 |
Molecules in Network | Score | Focus Molecules | Diseases and Functions |
---|---|---|---|
AHCYL1, Akt, Alp, AQP1, ATP1B2, BCAS1, CP, Creb, CTNNA3, cytochrome-c oxidase, DNAJCS, growth hormone, GTPase, GUCY1B1, Hdac, HIPK2, Hsp70, Hsp90, HSPH1, IL1, L1CAM, MT-C01, MTC02, MT-C03, MT-CYB, NDRG2, NEAT1, nuclear factor M1, PHLDB1, PKP4, PLAAT3, ROCK, secretase gamma, SLCSA3, SLC8A1 | 49 | 22 | Neurological Disease, Organismal Injury and Abnormalities, Psychological Disorders |
14-3-3, 20s proteasome, 26s Pro teasome, ALAD, BSN, calmodulin, calpain, CG, CNP, COLGALT1, collagen Alpha1, collagen type I (complex), collagen type IV, EPAS1, ERK1/2, FAR1, focal adhesion kinase, GFAP, HEPACAM, INA, insulin, MAP4, MBP, MLC1, PDGFBB, Pka, PP2A, SEPTIN4, SLC1A2, SRGN, TAGLN, Tgf beta, transglutaminase, VSNL1, WNK1 | 38 | 18 | Cellular Function and Maintenance, Nervous System Development and Function, Tissue Development |
AGT, AMPH, Ap1, ARHGDIB, calcineurin protein(s), CD3, collagen type I (family), cytokine, ELOVL7, FYB1, GNBS, Gsk3, IKK (complex), IL12 (complex), integrin, integrin alpha L beta 2, Jnk, LDL, MAP4K4, Mek, MTURN, NFAT (complex), Nfat (family), NFIX, NFkB (complex), Nrlh, P38 MAPK, PAD12, Pkc(s), PPP1R1B, Rac, SPARCL1, SPP1, TCR, voltage-gated calcium channel Act in, AMPK, Ck2, CLEC9A, CST3, DYNLL1 | 25 | 13 | Cardiovascular Disease, Cell-To-Cell Signaling and Interaction, Organismal Injury and Abnormalities |
Actin, AMPK, Ck2, CLEC9A, CST3, DYNLL1, ERK, F Actin, FADS2, FAM 107 A, GABARAPL1, GPR34, hemoglobin, histone h3, histone h4, IgG, IL10RA, IL12 (family), immunoglobulin, interferon alpha, Mapk, MHC class II (complex), Notch, P13K (complex), RNA polymerase 11, SHTN1, Siglech, SRC (family), trypsin, tubulin, TXNIP, ubiquitin, Vegf, YWHAG, ZEB2 | 20 | 11 | Cell-To-Cell Signaling and Interaction, Infectious Diseases, Organismal Injury and Abnormalities |
ACOD1, CARD16, CASP8, Cd24a, COL2A1, cytokine receptor, D-glucose, DAAM2, FAT3, GBPS, HCAR2, HEPACAM2, IFNG, ligp1, IL10RB, IL17RE, IL18BP, IL2RA, IRAGl, LGALS1, LTC4S, MLKL, NAA30, NLRCS, PARVG, PLAAT3, PRDM11, QDPR, REL, RHOBTB3, SCARA3, Tlr11, TNFRSF10B, TP531NP2, ZBP1 | 18 | 10 | Gastrointestinal Disease, Inflammatory Response, Organismal Injury and Abnormalities |
CFB, CHADL, CNTLN, CSNK1A1, EP300, ETNPPL, FAM110D, FAM83G, FRMD4A, FRY, HDAC4, HDAC5, IKZF2, IL15RA, importin alpha, MECOM, miR-129-Sp (and other miRNAs w/seed UUUUUGC), MOBP, NRBP2, PAIP2B, PAQR6, PDCD1LG2, PPDPF, PRMT1, RCSD1, SCN8A, SMARCB1, SNX22, SNX24, SOX2, SOX9, TNP01, TSC22D4, ZDBF2, ZNF618 | 18 | 10 | Carbohydrate Metabolism, Cell Cycle, Cellular Assembly and Organization |
ACBD7, betaestradiol, CA2, CALCRL, clathrin, CRCP, DEFB116, DNPH1, DOCK3, ERBB, FMOS, HS6ST3, HTR4, INPP5F, L-histidine, L1CAM, Ly6a (includes others), MAL, NOS1, OGDHL, OGN, Pplc, PROTEASE, PTEN, PTPRT, PYGL, SEMA3A, sGC, SLC38A2, SLC02B1, SRC, sulfotransferase, SULT1C2, TBC1D24, Wap | 10 | 6 | Cellular Development, Connective Tissue Development and Function, Skeletal and Muscular System Development and Function |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salemi, M.; Ravo, M.; Lanza, G.; Schillaci, F.A.; Ventola, G.M.; Marchese, G.; Salluzzo, M.G.; Cappelletti, G.; Ferri, R. Gene Expression Profiling of Post Mortem Midbrain of Parkinson’s Disease Patients and Healthy Controls. Int. J. Mol. Sci. 2024, 25, 707. https://doi.org/10.3390/ijms25020707
Salemi M, Ravo M, Lanza G, Schillaci FA, Ventola GM, Marchese G, Salluzzo MG, Cappelletti G, Ferri R. Gene Expression Profiling of Post Mortem Midbrain of Parkinson’s Disease Patients and Healthy Controls. International Journal of Molecular Sciences. 2024; 25(2):707. https://doi.org/10.3390/ijms25020707
Chicago/Turabian StyleSalemi, Michele, Maria Ravo, Giuseppe Lanza, Francesca A. Schillaci, Giovanna Maria Ventola, Giovanna Marchese, Maria Grazia Salluzzo, Graziella Cappelletti, and Raffaele Ferri. 2024. "Gene Expression Profiling of Post Mortem Midbrain of Parkinson’s Disease Patients and Healthy Controls" International Journal of Molecular Sciences 25, no. 2: 707. https://doi.org/10.3390/ijms25020707
APA StyleSalemi, M., Ravo, M., Lanza, G., Schillaci, F. A., Ventola, G. M., Marchese, G., Salluzzo, M. G., Cappelletti, G., & Ferri, R. (2024). Gene Expression Profiling of Post Mortem Midbrain of Parkinson’s Disease Patients and Healthy Controls. International Journal of Molecular Sciences, 25(2), 707. https://doi.org/10.3390/ijms25020707