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Abstract: Lupus nephritis (LN), a major complication in individuals diagnosed with systemic lupus
erythematosus, substantially increases morbidity and mortality. Despite marked improvements
in the survival of patients with severe LN over the past 50 years, complete clinical remission after
immunosuppressive therapy is achieved in only half of the patients. Therefore, timely detection of LN
is vital for initiating prompt therapeutic interventions and improving patient outcomes. Biomarkers
have emerged as valuable tools for LN detection and monitoring; however, the complex role of these
biomarkers in LN pathogenesis remains unclear. Renal biopsy remains the gold standard for the
identification of the histological phenotypes of LN and guides disease management. However, the
molecular pathophysiology of specific renal lesions remains poorly understood. In this review, we
provide a critical, up-to-date overview of the latest developments in the field of LN biomarkers.
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1. Introduction

Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease char-
acterized by the presence of autoantibodies (autoAbs), autoreactive B and T cells, and the
dysregulation of cytokines, which lead to inflammation and cause damage to multiple
organs [1–4]. The prevalence of SLE in the United States ranges from 20 to 150 cases per
100,000 people [5–8]. The etiology and pathogenesis of SLE are not well understood; the
factors that lead to disease onset are highly variable, and the disease manifests systemically
with manifestations resulting from the injury of multiple tissues. The kidney is the most
commonly involved organ in this disease and contributes extensively to morbidity and
mortality [9–11].

Lupus nephritis (LN) has been classified histologically into six types, which are deter-
mined by the location and the type of histological changes. There is variability among the
six classes in terms of response to treatment and preservation of the kidney function and the
development of end-stage disease [12]. LN is characterized by inflammation of the kidney
arising from complex interactions between the innate and adaptive immune responses
and the kidney parenchyma [13,14]. Extensive research has recognized the contributions
of genetic, epigenetic, and environmental factors to LN; however, the precise etiology
and pathogenesis of LN remain unclear. The onset and progression of LN, as well as the
response to treatment, are highly variable among patients, highlighting the need to develop
biomarkers to assess these diverse aspects of this disease [15]. The pathogenesis involves
several genetic variants, including those that hinder the efficient elimination of dying cells,
resulting in the persistence of nuclear antigens in the extracellular space. The released
autoantigens act as triggers for innate and adaptive immune responses, while other genetic
variants influence the magnitude of these immune reactions and the proper function of
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immune tolerance checkpoints, ultimately promoting the expansion of autoreactive T and
B lymphocytes [15,16]. Consequently, circulating antinuclear antibodies, along with other
autoAbs, lead to the formation of ICs that propagate systemic inflammation, leading to
organ damage. The deposition of ICs in the renal microvasculature triggers inflammation
and organ injury, accounting for the extensive morbidity and mortality associated with the
disease [17]. The persistence of autoAbs amplifies systemic autoimmunity and exacerbates
LN by facilitating an inflammatory response. These events may accentuate autoantigen
presentation and induce immune responses specific to kidney-specific autoantigens [18].
Furthermore, ICs, local complement system activation, and the recruitment of immune
cells cumulatively contribute to kidney damage. In response to autoantigens, immune
cell memory may introduce further complications in the context of SLE, LN disease pro-
gression, and flares. The persistence of memory T cells and plasma cells in the bone
marrow and other lymphoid organs makes them less susceptible to traditional therapeutic
interventions [19–23].

In recent years, remarkable progress has been made in understanding the pathophys-
iology of LN, leading to the identification of novel biomarkers related to cellular and
inflammatory mechanisms. For instance, advanced techniques, such as single-cell (sc) RNA
sequencing, have offered valuable insights into the intricate composition of immune cell
populations in the kidney tissues of patients with LN [13]. As LN can be categorized into
different types, there is the possibility that certain biomarkers correlate with specific types
of LN. For instance, the signature of type I interferon (IFN) is predominantly observed in the
kidneys and skin of individuals diagnosed with proliferative LN [3,24], whereas patients
with membranous LN exhibit different transcriptomic patterns [24], and transcriptome-
based investigations using animal models have provided insights into the progression and
phases of LN development [25].

Recently, there has been increasing interest in the development of early prediction and
detection methods to prevent the onset, manage relapses, and mitigate the complications
associated with chronic kidney disease (CKD) as alternatives to renal biopsy. Although
invasive, the current diagnostic approach for LN typically involves renal biopsy, which is
considered the gold standard for establishing an initial diagnosis. However, it poses chal-
lenges regarding the frequent monitoring of disease progression and treatment response.

Currently, the scientific community is building momentum to incorporate more com-
prehensive approaches, including proteomics and metabolomics, to develop reliable diag-
nostic and prognostic markers. Here, we review various published approaches regarding
the development of biomarkers for LN.

2. LN Biomarkers
2.1. Serum AutoAbs

AutoAbs have emerged as invaluable biomarkers that provide insights into disease
activity and progression. Several autoAbs have been found to be associated with LN [13].
Associations between specific autoAbs, including antibodies against ds DNA (dsDNA)
and -C1q, and distinct histological classifications of LN have been reported [26–28]. Anti-
phospholipid antibodies are also associated with renal thrombotic microangiopathy [29,30].
Crescent formation in the kidney often indicates the presence of antibodies that damage
the renal capillaries [30–32].

Anti-dsDNA antibodies and C1q are frequently used as LN biomarkers and have been
endorsed by guidelines for disease monitoring [33]. The presence of antibodies against
C1q is associated with LN [34], with high specificity (92%) and sensitivity (56%) [35]. This
suggests that the level of antibodies against C1q can serve as a valuable diagnostic tool and
help distinguish LN cases from those of other nephritides [35]. Additionally, antibodies
against C-reactive protein (CRP) have been detected in patients with active LN, and their
levels were found to be correlated with the Systemic Lupus Erythematosus Disease Activity
Index (SLEDAI) score (p = 0.002) [36]. Moreover, high baseline levels of antibodies against
CRP significantly predict an unfavorable outcome (p = 0.021) during the second year of
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therapy [36]. This finding highlights the potential of using antibodies against CRP as
valuable biomarkers of disease activity in LN.

Antibodies against α-enolase (anti-ENO-1) are formed when α-enolase externalizes
during NETosis [37]. Their presence has demonstrated significant potential in predicting LN
in patients with SLE, with an area under the curve (AUC) of 0.81 and a p-value of 0.001 [38].
Furthermore, an increased prevalence of the anti-ENO-1 IgG2 isotype discriminates patients
with LN from those with other nephritides and non-renal SLE, with an AUC of 0.82 and a
p-value of 0.02 [39,40].

Antibodies against alpha-actinin (AaA) have shown promise as diagnostic markers
for LN. In a previous study that compared patients with LN and those with SLE without
nephritis, the serum AaA levels were considerably lower in those with LN, with a sensitivity
of 60%, a specificity of 90%, and a positive predictive value (PPV) of 85.7% [41]. These
findings indicate that serum AaA levels may serve as a marker for distinguishing patients
with LN from those with SLE without nephritis [41].

Histones are a primary component of the nucleosome, and studies have indicated a
strong correlation between antibodies against chromatin/nucleosomes and LN as well as an
increased risk of developing proliferative LN [42,43]. Histone 1 forms part of the apoptotic
chromatin constituents in the dense electron deposits of the glomerular basement; these are
recognized targets of nephritogenic dsDNA antibodies [44–47]. Antibodies to chromatin
are present in patients with LN, but they are not particularly useful in monitoring disease
activity or response to treatment [48].

Interestingly, numerous studies have reported that patients with LN and antineu-
trophil cytoplasmic antibodies (ANCA), specifically those who are anti-myeloperoxidase
(MPO)/proteinase 3 (PR3)-positive or double positive for anti-MPO and anti-PR3 anti-
bodies, exhibit serologically active SLE (higher dsDNA antibody titers and lower serum
C4 concentrations) compared with ANCA-negative LN patients. Additionally, patients
in the subgroup with proliferative LN display more necrosis in renal biopsy specimens
than ANCA-negative patients. However, it is noteworthy that no significant difference was
reported between the outcomes of these groups [32,49,50]. Yet, given the poor prognosis
of ANCA-positive cases, it is suggested that all patients with LN be screened for ANCA.
The measurement of autoAb levels could potentially enhance the early detection, monitor-
ing, and management of LN. Nevertheless, rigorous prospective studies are required to
establish their utility as biomarkers.

2.2. Cytokines/Chemokines

In addition to autoAbs, various serum proteins have emerged as potential LN biomark-
ers. These include cytokines, chemokines, and adhesion molecules. Cytokines regulate the
immune response and are crucial in the pathogenesis of LN, particularly in attracting leuko-
cytes and in the development of the inflammatory response [51,52]. The deposition of ICs
on glomeruli initiates and activates the complement pathway, attracting immune cells and
triggering the release of inflammatory cytokines, thereby exacerbating glomerular damage.
For instance, B-cell activating factor (BAFF or BLyS), produced by glomerular macrophages
and mesangial cells, stimulates B-cell activation both directly and by inducing the produc-
tion of pro-inflammatory molecules, such as IFN-α, perpetuating a detrimental cycle in the
renal microenvironment. Moreover, cytokines, such as urinary monocyte chemoattractant
protein-1 (MCP-1/CCL2), BAFF, and TNF-related weak inducer of apoptosis (TWEAK), are
pertinent in predicting active LN, assessing therapeutic responses, and forecasting disease
flares [53,54].

Furthermore, distinct cytokines predominate in different types of LN. For example,
in proliferative LN (class III/IV), the deposition of ICs beneath the endothelium leads to
mesangial cell proliferation, an increase in extracellular matrix production, and the release
of a remarkable array of pro-inflammatory cytokines, such as type I IFN, interleukin (IL)-1β,
IL6, IL8, IL-37, and IL-17A [55]. Conversely, membranous LN (class V) is characterized
by the subepithelial localization of ICs, resulting in increased complement activation and
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reduced inflammatory responses [55]. Levels of cytokines may prove useful in distinguish-
ing between proliferative and non-proliferative forms of LN, and this information may be
useful in guiding precise treatment and management strategies and may eliminate the need
for invasive LN biopsy [55]. Several cytokines have been examined as potential biomarkers
to assess the activity, severity, and renal involvement of SLE.

Chemokines are small chemotactic cytokines that typically range in size from 8 to
10 kDa and play crucial roles in regulating the migration and localization of immune
cells [56]. Chemokines and their receptors have been implicated in the pathogenesis of
LN in both patients with SLE and lupus-prone mice. Several chemokines have shown
promising results as biomarkers for the diagnosis and prognosis of LN.

2.2.1. Serum

BAFF and a proliferation-inducing ligand (APRIL) are cytokines belonging to the
tumor necrosis factor (TNF) family; they act on B cells and drive the activation of these cells,
thereby contributing to the pathogenesis of LN [57,58]. Reduced baseline serum levels of
BAFF are predictive of clinical and pathological responses, demonstrating a 92% PPV for
clinical responders in cases of proliferative LN [59]. Furthermore, the inhibition of BAFF
activity with belimumab, which has been approved for treating patients with active LN,
has shown promising results [60]. Serum levels of APRIL (sAPRIL) are associated with
its presence in the urine and its histological activity and can help predict the likelihood of
treatment failure [61]. A previous study showed that the urine levels of BAFF and APRIL
were notably higher in patients with active proliferative LN than in those with SLE with
no renal involvement [53]. Moreover, the AUC values of 0.825 for urine BAFF and 0.781
for urine APRIL helped in differentiating between active LN and active SLE without renal
involvement [53].

IFN inducible protein-10 (IP-10 or CXCL10) is a chemokine belonging to the ELR CXC
family which is secreted by immune and non-immune cells [62]. It is produced in response
to IFN activation and guides lymphocytes to the affected organs in lupus-prone mice
and patients with SLE [63]. The urine and serum levels of IP-10 are promising potential
biomarkers of lupus activity, as they can be used to distinguish between active and inactive
lupus cases [54,64].

The serum IL-6 levels are higher in patients with SLE than in healthy individuals and
correlate with the SLEDAI (p = 0.018) [65]. In a previous study, despite the association of
serum and urine IL-6 levels with clinical manifestations of LN, the inhibition of IL-6 activity
failed to show therapeutic benefits in clinical tests [66].

Serum IL-10 levels display high accuracy in distinguishing active LN from inactive
LN, as evidenced by an AUC of 0.87 (p = 0.003), 70.6% sensitivity, 100% specificity, and a
notable correlation with the SLEDAI (p = 0.004) [65,67].

IL-16, produced by immune and non-immune cells [68,69], exhibits markedly in-
creased levels in the urine of patients with active LN, particularly in proliferative cases.
The observed decrease in urine IL-16 levels during therapeutic intervention may serve as a
useful marker for assessing therapeutic responses in LN [70].

The serum angiopoietin-2 (Ang2) levels are higher in patients with SLE and those with
LN than in healthy individuals [71]. Ang2 levels correlate with the SLEDAI, 24 h protein-
uria, and histological activity, which suggests their usefulness as a biomarker for LN [71].
Nevertheless, Ang2 cannot distinguish between the types of LN lesions, particularly the
proliferative and non-proliferative forms [71]. Serum angiopoietin-like protein 4 (Angptl4)
and angiostatin are gaining attention as potential biomarkers for LN [51,72,73]. The serum
Angptl4 levels effectively differentiated patients with active LN from those with active SLE
without renal involvement and displayed a strong link with the renal SLEDAI (rSLEDAI),
with an AUC of 0.96 [73]. Angiostatin has a strong association with LN, as reported by
several studies (AUC = 0.95–0.99; p < 0.001) [51,74,75]. Its correlation with the rSLEDAI,
SLEDAI, and National Institutes of Health LN index underscores its value as a primary
marker for LN monitoring [74,75]. Furthermore, comprehensive proteomic analyses have
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focused on Angptl4 and angiostatin as valuable urine indicators for monitoring LN pro-
gression and renal histology in patients with SLE [51,72,73]. Likewise, in another study,
urine angiostatin levels could not be used to discriminate between patients with LN and
those with CKD, with an AUC of 0.56 [76].

Serum TNF receptor-associated factor 6 is a cytokine associated with LN activity and
has shown promise as a diagnostic marker for LN [77]. Serum human epididymis protein 4
levels are high in SLE, especially in patients with LN, particularly in those with increased
anti-dsDNA antibody levels and decreased C3 levels. Moreover, these levels have been
shown to have a predictive value for the diagnosis of LN [78].

2.2.2. Urine

MCP-1/CCL2 is a chemokine belonging to the C-C family, and its function is to recruit
leukocytes. In a meta-analysis, the urine MCP-1 (uMCP-1) levels were found to have a sen-
sitivity of 89% and a specificity of 63% in differentiating active LN from inactive disease [79].
Furthermore, its levels correlated with kidney disease activity and ongoing kidney impair-
ment and were increased in cases of proliferative glomerulonephritis [80–83]. Interestingly,
uMCP-1 has the potential to predict upcoming kidney disease flares 2–4 months in advance
and to reflect the effectiveness of treatment [81,82].

Urine IL (uIL)-17 and urine transforming growth factor beta 1 (uTGF-β1) have shown
promise as potential LN biomarker candidates [84,85]. A previous study reported signifi-
cantly elevated levels of uTGF-β1 and uIL-17 in patients with severe LN compared to those
in healthy participants (p < 0.05) [84]; the AUCs for uTGF-β1 and uIL-17 were 66.50% and
71.70%, respectively [84]. These findings suggest that uTGF-β1 and uIL-17 are potential
indicators of disease severity and that they can be valuable in distinguishing severe LN
cases from mild ones [84].

Several urine proteins have emerged as promising tools for the diagnosis and ongoing
monitoring of LN [51,86]. Notably, a study showed that TWEAK had an AUC of 0.82,
demonstrating its predictive efficacy in LN [54]. Furthermore, when combined with UMCP-1,
TWEAK effectively distinguishes between active and inactive LN (AUC = 0.89) and predicts
the progression of end-stage kidney disease (ESRD) (AUC = 0.78) [54,87,88]. Additionally,
urine levels of IL-12p40, IL-15, and thymus- and activation-regulated chemokine have been
reported to be higher in patients with active LN than in those with inactive SLE and healthy
individuals and to be correlated with the rSLEDAI [89]. Furthermore, urine clusterin has
shown promise as a marker for tubulointerstitial lesions in LN [90]. Urine osteoprotegerin
levels are notably elevated in patients with active LN; they correlate with disease activity,
and it has been suggested that they predict poor treatment response and LN relapse [91].
Finally, urine levels of transferrin and ceruloplasmin are elevated in patients with LN
compared to those in individuals without LN [92].

2.3. Cell Adhesion Molecules (CAMs)

CAMs are essential for guiding leukocyte movement across the endothelium toward
the sites of inflammation [93]. Existing studies have investigated the use of specific CAMs,
including the activated leukocyte cell adhesion molecule (ALCAM), intercellular adhesion
molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), neural cell adhesion
molecule 1 (NCAM-1), and L-selectin, as biomarkers in LN [51,72,73,75,80,94–99].

Urine CAMs (uCAMs) have demonstrated remarkable precision in distinguishing be-
tween active and inactive LN as well as SLE without LN [95]. The discriminative power of
these molecules is reflected in an AUC that consistently surpasses the 0.8 threshold, except
for neutrophil gelatinase-associated lipocalin (NGAL) [100–102]. Moreover, a combination
of urine markers (uVCAM-1, uCystatinC, and uKIM-1) yielded a promising AUC of 0.80
(95% CI: 0.69–0.90), highlighting the potential to differentiate between the proliferative
and membranous forms of LN [54]. Levels of uCAMs collectively serve as robust tools in
evaluating LN activity and informing clinical decisions [103]. It has been suggested that
urine ALCAM (uALCAM) levels are more efficient in distinguishing proliferative LN from
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membranous LN [95]. Moreover, uALCAM and urine VCAM-1 (uVCAM-1) levels exhibit
a strong correlation with renal histological activity, underscoring their potential value
as LN activity markers [75,80,95,99]. Elevated initial levels of uALCAM and uVCAM-1
might signal the waning of renal function [94]. The incremental benefit of integrating
these markers is yet to be conclusively assessed. A longitudinal study revealed an ele-
vation in serum VCAM-1 levels approximately 4.5 months before a recorded renal flare,
which decreased after treatment [103]. The urine-soluble VCAM-1 and VCAM-1 levels
are higher in patients with LN than in healthy individuals [76]. Furthermore, VCAM-1
has outstanding potential as a biomarker for predicting a renal biopsy activity index score
greater than 7, which is associated with a poor long-term prognosis [75]. Serum NGAL
levels have also been shown to be a potential biomarker for differentiating patients with
LN from those without nephritis [76]. Specifically, at onset, NGAL levels serve as the
best predictor, outperforming VCAM and KIM1 levels in identifying treatment responders
versus non-responders 6 months after the induction phase, registering an AUC of 0.78 [80].
Furthermore, serum NGAL levels are elevated in patients with active SLE and could be
used to gauge the response to treatment [80,104,105]. Additionally, serum NGAL levels are
elevated in patients with active SLE, and urine NGAL levels can serve as a predictor of the
response to treatment. Serum levels of Axl can distinguish active LN from non-renal SLE
and provide insights into long-term renal outcomes [106–108]. Finally, L-selectin levels are
closely associated with LN activity and related organ damage metrics [73,75,98].

2.4. Other Protein/Lipid Molecules

Urine-soluble CD163 (uCD163), a transmembrane scavenger receptor, is expressed
by macrophages and monocytes and is a useful biomarker with an AUC of 0.998 for
differentiating between active and inactive LN [109]. In addition, uCD163 levels are
indicative of clinical and histological renal activities in LN [110,111]. Furthermore, uCD163
levels measured 6 months after therapy initiation have been shown to predict kidney
recovery in LN, with more than 87% accuracy [109].

Epidermal growth factor (EGF) concentrations are reduced in the urine of patients
with active nephritis and are associated with severe renal outcomes, such as elevated serum
creatinine levels and ESRD [112].

Ceramides, characterized by modifications of the sphingosine backbone, are emerging
as potential biomarkers of LN [113,114]. These diverse lipids play crucial roles in cellular
signaling. The serum levels of ceramides, such as C16cer, C18Cer, C20Cer, and C24:1Cer,
are higher in patients with LN with kidney impairment than in healthy individuals and
patients with SLE without kidney impairment [113]. C24:1dhCer is being recognized as a
remarkable indicator of kidney impairment in patients with SLE [113].

2.5. Complement

The complement system plays a crucial role in the pathogenesis of SLE, and the serum
levels of certain components have been used to monitor disease activity [115–118]. In
a study of patients with LN who underwent a repeat renal biopsy two years later, the
prolonged depression of serum C3 levels was associated with a trend toward a worsening
chronicity index, whereas normalization of C3 was associated with a reduction in the
activity index in the repeat biopsy [118]. Hypocomplementemia, particularly low levels
of C3 and C4 alone, may not adequately reflect disease activity, as the sensitivity and
specificity of C3 for SLE are 80% and 14%, respectively [117]. The levels of the C4 component
breakdown product C4d have been found to be considerably increased during disease
flares in patients with SLE, with a 68% PPV. C4d levels also correlate with LN, with a
79% sensitivity [119]. Additionally, the C4d/C4 ratio has been found to be more specific,
sensitive, and effective in distinguishing LN from non-LN cases [120]. Complement factor
H-related proteins (CFHRs), which encompass CFHR1 through CFHR5, are part of the
broader factor H/CFHR family. The levels of CFHR3 and CFHR5 are associated with
disease activity in LN [121].
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2.6. MicroRNAs (miRNAs)

miRNAs have been reported to play important roles in the development of LN and
kidney fibrosis [122,123]. The stability of miRNAs in body fluids makes them attractive
diagnostic and prognostic biomarker candidates for human diseases [124]. Several miRNAs
serve as potential disease biomarkers for LN. Epigenetic studies regarding SLE have
highlighted a set of urinary miRNAs, including miR-146a, miR-204, miR-30c, miR-3201,
and miR-1273e, that are associated with LN [125]. These miRNAs play roles in LN-specific
pathways, such as nucleic acid processes and inflammation, as well as in kidney function
regulation through WNT and TGF-β signaling. The levels of miR-146a are reduced in the
sera of patients with LN and are associated with disease activity [77]. Notably, baseline miR-
146a levels are associated with renal flares and ESRD progression [126]. The urine levels
of miRNA-135b, which originates from tubular cells, vary between treatment responders
and non-responders [127]. Circulating miR-21 levels have been reported to be markedly
increased in patients with LN compared to those in healthy controls; thus, they can be used
to discriminate between patients with LN and controls [128]. A combined calculated value
of circulating miRNAs in plasma, including miR-125a, miR-142-3p, miR-146, and miR-155,
has shown promise in distinguishing patients with LN from healthy individuals [129].
Additionally, urine exosomal miR-29c levels negatively correlate with the histological
chronicity index and glomerular sclerosis. Its expression levels have a remarkable predictive
value for chronicity in patients with LN [130]. In addition to miRNAs, long non-coding
RNAs (lncRNAs) are also involved in LN development. The levels of lncRNA RP11-2B6.2
are usually elevated following the kidney biopsies of patients with LN and positively
correlate with IFNa signature scores and disease activity [131]. Additionally, the lnc3643
levels are considerably reduced only in patients with SLE and proteinuria; accordingly,
these levels can distinguish LN from SLE without nephritis [131].

2.7. Genetics

Genetic susceptibility contributes to the complex etiology of LN. Variants in certain
genes have been linked to worse outcomes in patients with LN. Owing to the widespread
availability of whole-genome sequencing, these variants can be identified and used to
predict disease outcomes. One to three percent of patients with SLE may have a single-gene
(monogenic) defect, and these patients experience a high incidence of LN [132–134]. Such
cases often involve DNA/RNA clearance (e.g., DNASE1L3), complement pathways (e.g.,
C1q or C4), and DNA/RNA detection, which lead to type I IFN activation (e.g., TLR7),
and some LN cases were reported to harbor variants of these genes. In-depth genomic
studies spanning the sporadic to polygenic manifestations of SLE have identified more
than 100 susceptibility genes. These variants include the genes involved in cell death
(e.g., FAS), effective IC management (e.g., FcGR), and the amplified immune responses
of T and B cells [13,135]. For example, recent advances in whole-exome sequencing have
revealed that novel mutations in the TNF alpha-induced protein 3 (TNFAIP3) gene are
linked to LN. These mutations lead to increased activity in nuclear factor kappa B and
type I IFN pathways, along with a rise in pro-inflammatory cytokines [136]. Specifically,
this study linked three novel mutations with LN: c.634+2T>C, exon 7–8 deletion, and
c.1300_1301delinsTA (p. A434*) [136]. Additionally, various databases have reported
TNFAIP3 mutations associated with kidney involvement, such as the p.Q187* mutation in a
patient with proliferative LN and the p.F224Sfs*4 mutation in a patient with membranous
LN [136–138]. Moreover, a genome-wide association study focusing on female SLE patients
of European ancestry with LN has identified genes, such as FCGR, STAT4, and BANK1.
These genes have been shown to correlate with both the occurrence and severity of LN;
this has been confirmed across various cohorts [139–143]. Wang et al. used weighted gene
co-expression network analysis to identify four hub genes, namely CD53 (AUC = 0.995),
TGFBI (AUC = 0.997), MS4A6A (AUC = 0.994), and HERC6 (AUC = 0.999), which are
involved in the development of the inflammatory response and immune activation in LN
(p < 0.0001) [144]. Yavuz et al. discovered that MERTK, a novel genetic region, contributes to
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the risk of developing LN and ESRD in patients with SLE, a finding that has been replicated
across various ethnicities [145]. MERTK, a member of the Tyro3/Axl/Mer receptor kinase
family, is the primary receptor on macrophages for apoptotic cells [146,147]. It plays a key
role in the regulation of the innate immune response through efferocytosis and notably
influences the production of cytokines, such as IL-10, TGF-β, IL-6, and IL-12 [148,149].
Furthermore, MERTK is critical in suppressing TLR-mediated innate immune responses by
activating STAT1, which leads to an anti-inflammatory feedback through the production of
the cytokine signaling suppressors SOCS1 and SOCS3 [150]. Other genes, such as PRDM1,
are associated with proliferative LN [145] and play a vital role as modulators of dendritic
cell function and repressors of the IFN-β gene [151].

Moreover, an APOL1 gene variant has been identified as an independent risk fac-
tor for faster progression to ESRD in patients with LN [152–154]. Although the precise
mechanisms by which APOL1 facilitates kidney disease progression have not been fully
elucidated, it is believed that these variants directly affect the function and structure of
kidney parenchymal cells and may exacerbate tissue inflammation, thereby influencing
the severity of LN. Additionally, human leukocyte antigen (HLA) variants have long been
found to be linked to the development of LN, with HLA-DR3 and HLA-DR15 increasing
the risk significantly [155].

In terms of classifying patients based on their risk of nephritis, Chen et al. observed
that a high polygenic risk score for SLE correlates with poorer prognostic factors like
earlier age of onset and LN [156]. Kwon et al. reported in a Korean cohort that an
individual’s highest weighted genetic risk score (wGRS), calculated from 112 well-validated
non-HLA single nucleotide polymorphisms and HLA haplotypes of SLE risk loci, was
independently associated with the development of LN and the production of the anti-Sm
antibody, compared to those in the lowest wGRS quartile [157]. This association was
observed regardless of the age of onset [157]. Webber et al. observed that both HLA and
non-HLA SLE risk-weighted genetic risk scores were significantly associated with the risk
of proliferative LN in two large, multi-ethnic cohorts of 1251 SLE patients [158]. This may
indicate that SLE risk loci are of greater importance in the development of proliferative LN,
as opposed to non-proliferative LN [158]. Despite these developments, the full spectrum of
genetic risk factors for LN and its progression to ESRD still needs to be better understood
and further developed. Taken together, a gene expression score, including all variants
known to contribute to the development of LN (class, severity, and risk of ESRD), can be
used to screen all patients with SLE, identify patients at high risk of LN, and predict various
clinical outcomes in SLE patients.

2.8. Epigenetics

Epigenetic processes, particularly those involving DNA methylation and histone
modifications, are crucial for LN development [159]. Irregularities in DNA methylation
patterns have been observed in genes linked to immune responses and inflammatory
processes in patients with LN, which indicates their potential contribution to disease de-
velopment [159]. For example, alterations in the DNA methylation of the MERTK gene
may modify its activity and increase the risk of SLE-ESRD [145]. Similarly, histone modi-
fications can influence gene expression profiles in immune cells, potentially contributing
to the dysregulation of immune responses observed in LN [160]. New technologies that
are used to assess the epigenome of immune cells may evolve into useful diagnostic and
disease-monitoring tools.

3. Conclusions and Future Directions

The complexity of LN pathogenesis poses challenges for the development of biomark-
ers for monitoring disease activity in response to treatment. The biomarkers discussed in
this review represent elements that reflect multiple aspects of the immune response as well
as aspects of vascular and parenchymal cell injury (Table 1) [161–208]. It is obvious that
with each biomarker in patients with LN, variable pathogenetic pathways are involved,
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bespeaking the heterogeneity of the disease. Although tools that integrate multiple proteins,
or other molecules, may have a greater value as biomarkers, the same limitations may
apply. Although in some patients the diagnosis of SLE coincides with that of LN, LN
may develop at various times after the diagnosis of SLE. It has been documented that the
appearance of serum autoAbs [209] and pro-inflammatory cytokines [210] precedes the
diagnosis of SLE by months to several years. Therefore, it is plausible to assume that certain
biological processes that result in the production of proteins or other molecules occur in
the serum or urine prior to the clinical diagnosis of LN. Studies identifying biomarkers
for predicting an upcoming renal involvement in LN are lacking. Although our group has
shown that IgG from patients with LN, but not from patients with SLE without LN, can
injure cultured podocytes [211], it is still unclear when “podocytopathic” IgG first appears
in the sera of patients with SLE prior to the development of LN. When injured, podocytes
and other parenchymal cells are released into the urine. A more careful study of urine cells
for the identification of molecules involved in kidney cell injury [211] can prove useful in
monitoring the response to treatment, as the shed cells may provide a window into the
events in the kidney tissue itself.

Table 1. Summary of biomarkers for lupus nephritis (LN).

1. Antibodies/immunoglobulins

Sample Biomarker Association Reference

Serum/plasma Anti-dsDNA Diagnosis, clinical disease activity, damage, and
responses to therapy in LN [40,106,109]

Anti-C1q Diagnosis, clinical disease activity, histological disease
activity, and prognosis [36,162–166]

Anti-CRP Clinical disease activity and responses to therapy in LN [34,35]

Anti-ENO-1 (+) Diagnosis and prediction of LN [37,38,40]

AaA (Low) Diagnosis [41]

Anti-chromatin Diagnostic/predictive capacity in LN [48]

PTEC-binding IgG (+) Clinical disease activity [167]

PHACTR4 icx (+) Diagnosis [168]

P3H1 icx (+) Diagnosis [168]

RGS12 icx (+) Diagnosis [168]

PTEC-binding IgG (+) Clinical disease activity [167]

IgM (↑) Responses to therapy in LN [169]

ANCAs (+) Prognosis [32,49,50]

2. Kidney disease-related

Serum Hyperuricemia Diagnosis [78,170,171]

Creatinine (↑) Diagnosis and prognostic biomarkers [78,166,172]

Urea (↑) Diagnosis and damage (>10.25 mmol/L) [78]

Urine Albumin to globulin ratio (low) Diagnosis [173]

Proteinuria (↑) (>500 mg/24 h) Diagnosis, clinical disease activity, histological disease
activity, and prognosis [67,95,109,174]

Proteinuria (↓) Responses to therapy in LN [169]

uPCR (↓)
(<1.5 g/g at month 6) Responses to therapy in LN [109]

WBC (↑) Clinical disease activity [67]

RBC (↑) Clinical disease activity [67]



Int. J. Mol. Sci. 2024, 25, 805 10 of 22

Table 1. Cont.

Granular casts (+) Clinical disease activity [67]

3. Complement/Lymphocytes

Serum C3 (low) Diagnosis, clinical disease activity, histological disease
activity, responses to therapy in LN, and prognosis [67,95,109,174]

C4 (low) Diagnosis and clinical disease activity [175]

C1q (low) Histological disease activity [165]

Lymphocyte count (↑) Responses to therapy in LN [169]

4. Cytokines

Serum TWEAK Diagnosis [87,105,176–178]

IL-2R (↓) Responses to therapy in LN [179]

IL-8 (↓) Responses to therapy in LN [179]

IL-10 (↑) Clinical disease activity [67,175]

IL-17 Clinical disease activity and histological disease activity [85,180]

IL-23 (↓) Responses to therapy in LN [85]

Urine TWEAK Diagnosis and clinical disease activity [87,176,177]

TGF-β1 (↑) Clinical disease activity and histological disease activity [70,73]

IL-17 (↑) Diagnostic potential and clinical disease activity [89]

IL-12p40 (↑) Diagnostic potential and clinical disease activity [89]

IL-15 Diagnostic potential and clinical disease activity [89]

IL-16 (↑) Histological disease activity [70]

TARC (↑) Diagnostic potential and clinical disease activity [89]

PF-4 (↑) Clinical disease activity [72]

5. Chemokines/Cell adhesion molecules

Serum APRIL (↑) Predictive of treatment failure at 6 months [61]

BAFF (↓) Predictive of clinical and histological responses to
therapy in LN [59]

VCAM-1 (↑) Clinical disease activity [103]

OPG (↓) Responses to therapy in LN [179]

Urine APRIL (↑) Diagnosis [53,181]

BAFF (↑) Diagnosis [53,181]

CXCL4 (↑) Diagnosis [98]

MCP-1 (↑)
Diagnosis, clinical disease activity, histological disease
activity (proliferative vs. membranous), and responses

to therapy in LN

[79,80,83,99,177,
182,183]

ALCAM (↑) Diagnosis, clinical disease activity, histological disease
activity, and prognosis [94,95,184]

VCAM-1 (↑)
Diagnosis, clinical disease activity, histological disease
activity (proliferative vs. membranous), damage, and

prognostic biomarkers
[72,75,94,98,99]

ICAM-1 (↑) Clinical disease activity [97]

NCAM-1 (↑) Clinical disease activity [97]

IP-10/CXCL10 (↑) Diagnostic potential and clinical disease activity (renal) [67,89]



Int. J. Mol. Sci. 2024, 25, 805 11 of 22

Table 1. Cont.

6. Other proteins

Serum Axl (↑) Diagnosis, clinical disease activity, responses to therapy
in LN, and prognostic biomarkers [106–108]

HE4 (↑) Diagnosis [78,185]

IGFBP-2 (↑) Diagnosis, clinical disease activity, and damage [186]

IGFBP-4 Damage [187]

sTNFRII (↑)
Diagnosis, clinical disease activity, histological disease

activity, damage, responses to therapy in LN,
and prognosis

[106,188,189]

Angiostatin (↑) Clinical disease activity [108]

Ferritin (↑) Clinical disease activity [108]

Progranulin (↑) Clinical disease activity [108]

SDC-1 (↑) Clinical disease activity and histological disease activity [103]

Resistin (↑) Damage [190]

CSF-1 (↓) Responses to therapy in LN [191]

HNP1-3 (↓) Responses to therapy in LN [192]

S100A8/A9 (↑) Responses to therapy in LN [193]

S100A12 (↑) Responses to therapy in LN [193]

Urine Angiostatin Diagnosis, clinical disease activity, histological disease
activity, and damage [51,74,75,98]

NGAL (↑) Diagnosis, clinical disease activity, and (↓) responses to
therapy in LN

[80,104,162,194–
199]

TF (↑) Diagnosis, clinical disease activity and responses to
therapy in LN [92,183,200]

β2-MG (↑) Diagnosis [22,201]

Angptl4 (↑) Clinical disease activity [51,73]

Calpastatin (↑) Clinical disease activity [72]

CD163 (↑)
Clinical disease activity, histological disease activity

(predictor, proliferative vs. non-proliferative), (↓)
responses to therapy in LN and prognosis

[70,109,110,182]

FOLR2 (↑) Clinical disease activity [73]

Hemopexin (↑) Clinical disease activity [72]

L-selectin (↑) Clinical disease activity [73]

PDGFRβ (↑) Clinical disease activity [73]

Peroxiredoxin 6 (↑) Clinical disease activity [72]

Progranulin (↑) Clinical disease activity [108]

Properdin (↑) Clinical disease activity [72]

RBP4 (↑) Clinical disease activity and (↓) responses to therapy
in LN [202]

TSP1 (↑) Clinical disease activity [73]

TTP1 (↑) Clinical disease activity [73]

NRP-1 (↑) Responses to therapy in LN [203]

Plasmin (↑) Clinical disease activity [200]

TFPI (↑) Clinical disease activity [200]
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EGF (↓) Prognosis [112]

7. MicroRNAs (miRNAs)

Serum/plasma miRNA-21 Diagnosis [128,204]

Urine miRNA-31-5p (↑) Responses to therapy in LN [127]

miRNA-107 (↑) Responses to therapy in LN [127]

miRNA-135b-5p (↑) Responses to therapy in LN [127]

8. Microparticles (MP)

Urine MP-CX3CR1+ (↑) Diagnosis [172]

MP-HLADR+ (↑) Diagnosis [172]

MP-HMGB1+ (↑) Diagnosis and clinical disease activity (active vs.
non-active) [172]

9. Renal tissue

Kidney biopsy Mannose-enriched
N-glycan expression Diagnosis and prognosis [205]

CSF-1 (↑) Histological disease activity [191]

Periostin (↑) Damage [206]

C9 (+) Prognosis [207]

Podocyte foot process width (↓) Prognosis [169]

Arteriolar C4d deposition (+) Prognosis [208]

Cellular crescents (+) Prognosis [172]

Fibrous crescents (+) Prognosis [172]

Glomerular C3 deposition (+) Prognosis [212]

IFTA (+)
(≥25% of the surface cortical

area)
Prognosis [213]

Vascular injury (+)
(≥25% subintimal narrowing of

the lumen)
Prognosis [213]

AaA: Anti-actin antibody; ANCA: Anti-neutrophil cytoplasmic antibody; Ang2: Angiopoietin 2; Angptl4:
Angiopoietin-like 4; Anti-C1q: Anti-complement component 1q; Anti-CRP: Anti-C-reactive protein; Anti-dsDNA:
Anti-double-stranded deoxyribonucleic acid; Anti-ENO-1: Anti-Enolase 1; APRIL: A proliferation-inducing
ligand; BAFF: B-cell activating factor; β2-MG: Beta-2 microglobulin; C1q: Complement component 1q; C3: Com-
plement component 3; C4: Complement component 4; C4d: Complement component 4d; C9: Complement
component 9; Cer: Ceramide; CSF-1: Colony stimulating factor 1; CXCL4: C-X-C motif chemokine ligand 4;
EGF: Epidermal growth factor; FOLR2: Folate receptor beta; HNP1-3: Human neutrophil peptide 1-3; ICAM-1:
Intercellular adhesion molecule 1; IFTA: Interstitial fibrosis and tubular atrophy; IGFBP: Insulin-like growth
factor-binding protein; IL: Interleukin; IL-2R: Interleukin 2 receptor; IL-12p40: Interleukin 12 subunit p40; IP-10:
Interferon gamma-induced protein 10, also known as CXCL10; MCP-1: Monocyte chemoattractant protein 1;
MicroRNAs (miRNAs): Micro-ribonucleic acids, with miRNA-21 being Micro-ribonucleic acid 21; MP-CX3CR1+:
Microparticles with CX3CR1 expression; MP-HLADR+: Microparticles with HLA-DR expression; MP-HMGB1+:
Microparticles with high mobility group box 1 protein expression; NRP-1: Neuropilin 1; NCAM-1: Neural
cell adhesion molecule 1; NGAL: Neutrophil gelatinase-associated lipocalin; OPG: Osteoprotegerin; PDGFRβ:
Platelet-derived growth factor receptor beta; PF-4: Platelet factor 4; PHACTR4: Phosphatase and actin regulator
4, with PHACTR4 icx being Phosphatase and actin regulator 4 immune complexes; P3H1: Prolyl 3-hydroxylase
1, with P3H1 icx as Prolyl 3-hydroxylase 1 immune complexes; PTEC-binding IgG: Proximal tubular epithelial
cell-binding immunoglobulin G; RBC: Red blood cells; RGS12: Regulator of G-protein signalling 12, with RGS12
icx as Regulator of G-protein signalling 12 immune complexes; SDC-1: Syndecan-1; sTNFRII: Soluble tumor
necrosis factor receptor II; TARC: Thymus and activation-regulated chemokine, also known as CCL17; TFPI:
Tissue factor pathway inhibitor; TGF-β1: Transforming growth factor-beta 1; TSP1: Thrombospondin 1; TTP1:
Tripeptidyl peptidase 1; Type I IFN: Type I Interferon; TWEAK: Tumor necrosis factor-like weak inducer of
apoptosis; uPCR: Urine protein to creatinine ratio; VCAM-1: Vascular cell adhesion molecule 1; WBC: White
blood cells; (+): Positivity; ↓: Decreased; ↑: Increased.
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Several reasons may account for the fact that none of the discussed biomarkers has
reached the bedside. There are challenges in both the discovery and clinical phase of
biomarker validation [161]. During the discovery phases a major weight is placed on the
formulation of clinically relevant questions and the identification of markers closely linked
to the pathogenesis of LN, while less effort is made to consider the clinical and pathogenetic
heterogeneity of LN in long prospective studies. In the efforts to validate the reported
putative biomarkers, problems arise from the geographical and ethnic heterogeneity of the
disease, the lack of standardized treatment protocols, sample collection and processing,
and the methods used to measure various biomarkers.
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