DNA Mutagenicity of Hydroxyhydroquinone in Roasted Coffee Products and Its Suppression by Chlorogenic Acid, a Coffee Polyphenol, in Oxidative-Damage-Sensitive SAMP8 Mice
Abstract
:1. Introduction
2. Results
2.1. Effects of HHQ and CPP Intake on Body Weight and Glucosuria
2.2. Measurement of Hydrogen Peroxide in Serum
2.3. Measurement of 8-Oxoguanine DNA Glycosylase 1 (Ogg1) in the Liver, Kidney, and Hippocampus
2.4. Measurement of Akt, Nrf2, and HO-1 in the Liver and Kidney
2.5. Effects of HHQ and CPP Intake on Cognitive Function
3. Discussion
4. Materials and Methods
4.1. Animals and Reagents
4.2. Preparation of CPP
4.3. Assessment of Urinary Glucose
4.4. Measurement of Hydrogen Peroxide in Serum
4.5. Novel Object Recognition Test
4.6. Quantitative Real-Time Reverse Transcription PCR (qRT-PCR)
4.7. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 2017, 56, 2215–2244. [Google Scholar] [CrossRef] [PubMed]
- Unno, K.; Taguchi, K.; Hase, T.; Meguro, S.; Nakamura, Y. Coffee Polyphenol, Chlorogenic Acid, Suppresses Brain Aging and Its Effects Are Enhanced by Milk Fat Globule Membrane Components. Int. J. Mol. Sci. 2022, 23, 5832. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Hiramoto, K.; Kikugawa, K. Possible occurrence of new mutagens with the DNA breaking activity in coffee. Mutat. Res. 1994, 306, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Hiramoto, K.; Li, X.; Makimoto, M.; Kato, T.; Kikugawa, K. Identification of hydroxyhydroquinone in coffee as a generator of reactive oxygen species that break DNA single strands. Mutat. Res. 1998, 419, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Clement, M.V.; Long, L.H. Hydrogen peroxide in the human body. FEBS Lett. 2000, 486, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Hiramoto, K.; Kida, T.; Kikugawa, K. Increased urinary hydrogen peroxide levels caused by coffee drinking. Biol. Pharm. Bull. 2002, 25, 1467–1471. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Fujii, A.; Yamamoto, N.; Yamamoto, M.; Ohminami, H.; Kameyama, A.; Shibuya, Y.; Nishizawa, Y.; Tokimitsu, I.; Saito, I. Improvement of hypertension and vascular dysfunction by hydroxyhydroquinone-free coffee in a genetic model of hypertension. FEBS Lett. 2006, 580, 2317–2322. [Google Scholar] [CrossRef]
- Takeda, T. Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem. Res. 2009, 34, 639–659. [Google Scholar] [CrossRef]
- Choi, J.Y.; Kim, H.S.; Kang, H.K.; Lee, D.W.; Choi, E.M.; Chung, M.H. Thermolabile 8-hydroxyguanine DNA glycosylase with low activity in senescence-accelerated mice due to a single-base mutation. Free Radic. Biol. Med. 1999, 27, 848–854. [Google Scholar] [CrossRef]
- Tanisawa, K.; Mikami, E.; Fuku, N.; Honda, Y.; Honda, S.; Ohsawa, I.; Ito, M.; Endo, S.; Ihara, K.; Ohno, K.; et al. Exome sequencing of senescence-accelerated mice (SAM) reveals deleterious mutations in degenerative disease-causing genes. BMC Genom. 2013, 14, 248. [Google Scholar] [CrossRef]
- Yasuhara, Y.; Ando, K.; Koyama, K.; Hiramoto, K.; Kikugawa, K. Effect of Supplementation of a Reductone in Coffee, Hydroxyhydroquinone, on Lipid Peroxidation and DNA Damage of Rat Organs. J. Oleo Sci. 2002, 51, 669–675. [Google Scholar] [CrossRef]
- Han, D.; Chen, W.; Gu, X.; Shan, R.; Zou, J.; Liu, G.; Shahid, M.; Gao, J.; Han, B. Cytoprotective effect of chlorogenic acid against hydrogen peroxide-induced oxidative stress in MC3T3-E1 cells through PI3K/Akt-mediated Nrf2/HO-1 signaling pathway. Oncotarget 2017, 8, 14680–14692. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Buttari, B.; Panieri, E.; Profumo, E.; Saso, L. An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules 2020, 25, 5474. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Tong, T.J.; Zhang, Z.Y.; McNutt, M.A.; Liu, X.W. Age-dependent down-regulation of mitochondrial 8-oxoguanine DNA glycosylase in SAM-P/8 mouse brain and its effect on brain aging. Rejuvenation Res. 2009, 12, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, S. Mammalian Ogg1/Mmh gene plays a major role in repair of the 8-hydroxyguanine lesion in DNA. Prog. Nucleic Acid. Res. Mol. Biol. 2001, 68, 107–123. [Google Scholar] [PubMed]
- Gonzalez-Vicente, A.; Garvin, J.L. Effects of Reactive Oxygen Species on Tubular Transport along the Nephron. Antioxidants 2017, 6, 23. [Google Scholar] [CrossRef]
- Shepard, B.D.; Pluznick, J.L. Saving the sweetness: Renal glucose handling in health and disease. Am. J. Physiol. Ren. Physiol. 2017, 313, F55–F61. [Google Scholar] [CrossRef]
- Abdul-Ghani, M.A.; DeFronzo, R.A.; Norton, L. Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30–50% of filtered glucose load in humans. Diabetes 2013, 62, 3324–3328. [Google Scholar] [CrossRef]
- Unno, K.; Yamamoto, H.; Toda, M.; Hagiwara, S.; Iguchi, K.; Hoshino, M.; Takabayashi, F.; Hasegawa-Ishii, S.; Shimada, A.; Hosokawa, M.; et al. Novel frame-shift mutation in Slc5a2 encoding SGLT2 in a strain of senescence-accelerated mouse SAMP10. Biochem. Biophys. Res. Commun. 2014, 454, 89–94. [Google Scholar] [CrossRef]
- Unno, K.; Taguchi, K.; Takagi, Y.; Hase, T.; Meguro, S.; Nakamura, Y. Mouse Models with SGLT2 Mutations: Toward Understanding the Role of SGLT2 beyond Glucose Reabsorption. Int. J. Mol. Sci. 2023, 24, 6278. [Google Scholar] [CrossRef]
- Müller, C.; Lang, R.; Hofmann, T. Quantitative precursor studies on di- and trihydroxybenzene formation during coffee roasting using “in bean” model experiments and stable isotope dilution analysis. J. Agric. Food Chem. 2006, 54, 10086–10091. [Google Scholar] [CrossRef] [PubMed]
- Gigl, M.; Frank, O.; Irmer, L.; Hofmann, T. Identification and Quantitation of Reaction Products from Chlorogenic Acid, Caffeic Acid, and Their Thermal Degradation Products with Odor-Active Thiols in Coffee Beverages. J. Agric. Food Chem. 2022, 70, 5427–5437. [Google Scholar] [CrossRef] [PubMed]
- Katada, S.; Watanabe, T.; Mizuno, T.; Kobayashi, S.; Takeshita, M.; Osaki, N.; Kobayashi, S.; Katsuragi, Y. Effects of Chlorogenic Acid-Enriched and Hydroxyhydroquinone-Reduced Coffee on Postprandial Fat Oxidation and Antioxidative Capacity in Healthy Men: A Randomized, Double-Blind, Placebo-Controlled, Crossover Trial. Nutrients 2018, 10, 525. [Google Scholar] [CrossRef] [PubMed]
- Kamae, R.; Nojima, S.; Akiyoshi, K.; Setsu, S.; Honda, S.; Masuda, T.; Oyama, Y. Hydroxyhydroquinone, a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes. Food Chem. Toxicol. 2017, 102, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Wada, H.; Oyama, K.; Kamae, R.; Masuda, T.; Kanemaru, K.; Yokoigawa, K.; Oyama, Y. Zinc-dependent and independent actions of hydroxyhydroquinone on rat thymic lymphocytes. Drug Chem. Toxicol. 2019, 42, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Kohno, Y.; Fujita, K. Analysis of Chlorogenic Acids and Total Polyphenols in Coffee Beans. Bunseki Kagaku 2016, 65, 331–334. [Google Scholar] [CrossRef]
- Corso, M.P.; Vignoli, J.A.; Benassi, M.T. Development of an instant coffee enriched with chlorogenic acids. J. Food Sci. Tecnol. 2016, 53, 1380–1388. [Google Scholar] [CrossRef]
- Lambert, J.D.; Elias, R.J. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch. Biochem. Biophys. 2010, 501, 65–72. [Google Scholar] [CrossRef]
- Grzesik, M.; Bartosz, G.; Stefaniuk, I.; Pichla, M.; Namieśnik, J.; Sadowska-Bartosz, I. Dietary antioxidants as a source of hydrogen peroxide. Food Chem. 2019, 278, 692–699. [Google Scholar] [CrossRef]
- Yang, L.; Jia, L.; Li, X.; Zhang, K.; Wang, X.; He, Y.; Hao, M.; Rayman, M.P.; Zhang, J. Prooxidant activity-based guideline for a beneficial combination of (−)-epigallocatechin-3-gallate and chlorogenic acid. Food Chem. 2022, 386, 132812. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, M.; Yu, Y.; Qiu, L.; Zhang, Y.; He, L.; Zhang, J. Brain REST/NRSF IS Not Only a Silent Repressor but Also an Active Protector. Mol. Neurobiol. 2017, 54, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Malcangi, G.; Patano, A.; Ciocia, A.M.; Netti, A.; Viapiano, F.; Palumbo, I.; Trilli, I.; Guglielmo, M.; Inchingolo, A.D.; Dipalma, G.; et al. Benefits of Natural Antioxidants on Oral Health. Antioxidants 2023, 12, 1309. [Google Scholar] [CrossRef] [PubMed]
- Čakar, U.; Čolović, M.; Milenković, D.; Medić, B.; Krstić, D.; Petrović, A.; Đorđević, B. Protective Effects of Fruit Wines against Hydrogen Peroxide—Induced Oxidative Stress in Rat Synaptosomes. Agronomy 2021, 11, 1414. [Google Scholar] [CrossRef]
- Ishida, K.; Yamamoto, M.; Misawa, K.; Nishimura, H.; Misawa, K.; Ota, N.; Shimotoyodome, A. Coffee polyphenols prevent cognitive dysfunction and suppress amyloid β plaques in APP/PS2 transgenic mouse. Neurosci. Res. 2020, 154, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Komakula, S.S.B.; Blaze, B.; Ye, H.; Dobrzyn, A.; Sampath, H. A Novel Role for the DNA Repair Enzyme 8-Oxoguanine DNA Glycosylase in Adipogenesis. Int. J. Mol. Sci. 2021, 22, 1152. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, Y.; Yu, O. The PI3K/Akt signaling pathway exerts effects on the implantation of mouse embryos by regulating the expression of RhoA. Int. J. Mol. Med. 2014, 33, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Joshi, G.; Gan, K.A.; Johnson, D.A.; Johnson, J.A. Increased Alzheimer’s disease-like pathology in the APP/PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiol. Aging 2015, 36, 664–679. [Google Scholar] [CrossRef]
- Kim, C.; Kwon, Y.; Choe, S.; Hong, S.; Yoo, H.; Goto, T.; Kawada, T.; Choi, H.; Joe, Y.; Chung, H.T.; et al. Quercetin reduces obesity-induced hepatosteatosis by enhancing mitochondrial oxidative metabolism via heme oxygenase-1. Nutr. Metab. 2015, 12, 33. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, S.; Chen, H.; Pan, H. RE1-silencing transcription factor controls the acute-to-chronic neuropathic pain transition and Chrm2 receptor gene expression in primary sensory neurons. J. Biol. Chem. 2018, 293, 19078–19091. [Google Scholar] [CrossRef]
- Takano, S.; Uchida, K.; Miyagi, M.; Inoue, G.; Aikawa, J.; Iwabuchi, K.; Takaso, M. Adrenomedullin Regulates IL-1β Gene Expression in F4/80+ Macrophages during Synovial Inflammation. J. Immunol. Res. 2017, 2017, 9832430. [Google Scholar] [CrossRef]
Mouse | Group | Body Weight (g) | Food Intake (g/Day) | ||
---|---|---|---|---|---|
3 M | 10 M | 3 M | 10 M | ||
SAMP8 | Control | 29.6 ± 1.22 | b 30.8 ± 1.67 | c 4.24 ± 0.11 | c 3.85 ± 0.06 |
HHQ | 31.0 ± 1.30 | b 32.1 ± 1.78 | ab 4.62 ± 0.08 | ab 4.48 ± 0.07 | |
CPP | 27.6 ± 1.49 | b 27.2 ± 0.69 | c 4.39 ± 0.08 | c 3.94 ± 0.07 | |
HHQ + CPP | 27.0 ± 0.87 | b 28.1 ± 1.24 | abc 4.54 ± 0.06 | c 4.05 ± 0.08 | |
SAMR1 | Control | 30.3 ± 1.68 | a 41.9 ± 1.75 | ab 4.74 ± 0.10 | ab 4.42 ± 0.05 |
Group | Intake/Day | 3 M | 10 M | ||
---|---|---|---|---|---|
HHQ | CPP | HHQ | CPP | ||
HHQ | mg/mouse | 0.92 ± 0.02 | 0.90 ± 0.01 | ||
mg/g BW | 0.03 ± 0.00 | 0.03 ± 0.00 | |||
CPP | mg/mouse | 87.7 ± 1.63 | 78.9 ± 1.40 | ||
mg/g BW | b 3.01 ± 0.10 | b 2.48 ± 0.05 | |||
HHQ + CPP | mg/mouse | 0.91 ± 0.01 | 90.8 ± 1.19 | 0.81 ± 0.02 | 80.9 ± 1.53 |
mg/g BW | 0.03 ± 0.00 | a 3.29 ± 0.07 | 0.03 ± 0.00 | a 2.67 ± 0.06 |
HHQ Group | Mouse (n) (%) | Dead Mice (n) (Age) | Survives to 10 M (n) (%) |
---|---|---|---|
Glucosuria | 2 (16.6%) | 1 (7.0 M) | 1 (50%) |
Normal urine | 10 (83.3%) | 4 (2.4, 7.6, 8.1 and 9.9 M) | 6 (60%) |
Gene | Forward Sequence | Reverse Sequence | Ref. |
---|---|---|---|
Ogg1 | GCCAACAAAGAACTGGGAAA | CCCTCTGGCCTCTTAGATCC | [35] |
Akt | ATCCCCTCAACAACTTCTCAGT | CTTCCGTCCACTCTTCTCTTTC | [36] |
Nrf2 | GTCTTCACTGCCCCTCATC | TCGGGAATGGAAAATAGCTCC | [37] |
HO-1 | TGCAGGTGATGCTGACAGAGG | GGGATGAGCTAGTGCTGATCTGG | [38] |
Rest | ATCGGACGCGGGTAGCGAG | GGCTGCCAGTTCAGCTTTCG | [39] |
IL-1β | GCAACTGTTCCTGAACTCAACT | ATCTTTTGGGGTCCGTCAACT | [40] |
β-actin | TGACAGGATGCAGAAGGAGA | GCTGGAAGGTGGACAGTGAG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unno, K.; Taguchi, K.; Hase, T.; Meguro, S.; Nakamura, Y. DNA Mutagenicity of Hydroxyhydroquinone in Roasted Coffee Products and Its Suppression by Chlorogenic Acid, a Coffee Polyphenol, in Oxidative-Damage-Sensitive SAMP8 Mice. Int. J. Mol. Sci. 2024, 25, 720. https://doi.org/10.3390/ijms25020720
Unno K, Taguchi K, Hase T, Meguro S, Nakamura Y. DNA Mutagenicity of Hydroxyhydroquinone in Roasted Coffee Products and Its Suppression by Chlorogenic Acid, a Coffee Polyphenol, in Oxidative-Damage-Sensitive SAMP8 Mice. International Journal of Molecular Sciences. 2024; 25(2):720. https://doi.org/10.3390/ijms25020720
Chicago/Turabian StyleUnno, Keiko, Kyoko Taguchi, Tadashi Hase, Shinichi Meguro, and Yoriyuki Nakamura. 2024. "DNA Mutagenicity of Hydroxyhydroquinone in Roasted Coffee Products and Its Suppression by Chlorogenic Acid, a Coffee Polyphenol, in Oxidative-Damage-Sensitive SAMP8 Mice" International Journal of Molecular Sciences 25, no. 2: 720. https://doi.org/10.3390/ijms25020720
APA StyleUnno, K., Taguchi, K., Hase, T., Meguro, S., & Nakamura, Y. (2024). DNA Mutagenicity of Hydroxyhydroquinone in Roasted Coffee Products and Its Suppression by Chlorogenic Acid, a Coffee Polyphenol, in Oxidative-Damage-Sensitive SAMP8 Mice. International Journal of Molecular Sciences, 25(2), 720. https://doi.org/10.3390/ijms25020720