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Abstract: The present work is the first report on the ingredients of the P. × commixta hybrid, a plant of
the genus Phlomis. So far, thirty substances have been isolated by various chromatographic techniques
and identified by spectroscopic methods, such as UV/Vis, NMR, GC-MS and LC-MS. The compounds
are classified as flavonoids: naringenin, eriodyctiol, eriodyctiol-7-O-β-D-glucoside, luteolin, luteolin-
7-O-β-D-glucoside, apigenin, apigenin-7-O-β-D-glucoside, diosmetin-7-O-β-D-glucoside, quercetin,
hesperetin and quercetin-3-O-β-D-glucoside; phenylpropanoids: martynoside, verbascoside, forsytho-
side B, echinacoside and allysonoside; chromene: 5,7-dihydroxychromone; phenolic acids: caffeic
acid, p-hydroxybenzoic acid, chlorogenic acid, chlorogenic acid methyl ester, gallic acid, p-coumaric
acid and vanillic acid; aliphatic hydrocarbon: docos-1-ene; steroids: brassicasterol and stigmasterol; a
glucoside of allylic alcohol, 3-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranosyl-oct-1-ene-3-ol, was
fully characterized as a natural product for the first time. Two tyrosol esters were also isolated: tyrosol
lignocerate and tyrosol methyl ether palmitate, the latter one being isolated as a natural product for
the first time. Moreover, the biological activities of the extracts from the different polarities of the
roots, leaves and flowers were estimated for their cytotoxic potency. All root extracts tested showed a
high cytotoxic activity against the Hep2c and RD cell lines.

Keywords: P. × commixta; Phlomis; secondary metabolites; cytotoxic potent; phenolic derivatives;
tyrosol esters

1. Introduction

The genus Phlomis L. is one of the largest genera of the subfamily Lamioidae (Lami-
aceae), which includes more than 100 species. Northwest Africa, Europe and Asia are the
main places where this genus is found, but some species have been identified in southeast-
ern Anatolia and northwestern Iraq [1]. Moench, in 1794, pointed out the morphological
differences of the genus in two distinct genera, Phlomis and Phlomioides, and divided the
genus into two groups distinguished by general differences, such as the chromosomal
number (in the Phlomis group, it is generally 2n = 20, while in the Phlomioides group, it
is 2n = 22) and the form (species of the Phlomis group are usually shrubs or subshrubs,
while the Phlomioides group has mainly herbaceous plants) [2,3]. The flowers found in both
groups are stalked and radially arranged by the axillary buds, while the lower edge of the
flower is trilobate and the middle pod is wider than the other two. There are 12 records
of the genus Phlomis in Europe [4], while in Greece, the genus is represented by 9 species.
Three species of the genus are found in Crete: Phlomis cretica C. Preslin J. & C. Presl, Phlomis
fruticosa L. and Phlomis lanata Willd. Phlomis is characterized as a difficult genus from a
taxonomic point of view because it has a high frequency of hybridization and penetration
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between species [5]. The three species found on the island of Crete hybridize in pairs,
producing three hybrids: P. × cytherea Rech. f. (P. cretica × P. fruticosa), P. × commixta
Rech. f. (P. cretica × P. lanata) and P. × sieberi Vierh. (P. fruticosa × P. lanata). The hybrid
P. × commixta has the intermediate morphological characteristics of P. cretica and P. lanata,
as described above. The leaves are ovate–elliptic, with a sharply cut or rounded base. The
hair on the leaves is dense or whitish. The bracts are linear or narrow lanceolate, with a
length of 12–14 mm and a width of 1–3 mm. The width of the inflorescence vertebrae is
15–20 mm.

Over the last few years, there has been a rapid increase in the information available on
the structures and pharmacological activities of new compounds isolated and identified
from Phlomis species [6–13].

Phlomis species contain a diverse range of compounds, including iridoid glucosides [14–16],
phenylpropanoid glycosides [17], flavonoid glycosides [18], lignans [19], neolignan gly-
cosides [20], monoterpene glycosides [21], megastigmanes [22], diterpene glycosyl es-
ters [23,24], nortriterpenes [25,26] and essential oils [5], which were reported to be responsi-
ble for various biological and pharmacological properties. Among them are the antinocicep-
tive, anti-inflammatory [27–29], antioxidant [30–34], antimicrobial [35,36], wound-healing,
antidiabetic [37,38] and antihemoroidal activity [39], as well as the antiplasmodial and
anticancer activities [12,38,40–43].

To the best of our knowledge, no phytochemical investigation of the aerial parts and
roots of P. × commixta has been previously carried out. The present work on the aerial and
root system of the plant resulted in the isolation and identification of a series of components,
including two new ones: 3-O-β-(3R)-D-apiofuranosyl-(1→6)-O-β-D-glucopyranosyl-(3S)-
oct-1-en-3-ol (1) and the tyrosol methyl ether palmitate (2), as well as a third, tyrosol
lignocerate (3), that is found for the first time in the genus Phlomis and the family Lamiaceae.
The spectroscopic data of compound 3 are reported for the first time. The aim of this paper
was to describe the isolation and structural elucidation of the components of the plant, with
emphasis on the detailed structural identification of the new compounds, as well as the
investigation of the anticancer potential of the plant’s extracts.

In the present study, the whole plant of the species Phlomis × commixta was collected,
separated (leaves, flowers and roots), dried and extracted with solvents of increasing
polarity, and the extracts were assessed for cytotoxicity in Hep2c and RD human cell lines,
as well as in the L2OB cell line.

2. Results
2.1. Isolated Compounds

Various chromatographic techniques, such as column chromatography, pTLC and
semipreparative HPLC, of the extracts from the leaves, flowers and roots of Phlomis ×
commixta Rech. F. led to the isolation of twenty-seven known compounds. Seven com-
pounds were isolated from the roots (2, 3, 4, 5, 6, 8, 9), ten from the leaves (1, 6, 8, 10,
18, 21, 23, 24, 26, 27) and sixteen from the flowers (6, 7, 11, 12, 13, 14, 15, 16, 17, 19, 20,
22, 25, 28, 29, 30). It must be mentioned that compound (6) is present in all the exam-
ined parts of the plant. Also, compound (8) has been isolated from both the roots and
leaves, but not from the flowers. Both compound (6) and (8) are phenylpropanoids, which
suggests that the plant can biosynthesize these kinds of secondary metabolites in each
plant part. The compounds were identified as brassicasterol (4) (see Supplementary Data
Table S2) [44,45], stigasterol (5) (see Supplementary Data Table S3) [46,47], verbascoside
(6) (see Supplementary Data Table S4) [48], martynoside (7) (see Supplementary Data
Table S5) [48], forsythoside B (8) (see Supplementary Data Table S6) [49], allysonoside
(9) (see Supplementary Data Table S7) [50], echinacoside (10) (see Supplementary Data
Table S8) [51], p-coumaric acid (11) (see Supplementary Data Note S1) [52], caffeic acid
(12) (see Supplementary Data Note S2) [53], chlorogenic acid (13) (see Supplementary Data
Table S9) [54], chlorogenic acid methyl ester (14) (see Supplementary Data Table S10) [55],
5,7-dihydroxychromone (15) (see Supplementary Data Note S3) [56], p-hydroxybenzoic
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acid (16) (see Supplementary Data Table S11) [57], gallic acid (17) (see Supplementary Data
Note S4) [58], vanillic acid (18) (See Supplementary Data Note S5) [57], naringenin (19) (see
Supplementary Data Table S12) [59], eriodyctiol (20) (see Supplementary Data Note S6) [60],
hesperetin (21) (see Supplementary Data Table S13) [61,62], eriodyctiol-7-O-β-D-glucoside
(22) (see Supplementary Data Table S14) [63], quercetin (23) (see Supplementary Data
Table S15) [64], isoquercetin (24) (see Supplementary Data Table S16) [57], luteolin (25) (see
Supplementary Data Table S17) [65], luteolin-7-O-β-D-glucoside (26) (see Supplementary
Data Table S18) [66], apigenin (27) (see Supplementary Data Table S19) [67,68], apigenin-7-O-
β-D-glucoside (28) (see Supplementary Data Table S20) [69], diosmetin-7-O-β-D-glucoside
(29) (see Supplementary Data Table S21) [70] and docos-1-ene (30) (see Supplementary Data
Table S22) [71]. Figure 1 shows the structures of the isolates, which were determined using
1D and 2D NMR spectra and by comparing them to those reported in the literature.
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Figure 1. Isolated compounds from the leaves, flowers and roots of Phlomis × commixta Rech. f.

2.2. Elucidation of the Compounds

This research led to the isolation of two new natural products: 3-O-β-(3R)-D-apiofuranosyl-
(1→6)-O-β-D-glucopyranosyl-(3S)-oct-1-en-3-ol (1) and the tyrosol methyl ether palmitate
(2). Moreover, this is the first study that fully describes the NMR of tyrosol lignocerate
(3). The combination of NMR spectroscopic data with those of the high-resolution mass
spectrum (HRMS) data led to the molecular formula C19H34O10, with a molecular ion at
m/z = 445.2044 [M + HNa]+ (theor. C19H34NaO10; exact mass: 445.2050). At the same time,
the mass spectrum (ESI-MS, negative ionization) showed, as the base peak, the fragment
m/z = 421.4 [MH]−. Characteristic is the cleavage of the glycosidic O-bond, yielding a
fragment of m/z = 131.0 of apiose, as well as a fragment of m/z = 289.3 [M-Apio-H]−.
The next set of data were from the homonuclear 1D NMR and heteronuclear 2D NMR
experiments (Figure 2). The most characteristic system in the proton spectrum of the
compound is that of the geminal (vinyl) protons of the terminal double bond, which appear
at δ 5.21 and 5.11 ppm (see Supplementary Data Figures S1 and S2).
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The HSQC spectrum confirmed the observation by correlation of these two protons to
the secondary olefinic carbon at 116.3 ppm. The peak at 5.21 ppm appears as a ddd system,
with a trans-vicinal coupling of J1 = 17.4 Hz, an allylic coupling of J2 = 1.7 Hz and a geminal
coupling of J3 = 1.1 Hz. The peak at 5.11 ppm also appears as a ddd system, with a cis-
vicinal coupling of J1 = 10.4 Hz, an allylic coupling of J2 = 1.7 Hz and a geminal coupling
of J3 = 0.9 Hz. The C-2 olefinic carbon appears at 140.9 ppm, with the corresponding
proton at 5.86 ppm. This proton also has the ddd system, with a trans-vicinal coupling of
J1 = 17.4 Hz, a cis-vicinal coupling of J2 = 10.4 Hz and a value of J3 = 7.1 Hz, typical for the
allylic proton. The high chemical shift δ of both the H-3 allylic proton and the C-3 tertiary
allylic carbon (4.08 and 83.1 ppm, respectively) is indicative of the fact that the carbon is
attached to a heteroatom; it is, in fact, attached to the epimeric oxygen of the glycoside, as
will be shown below. The allylic proton is in a “key” position to identify the molecule, as it
interacts through the HMBC spectrum with both the C-1 and C-2 olefinic carbons and the
neighboring C-4 and C-5 aliphatic secondary carbons at δ 35.8 and 25.7 ppm, respectively
(see Supplementary Data Table S1).

The glucoside bond between β-glucose and C-3 is doubly confirmed: (a) by the HMBC
interaction between the anomeric proton H-1′ (δ 4.29 ppm) of glucose and C-3, and b) by
the HMBC interaction of the H-3 (δ 4.08 ppm) of alcohol with the C-1 of glucose (δ 103.3).

The sequence of the carbons and the corresponding protons in the glucose molecule
is clear, and can be confirmed by the data of the COSY, DEPT, HMBC, HSQC, NOESY
and TOCSY spectra in, as well as by the coupling constant values of, the protons (J) in the
proton spectrum, many of which are distinct (see Supplementary Data Figures S3–S9). A
part of the data is in Table 1.

The peculiarity in the structure of apiose allows for the determination of the sequence
of carbons and protons in the molecule. The anomeric proton H-1′′ appears at δ 4.99 ppm
and is correlated (HSQC) to the anomeric carbon that resonates at 110.8 ppm.

The glucoside bond with glucose C-6′ is confirmed by (a) the NOESY interaction (see
Supplementary Data Table S1) of the H-1′′ of apiose with glucose H-6′ (3.56/3.92 ppm),
(b) the interaction of H-1′′ with C-6′ (68.4 ppm) in the HMBC spectrum and (c) the interac-
tion of H-6′ glucose with the epimeric C-1′′ carbon at δ 110.8 ppm in the same spectrum.

The apiose H-1′′ epimeric proton gives a signal at 4.99 ppm, which splits into a doublet,
with J = 2.5 Hz, due to the presence of the neighboring H-2′′ proton, which appears at
3.88 ppm as a doublet, with J = 2.5 Hz. The carbon C-3′′ at 80.6 ppm is easily recognized by
13C NMR, as it is the only quaternary carbon in the molecule, and therefore does not appear
in the DEPT-135. The C4′′ (75.0 ppm) is also easily recognizable. This carbon is secondary
(DEPT-135) and has two protons at 3.75 and 3.95 ppm, which are diastereotopic, since C-3′′

is a stereogenic center. These protons split only with each other, with a typical coupling
constant of J = 9.6 Hz. The pack corresponding to C-5′′, with a resonance at 65.7 ppm,
carries two protons at 3.57 ppm that appear as a broad singlet in spite of the fact that the
neighboring quaternary carbon C3′′ is a stereogenic center. Mass spectrometry (ESI-MS)
gave negative-ionization fragments, which can be interpreted by the fragmentation process
analyzed in Figures S10 and S11 in Supplementary Material. The specific rotation value of
the molecule was determined as [α]D

20 = −420 (c = 2.0, CH3OH).
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Table 1. NMR spectroscopic data of metabolite 1 (CD3OD, 500 MHz).

# 13C HSQC DEPT 135 δ 1H Multiplicity (J, Hz)

Allylic part

1 116.3
H-1a CH2

5.21 ddd, J1 = 17.4, J2 = 1.7, J3 = 1.1 Hz, 1H
H-1b 5.11 ddd, J1 = 10.4, J2 = 1.7, J3 = 0.9 Hz, 1H

2 140.9 H-2 CH 5.86 ddd, J1 = 17.4, J2 = 10.4, J3 = 7.1 Hz, 1H
3 83.1 H-3 CH 4.08 dd, J1 = 13.1, J2 = 7.1 Hz, 1H

4 35.8
H-4a CH2

1.51 m, 1H
H-4b 1.68 dd, J1 = 10.2, J2 = 5.9 Hz, 1H

5 25.7
H-5a CH2

1.39 m, 1H
H-5b 1.32 m, 1H

6 33.1 H-6 CH2 1.31 m, 2H

7 23.7 H-7a
H-7b

CH2
1.33 m, 1H
1.37 m, 1H

8 14.4 H-8 CH3 0.90 t, J = 7.0 Hz, 3H
β-D-Glucose

1′ 103.3 H-1′ CH 4.29 d, J = 7.8 Hz, 1H
2′ 75.3 H-2′ CH 3.17 dd, J1 = 7.8, J2 = 4.2, 1H
3′ 76.8 H-3′ CH 3.34 m, 1H
4′ 71.7 H-4′ CH 3.25 dd, J1 = 8.7, J2 = 1.0 Hz, 1H
5′ 78.2 H-5′ CH 3.33 m, 1H

6′ 68.4
H-6a′ CH2

3.56 dd, J1 = 11.2, J2 = 5.2 Hz, 1H
H-6b′ 3.92 dd, J1 = 11.2, J2 = 1.8 Hz, 1H

β-D-Apiose
1′′ 110.8 H-1′′ CH 4.99 d, J = 2.5 Hz, 1H
2′′ 78.0 H-2′′ CH 3.88 d, J = 2.5 Hz, 1H
3′′ 80.6 H-3′′ C - -

4′′ 75.0
H-4a′′ CH2

3.95 d, J = 9.6 Hz, 1H
H-4b′′ 3.75 d, J = 9.6 Hz, 1H

5′′ 65.7 H-5′′ CH2 3.57 br.s, 2H

A literature review on this structure showed an initial report with spectroscopic data
referring to the structure of 3-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranosyl-(3S)-oct-
1-en-3-ol from the plant Clerodendranthus spicatus (Labiateae) [72].

Spectral data in this work were very similar to ours, with small differences in the
13C-NMR values for the apiose molecule. Based on their literature reference [73], our
observations and the data on apiose methyl glycosides [74], we believe that the isolated
compound is a 3-S apiose glycoside (Figure 3).
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Figure 3. The four different diastereomers of apiose methyl glycosides.

The correct apiose structure can be clarified based on the NOESY spectrum, showing
the interactions of the protons in space. Indeed, H-1′′ interacts strongly with H-5′′ and
H-4b′′ protons, which are “facing down” in a “beta (3R)”-like structure.

This hypothesis was supported by the NOESY data, which further indicated the
interaction of the H-5′′ proton with the H-4b′′ proton, as well as the absence of an interaction
between the H-4a′′ and H-1′′ protons, which are “on opposite sides of the molecule” in a
beta (3R) structure. It is, therefore, very likely that the correct structure of the molecule
isolated from our group is 3-O-β-(3R)-D-apiofuranosyl-(1→6)-O-β-D-glucopyranosyl-(3S)-
oct-1-en-3-ol. The small difference in the specific rotation of the compound, [a]D20 = −420,
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in relation to that of the literature, [α]D20 = −340, is probably expected, given the small
difference in the structure of the two molecules.

Metabolite 2: a tyrosol methyl ether palmitate (4-Methoxyphenethyl palmitate). The
combination of the NMR and high-resolution mass spectrum (HRMS) spectroscopic data
led to the molecular formula C25H42O3, with a molecular ion of m/z = 413.2666 [M + HNa]+

(theor. C25H42NaO3; exact mass: 413.3026) (see Supplementary Data Figures S12–S18). At
the same time, the mass spectrum (ESI-MS, positive ionization) confirmed the molecular
ion of m/z = 413.6 [M + HNa]+.

In the low-field range, two pairs of orthoconjugated aromatic protons, with peaks at δ
7.08 (J = 8.6 Hz, H-2/H-6) and 6.76 (J = 8.6 Hz, H-3/H-5), typical of an AB system, indicate
the presence of a 1,4-substituted aromatic ring. There is also a triplet at 4.23 ppm (J = 7.0 Hz)
for the ether moiety carbon (C-8) that split due to the coupling with the neighboring C-7
benzyl hydrogens, which resonate at 2.86 ppm, with a coupling constant of J = 7.0 Hz.
Characteristic peaks in the spectrum are the singlet corresponding to the tyrosol methyl
ether (C-9) at δ 3.48 and the triplet at δ 2.27, assigned to the methyne protons of the C-2′, split
by the neighboring protons (H-3′) of the side chain, with a coupling constant of J = 7.3 Hz.
A broad singlet at δ 1.25 ppm integrates to 22 protons, corresponding to an 11-carbon
part of the aliphatic chain, and the triplet at δ 0.87 ppm is assigned to the terminal methyl
group of this chain, split by the neighboring (C-15′) protons, with a coupling constant of
J = 7.2 Hz.

In the carbon spectrum, the peak at 173.9 ppm confirmed the presence of the carbonyl
carbon C-1′, and a very weak peak at 154.2 ppm was assigned to the quaternary C-4. By
combining the NMR, HMBC (Figure 4) and HSQC spectroscopy techniques, it is understood
that the peak at 115.2 ppm corresponds to C-3/C-5, since they interact only with the protons
of the AB system, and the peak at 130.0 ppm corresponds to C-2/C-6, while the carbon
at 50.9 ppm (C-9) corresponds to the methyl of tyrosol ether. The complete spectroscopic
dataset for the compound is presented in Table 2 below.
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Metabolite 2 is reported for the first time as component of the hybrid or the genus
Phlomis. The literature review on this structure showed a report by the Gargouri research
team [75], reporting synthetic approaches to lipophilic ester derivatives of tyrosol. The
NMR spectroscopic data of the synthetic compound were similar to those reported by
our group. Therefore, to the best of our knowledge, metabolite 2 has been isolated as a
plant component for the first time. The same group investigated the germicidal activity
of tyrosol and synthetic esters against Gram (+) and Gram (−) bacteria. The minimum
inhibitory concentration (MIC) against the microorganisms concerned, as well as their
antileishmaniasis activity against Leishmania major and L. infantum, were examined.
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Table 2. NMR spectroscopic data of metabolite 2 (CDCl3, 500 MHz).

# 13C HSQC δ 1H Multiplicity (J, Hz) COSY HMBC

1 130.1 * - - - - H-2/H-6, H-7,
H-8

2/6 130.0 H-2/H-6 7.08 d, J = 8.6 Hz, 2H H-3/H-5 H-4, H-3/H-5
3/5 115.2 H-3/H-5 6.76 d, J = 8.6 Hz, 2H H-2/H-6 -

4 154.2 * - - - - H-2/H-6
7 34.3 H-7 2.86 t, J = 7.0 Hz, 2H H-8 H-8
8 64.9 H-8 4.23 t, J = 7.0 Hz, 2H H-7 H-7
9 50.9 H-9 3.48 s, 3H - -
1′ 173.9 - - - - H-8, H-2′

2′ 34.2 H-2′ 2.27 t, J = 7.3 Hz, 2H H-3′ -
3′ 24.9 H-3′ 1.60–1.57 m, 2H H-2′ H-2′

4′/13′ 29.7 H-4′/H-13′ 1.25 br.s, 20H - -
14′ 31.9 H-14′ 1.25 br.s, 2H - H-16′

15′ 22.6 H-15′ 1.29–1.25 m, 2H H-16′ H-16′

16′ 14.1 H-16′ 0.87 t, J = 7.2 Hz, 3H H-15′ -
* Reported correlation are from the HMBC and HSQC spectra.

Metabolite 3: tyrosol lignocerate (2-(4′-hydroxyphenyl)-ethyl lignoceric ester), was
identified using 1D and 2D NMR spectroscopy in combination with mass spectral data
(ESI-MS), which showed a strong molecular ion of m/z = 487.4 [M-H]− (see Supplementary
Data Figures S19–S25). The signal sequence in the 1H-NMR spectrum showed several
similarities to metabolite 2, which indicated that it was an analogue of a tyrosol ester. The
1H-NMR spectrum showed two pairs of orthoconjugated aromatic protons, with low-field
peaks at δ 7.07 (J = 8.5 Hz, H-2) and 6.76 (J = 8.5 Hz, H-3), typical of an AB system, indicating
the presence of a 1,4-substituted aromatic ring. There is also a triplet at 4.23 ppm (J = 7.1 Hz)
for the protons on the ether-type carbon (C-8), which are split due to the coupling with the
adjacent benzylic hydrogens C-7 that resonate at 2.86 ppm, with a coupling constant of
J = 7.1 Hz. Characteristic is also the triplet at δ 2.28, corresponding to its methylene proton
C-2′, split by neighboring hydrogens (H-3′) of the side chain, with a coupling constant of
J = 7.5 Hz. A broad singlet at δ 1.25 ppm integrates for 36 protons, corresponding to the
presence of an aliphatic chain segment comprising 18 methylene moieties, and finally the
triplet at δ 0.88 ppm corresponds to the terminal methyl of the aliphatic chain, split by the
protons of the neighboring carbon (C-23′), with a coupling constant of J = 7.2 Hz.

In the 13C NMR spectrum, the peak at 173.9 ppm confirmed the presence of the
carbonyl carbon C-1′, whereas the peak at 154.2 ppm corresponds to the quaternary C-4.
The combination of the NMR, HMBC (Figure 5) and HSQC techniques revealed that the
peak at 115.2 ppm corresponds to C-3/C-5, since they interact only with the protons of
the AB system. From the DEPT-135 range, it is clear that the secondary carbons of the
aliphatic chain resonate in the range of 20–35 ppm, and the peak at 14.1 ppm corresponds
to the terminal carbon of the chain. The complete spectroscopic data of the compound are
presented in Table 3 below.
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Metabolite 3 was first isolated from the bark of the Buddleja cordata subsp. cordata
of the family Loganiaceae [76]. It is isolated for the first time regarding both the hybrid
and the genus Phlomis in general. This is the second time that this particular metabolite is
mentioned in the literature. Compound 3, according to the literature, showed moderate
antibacterial activity against Mycobacterium tuberculosis (MIC = 64 µg/mL).

Table 3. NMR spectroscopic data of metabolite 3 (CDCl3, 500 MHz).

# 13C HSQC DEPT 135 δ 1H Multiplicity (J, Hz) COSY HMBC

1 129.9 - C - - - H-2/H-6
H-3/H-5

2/6 130.0 H-2/H-6 CH 7.07 d, J = 8.5 Hz, 2H H-3/H-
5

H-3/H-5
H-7, H-8

3/5 115.2 H-3/H-5 CH 6.76 d, J = 8.5 Hz, 2H H-2/H-
6 H-2/H-6

4 154.2 - C - - H-2/H-6
H-3/H-5

7 34.3 H-7 CH2 2.86 t, J = 7.1 Hz, 2H H-8 H-2/H-6
8 64.9 H-8 CH2 4.23 t, J = 7.1 Hz, 2H H-7 H-7
1′ 173.9 - C - - - H-8, H-2′, H-3′

2′ 34.2 H-2′ CH2 2.28 t, J = 7.5 Hz, 2H H-3′ H-8, H-3′

3′ 24.9 H-3′ CH2 1.59 dt, J1 = 7.5, J2 = 7.0 Hz, 2H H-2′ H-2′

4′/21′ 29.6 H-4′/H-21′ (CH2)18 1.25 br.s, 36H - -
22′ 31.9 H-22′ CH2 1.25 m, 2H - H-23′, H-24′

23′ 22.6 H-23′ CH2 1.29 brq, J = 7.2 Hz, 2H H-24′ H-24′

24′ 14.1 H-24′ CH3 0.88 t, J = 7.2 Hz, 3H H-23′ H-23′

2.3. Cytotoxicity

The cytotoxic activity of the extracts from the roots, leaves and flowers of the hybrid
P. × commixta was assessed using three different cell lines, i.e., Hep2c (human cervix
carcinoma), RD (human rhabdomyosarcoma) and L2OB (murine fibroblast). There is a
great interest regarding the biological activities of Phlomis spp. according to the literature.
The results herein showed that all the samples from the roots expressed higher cytotoxic
activity in the case of the Hep2c and RD cell lines, while the opposite was evidenced in the
case of the L2OB cell line. The basic criterion for the cytotoxic activity of a plant extract is
an IC50 < 30 µg/mL (Table 4).

Table 4. Cytotoxic activity of the extracts from P. × commixta in one murine (L2OB) and two human
cell lines (Hep2c, RD) compared to the standard cytotoxic agent cis-diammine dichloroplatinum
(cis-DDP).

Extract IC50 Values (µg/mL)

Solvent Plant Parts Hep2c Cells RD Cells L2OB Cells

Petroleum ether roots 19.61 ± 0.39 23.18 ± 0.43 30.84 ± 0.31
Ethyl acetate roots 20.74 ± 0.39 27.59 ± 0.29 33.76 ± 0.48
Butanol roots 25.89 ± 0.21 28.57 ± 0.39 43.65 ± 0.74
Water roots 26.32 ± 0.41 29.77 ± 0.18 46.74 ± 0.98
Petroleum ether leaves 74.39 ± 0.12 98.38 ± 0.22 111.56 ± 0.37
Dichloromethane leaves 36.53 ± 0.61 38.73 ± 0.77 54.76 ± 0.39
Methanol leaves 37.88 ± 0.91 48.29 ± 0.45 62.72 ± 0.91
Petroleum ether (a L.L.E of b ML) leaves 52.92 ± 0.19 49.29 ± 0.33 85.38 ± 0.76
Ethyl acetate (L.L.E of ML) leaves 52.78 ± 0.32 62.90 ± 0.28 88.75 ± 0.32
Butanol (L.L.E of ML) leaves 79.61 ± 0.39 100.91 ± 0.48 121.42 ± 0.38
Water (L.L.E of ML) leaves 91.44 ± 0.27 104.19 ± 0.64 129.39 ± 0.49
Petroleum ether flowers 92.85 ± 0.24 108.29 ± 0.88 134.58 ± 0.29
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Table 4. Cont.

Extract IC50 Values (µg/mL)

Solvent Plant Parts Hep2c Cells RD Cells L2OB Cells

Dichloromethane flowers 29.47 ± 0.29 25.73 ± 0.93 32.46 ± 0.29
Methanol flowers 38.52 ± 0.87 29.44 ± 0.31 35.30 ± 0.91
Butanol flowers 21.84 ± 0.78 30.74 ± 0.28 45.21 ± 0.37
Water flowers 38.63 ± 0.59 31.53 ± 0.98 48.93 ± 0.27
cis-DDP 0.94 ± 0.55 1.4 ± 0.97 0.72 ± 0.64

American National Cancer Institute (NCI) < 30 µg/mL
a LLE: liquid–liquid extraction; b ML: methanol extract from leaves.

3. Discussion
3.1. Chemotaxonomic Significance of the Secondary Metabolites

The genus Phlomis is well known for its richness in flavonoids and phenylpropanoid
glycosides. A number of studies reveal that apigenin, luteolin, naringenin and their
derivatives are very abundant in Phlomis’ polar extracts [12,25]. However, while there
is only one report of the presence of diosmetin in Phlomis plants (P. fruticosa) [77], there
is no one mentioning diosmetin-7-O-β-D-glucoside. It is noteworthy that quercetin is
reported as a component only in three species of the genus Phlomis (P. bracteosa [78] and
P. elliptica [79], P. sterwartii Hf. [38]). Zhang and Wang [80] initiated a study reporting
the detection of phenolic acids in two Chinese Phlomis species. Phenolic acids isolated
from Phlomis × commixta (caffeic acid, chlorogenic acid, p-coumaric acid, vanillic acid
and gallic acid) have also been detected in acetone and methanol extracts of P. umbrosa
and P. megalantha. There are very few references regarding the isolation and detection of
caffeic acid (P. stewartii [7] and P. lycunitis [30], P. armeniaca [81]), p-hydroxy benzoic acid
(P. stewartii [7] and P. bracteosa [78]) and chlorogenic acid (P. olivieri [82], P. syriaca [83]) in
the genus Phlomis. The presence of chlorogenic acid and the methyl ester of an isomer
(3-O-caffeoylquinic acid methyl ester) in Phlomis plants has been reported [25]; however,
this is the first report on the presence of chlorogenic acid methyl ester in this genus.

Also, this is the first report of docos-1-ene (30) and 5,7-dihydroxy chromone (15) in
the genus Phlomis. Stigmasterol is one of the most abundant sterols in the plant kingdom,
and has also been isolated from the plants of the genus Phlomis (P. cashmeriana [8], P.
bracteosa [84]). Brassicasterol, though, which is also a well-known sterol, is reported for the
first time as component in the genus Phlomis.

3.2. Anticancer Activity of the Extracts

Cancer is a disease that has a significant global impact on people. To treat and
prevent this fatal condition, there is a continuous need for novel therapeutics. Natural
substances are gaining attention from scientists because they are considered to have fewer
hazardous side-effects than existing treatments, like chemotherapy. In order to create
novel medications, secondary metabolites from the plant kingdom have been isolated and
assessed for their anticancer properties.

There are many studies regarding the cytotoxic effects of the extracts from the aerial
parts of various Phlomis species (Table 5). It must be mentioned that the current study
provides the first report on the cytotoxic effects of the extracts from the roots of a Phlomis ×
commixta Rech. f. Strangely, our literature search did not reveal any reports concerning the
evaluation of anticancer activity on the extracts derived from the roots of species belonging
to the genus Phlomis. However, there are some studies on the isolation, characterization
and antitumor activity of nortriterpenoids from the roots of P. umbrosa var lutibracteata [85],
the antitumor activity of phlomiol extracted from the roots of P. younghusbandii [86,87]
and phenylethanoid glycosides from the roots of P. umbrosa [88], as well as the chemical
constituents in the roots of P. medicinalis and P. younghusbandii [23,89].
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Table 5. Short synopsis of the cytotoxicity of the extracts from Phlomis spp. against human cancer cell
lines.

Phlomis Species Plant Parts Cell Line Bibliography

P. olivieri, P. caucasica, P. anisodontea,
P. bruguieri, P. kurdica, P. persica

MCF-7, HepG2, HT29, A549 and
MDBK [90]

P. lanceolata Total methanolic extract and partition
fractions of flowering aerial parts HT29, Caco2, T47D and NIH3T3 [91]

P. syriaca Ethanolic extract from the
flowers MCF-7 [92]

P. cypria Post 70% aqueous methanol extract of
herbal parts SK-HEP-1 cancer cell line [43]

P. platystegia Post Aqueous extracts of aerial parts HepG2 [93]

P. linearis Boiss. & Bal.

Aqueous extract
Mouse fibroblast L929 cell line,

human H1299 cell line and human
Caco-2 cell lines

[94]

Hexane, diethyl ether, ethyl
acetate and methanol extracts of
the aerial parts

A549 and HT-29 [95]

P. aurea Decne and P. floccosa D HEP-G2, HCT-116 and MCV-7 [96]

P. aurea Decne
Aerial parts extracts methylene
chloride: methanol (1:1) and
methanol: H2O (7:3)

CCRF–CEM leukemia cells [97]

P. persica Boiss. The aerial part of the plants
macerated in ethanol (70%) MCF-7 and MDA-MB231 [98]

P. rigida Labill. Methanol extract from leaves and
flowers MCF-7, MDBK, HT-29 and A-549 [99]

P. pungens Willd. Methanol extract of aerial parts
powder Caco-2, HepG2 and MCF-7 cell lines [100]

P. russeliana
Ethanolic extract of aerial part Caco-2 cell lines [36]

Leaf extract HEK293 and MCF-7 [101]

P. caucasica

Aerial parts, 80% methanol extract Human melanoma SKMEL-3 cells

[102]

P. kurdica [103]

P. persica, P. brugieri, P. olivieri,
P. anisodontea [104]

P. fruticosa L. Aerial parts, methanol extract
HGF-1, MCF-7, SiHa and HepG2 [105]

A172 glioblastoma cell line [106]

P. sterwartii Hf. Leaves, flowers and whole plant HepG2 cell lines [38]

P. × composita Pau Aerial parts
A549 [107]

P. purpurea L. Flowering aerial parts

P. samia Aerial parts, methanol extract HepG2 and MDA [108]

P. viscosa Poiret Crude ethanolic extracts from leaves U-87 and MCF7 [109]

P. thapsoides Aerial parts Caco-2 and HepG2 [10]

P. aucheri Aerial parts, methanol extract PC-3, MCF-7, HepG2, CHO and
B16-F10 [110]

P. angustissima and P. fruticosa Methanol/water, ethyl acetate and
water extracts of leaves and flowers

HeLa, MCF-7, ACC-201, OE-33 and
HepG2 [111]

P. bucharica and P. salicifolia Water, methanol, chloroform and
hexane extracts from the whole plant HeLa and HL-60 cell lines [112]
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According to the bibliography, there is a great interest for the antitumor activity
exhibited by the extracts of the species belonging to the genus Phlomis. Table 5 describes
studies on the antitumor activity of the extracts from Phlomis spp. using in vitro techniques
in various human cancer cell lines. In order to compile all this bibliographic data, we used
free chemistry databases, such as PubChem, Scopus, Reaxys and Google Scholar. It is
interesting that, in all these reports, the plant material was from the aerial or part of the
aerial parts (such as the flowers or/and leaves).

According to our results, the plant part that exhibited the highest cytotoxicity was the
roots. In terms of the basic criterion for the cytotoxic activity of a plant extract according to
American National Cancer Institute (activity < 30 µg/mL), all polar solvent extracts from
the roots showed to be active for the human cancer cell lines in doses between 19.61 and
29.77 µg/mL.

Another important observation is that, with the exception of the less-polar extracts
from the leaves and the flowers of the plant, the rest of them show a moderate to strong
antitumor effect, with IC50 values between 21.84 and 48.29 µg/mL. Moreover, the flowers’
extracts showed lower IC50 values than the leaves. Apart from that, the results show that
none of the extracts derived after the liquid–liquid extraction of the methanolic extracts
from the leaves had a stronger anticancer activity compared to the initial methanolic
extracts. This result indicates the possible synergistic activity of the compounds extracted
from the leaves.

4. Materials and Methods
4.1. Plant Material

The plant material of Phlomis × commixta (Lamiaceae) was collected on 04/2012 from
the village Tylisos of Heraklion, Crete, in Greece (coordinates: 35◦18′42′′ N, 25◦01′07′′ E).
The plant was botanically identified by Prof. Dr. S. Pirintsos, Department of Biology,
University of Crete, Greece, and a voucher specimen was deposited in the Department
Herbarium. The plant samples were naturally dried (in the shade and in a well-ventilated
environment), grinded by a laboratory mill (particle size approx. 1 mm) and stored in the
darkness at room temperature.

4.2. Extraction and Isolation

The dried flower material (115 g) was extracted repeatedly in a Soxhlet appara-
tus (petroleum ether; dichloromethane; methanol). This process was thrice repeated
(3 × 300 mL for 24 h each time), and after filtration and evaporation under reduced pres-
sure, the petroleum extract (1.5 g), the dichloromethane extract (790 mg) and the methanol
extract (27.0 g) residues were collected. The dried leaf herbal material (350 g) was extracted
repeatedly at room temperature with petroleum ether, dichloromethane and methanol. This
process was thrice repeated (3 × 300 mL for 24 h each time), and filtration and evaporation
under reduced pressure afforded the petroleum extract (4.9 g), the dichloromethane extract
(4.1 g) and the methanol extract (45.6 g) residues. The root systems of the plants were
also extracted at room temperature with ethanol for six days under periodic shaking. The
extract gave a solid residue weighing 7.2 g.

4.2.1. Component Isolation from the Flowers

The flower methanol extract was evaporated under reduced pressure to yield a crude
residue (29.6 g), which was then suspended in 1 L of boiling water and partitioned with
Et2O, EtOAc and n-BuOH, respectively. The Et2O residue (3.1 g) was subjected to column
chromatography (C.C.) on a Sephadex LH-20 (4.00 × 40.00 cm) and eluted with a mixture
of CH2Cl2:MeOH (1:1) to obtain fractions A–Q. Fraction D (184.5 mg) was submitted to
Sephadex LH-20 separation using a mixture of CH2Cl2:MeOH (1:2) as an eluent to obtain
eight fractions (DA–DS). One of these fractions, DO (4.3 mg), was identified as naringenin.
Fraction E (111.2 mg) was submitted to Sephadex LH-20 separation using a mixture of
CH2Cl2:MeOH (1:2) as an eluent to obtain eight fractions (EA–ES). One of these fractions,
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EM (10.1 mg), was identified again as naringenin. Fraction F (27.1 mg) was submitted to
Sephadex LH-20 separation using MeOH as an eluent to obtain eight fractions (FA–FO).
From these, fraction FB (5.8 mg) was identified as p-hydroxybenzoic acid and fraction FC
(1.2 mg) as 5,7-dihydroxychromone. Fraction G (11.6 mg) was separated on the Sephadex
LH-20 using MeOH as an eluent to obtain eight fractions (GA–GO). From these, fractions
GH (2.5 mg) and GI (1.1 mg) were identified as naringenin. Fraction H (17.1 mg) was
separated on the Sephadex LH-20 using MeOH as an eluent to obtain eight fractions
(HA–HC). From these, fraction HC (0.7 mg) was identified as caffeic acid, while fractions
HL (1.8 mg) and HM (1.0 mg) were identified as naringenin, fraction HO (1.7 mg) was
identified as a mixture of two compounds (eriodyctiol and luteolin) and the HP (1.7 mg)
fraction was identified as luteolin. Fraction I (7.8 mg) was submitted to Sephadex LH-20
separation using a mixture of CH2Cl2:MeOH (1:2) as an eluent to obtain eight fractions (IA–
IH). From these, fraction IE (3.2 mg) was identified again as luteolin. Fraction K (24.0 mg)
was submitted to Sephadex LH-20 separation using a mixture of CH2Cl2:MeOH (1:2) as an
eluent to obtain eight fractions (KA–KQ). From these, fraction KL (7.5 mg) was identified
as a mixture of two compounds (eriodyctiol and luteolin) and fraction KM (1.0 mg) was
identified as luteolin.

The EtOAc residue (2.5 g) was subjected to column chromatography (C.C.) on the
Sephadex LH-20 (4.00 × 40.00 cm) and eluted with mixture of CH2Cl2:MeOH (1:1) to obtain
fractions A–O. Fraction C (382.4 mg) was submitted to C.C. on silica gel using CH2Cl2–
MeOH mixtures of increasing polarity as eluents to obtain twenty-three fractions (CA–CW).
One of these fractions, CR (13.5 mg), was identified as martynoside. Fractions D (610.2 mg)
and E (1.1 g) were subjected to further chromatographic separations, as described below.
Fraction D (610.2 mg) was submitted to C.C. on silica gel using CH2Cl2–MeOH–H2O
mixtures of increasing polarity as eluents to obtain twenty-five fractions (DA–DZ). The
hexane extract of fraction DA contained pure docos-1-ene (3.5 mg). Fraction DO (27.9 mg)
was further fractionated by semipreparative HPLC (MeOH:H2O, 3:2, 1.00 mL/min) to
obtain diosmetin-7-O-β-D-glucoside (Rt = 78.56 min, 1.1 mg). Fraction DU was identified as
verbascoside (eluted with CH2Cl2–MeOH–H2O, 75:25:2.5, 265.6 mg). Fraction E (1.1 g) was
submitted to C.C. on silica gel using CH2Cl2–MeOH–H2O mixtures of increasing polarity
as eluents to obtain twenty-four fractions (EA–EY). Fraction EK (85.8) mg was submitted to
Sephadex LH-20 (Merck KGaA, Darmstadt, Germany) separation using MeOH (100%) as an
eluent to obtain twelve fractions (EKA–EKM). Fraction EKE (46.0 mg) was further purified
on cellulose pTLC, which led to the isolation of chlorogenic acid methyl ester (14.3 mg,
Rf = 0.87 on 30% acetic acid). Fraction EO (30.7 mg) was further purified on cellulose pTLC
to yield apigenin-7-O-β-D-glucoside (1.0 mg, Rf = 0.28 on 30% acetic acid) and eriodyctiol-
7-O-β-D-glucoside (16.6 mg, Rf = 0.69 on 30% acetic acid). Fraction ER was identified as
verbascoside (eluted with CH2Cl2–MeOH–H2O, 75:25:2.5, 556.6 mg). Fraction EW was
identified as chlorogenic acid (eluted with CH2Cl2–MeOH–H2O, 60:40:4.0, 50.7 mg).

The butanol residue (3.5 g) was subjected to column chromatography (C.C.) on the
Sephadex LH-20 (4.00 × 44.00 cm) and eluted with MeOH (100%) to obtain the fractions
A–L. Fraction H (341.0 mg) was submitted to Sephadex LH-20 fractionation using MeOH
(100%) as an eluent to obtain eight fractions (HA–HO). Fraction HD (10.6 mg) was further
fractionated by semipreparative HPLC (MeOH:H2O, 1:1, 1.0 mL/min), which allowed for
the isolation of diosmetin-7-O-β-D-glucoside (Rt = 32.72 min, 4.3 mg). Fraction HE (41.6 mg)
was further fractionated by semipreparative HPLC (MeOH:H2O, 1:1, 1.0 mL/min), which
allowed for the isolation of chlorogenic acid (Rt = 10.94 min, 2.5 mg) and diosmetin-7-O-β-
D-glucoside (Rt = 29.74 min, 9.8 mg). Fraction HF (63.2 mg) was further fractionated by
semipreparative HPLC (MeOH:H2O, 1:1, 1.0 mL/min), which allowed for the isolation of
chlorogenic acid (Rt = 9.51 min, 3.0 mg), gallic acid (Rt = 14.34 min, 1.0 mg) and p-coumaric
acid (Rt = 23.8 min, 2.8 mg) compounds.
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4.2.2. Component Isolation from the Leaves

The methanol extract was evaporated under reduced pressure to yield a crude residue
(45.6 g), which was then suspended in 1 L of boiling water and partitioned with Et2O,
EtOAc and n-BuOH, respectively. The EtOAc residue (3.4 g) was subjected to column chro-
matography (C.C.) on the Sephadex LH-20 (4.00 × 60.00 cm) and eluted with MeOH (100%)
to obtain fractions A–L. Fraction E (88.0 mg) was further fractionated by semipreparative
HPLC (MeOH:H2O, 1:1, 1.00 mL/min), which allowed for the isolation of echinacoside
(Rt = 15.49 min, 11.9 mg) and isoquercetin (Rt = 40.34 min, 13.7 mg). Fraction H (98.0 mg)
was submitted to Sephadex LH-20 fractionation using MeOH (100%) as an eluent to ob-
tain nine fractions (HA–HP). Fraction HI (4.0 mg) was identified as apigenin. Fraction
I (138.0 mg) was submitted to Sephadex LH-20 fractionation using MeOH (100%) as an
eluent to obtain eleven fractions (IA–IL), which allowed for the isolation of quercetin from
fraction ID (3.0 mg). Fraction IH (15.0 mg) was further fractionated by semipreparative
HPLC (MeOH:H2O, 1:1, 1.00 mL/min), which allowed for the isolation of hesperetin
(Rt = 46.47 min, 1.2 mg) and vanillic acid (Rt = 66.37 min, 1.0 mg).

The butanol residue (17.8 g) was subjected to VLC over silica gel (10 × 7 cm) using
P.E., MeOH and H2O as eluent mixtures of increasing polarity to yield a total of twenty
fractions (A–U). Fraction G (1.72 g) was submitted to Sephadex LH-20 fractionation using
MeOH (100%) as an eluent to obtain twenty-one fractions (GA–GV). Fraction GH (104.5 mg)
was further fractionated by semipreparative HPLC (MeOH:H2O, 1:1, 1.00 mL/min), which
allowed for the isolation of 3-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranosyl-oct-1-en-
3-ol) (Rt = 46.38 min, 4.7 mg). A portion of 167.0 mg from fraction GL (973.0 mg) was
further purified on silica pTLC with EtOAc:AcOH:H2O/120:30:60, yielding forsythoside
B (34.6 mg, Rf = 0.31) and verbascoside (38.6 mg, Rf = 0.55). Fraction GS (25.3 mg) was
further purified on cellulose pTLC, which led to the isolation of luteolin-7-O-β-D-glucoside
(6.2 mg) (Rf = 0.34 on EtOAc:AcOH:H2O/120:30:60).

4.2.3. Component Isolation from the Roots

The petroleum ether extract was evaporated under reduced pressure to yield a crude
residue (1.3 g), which was then submitted to C.C. on silica gel using CH2Cl2–EtOAc–
MeOH mixtures of increasing polarity as eluents to obtain twenty-one fractions (A–V).
Fractions I (16.5 mg), K (92.7 mg) and M (110.7 mg) were subjected to further chromato-
graphic separations, as described below. Fraction I was further purified on silica pTLC,
which led to the isolation of the tyrosol methyl ether palmitate (3.0 mg) (Rf = 0.56, on
DM:EtOAc, 8:2). Fraction K was further purified on semipreparative HPLC (Hex:EtOAc,
4:1, 1.00 mL/min), which allowed for the isolation of tyrosol lignocerate (Rt = 12.20 min,
6.0 mg) and brassicasterol (Rt = 25.97 min, 12.3 mg). Fraction M was further fractionated
by semipreparative HPLC (Hex:EtOAc, 4:1, 1.00 mL/min), which allowed for the isolation
of stigasterol (Rt = 23.65 min, 1.0 mg). The EtOAc residue (1.8 g) was subjected to column
chromatography (C.C.) on the Sephadex LH-20 (4.00 × 40.00 cm) and eluted with a mixture
of MeOH (100%) to obtain fractions A–U. Fraction M (78.6 mg) was further fractionated by
semipreparative HPLC (MeOH:H2O, 1:1, 1.0 mL/min), which allowed for the isolation of
forsythoside B (Rt = 15.02 min, 10.5 mg) and verbascoside (Rt = 17.47 min, 4.6 mg).

The butanol residue (1.9 g) was subjected to column chromatography (C.C.) on the
Sephadex LH-20 (4.00 × 60.0 cm) and eluted with MeOH to obtain fractions A–N. Fractions
E (587.4 mg), F (555.5 mg) and G (78.5 mg) were subjected to further chromatographic sepa-
rations, as described below. A portion of 40.0 mg from fraction E was further fractionated
by semipreparative HPLC (MeOH:H2O, 1:1, 1.00 mL/min), which allowed for the isolation
of forsythoside B (Rt = 14.75 min, 9.5 mg) and a mixture of two compounds (allysonoside
and forsythoside B) (Rt = 16.05 min, 1.6 mg). Fraction F (86.8 mg) was further fractionated
by semipreparative HPLC (MeOH:H2O, 1:1, 1.00 mL/min), which allowed for the isolation
of forsythoside B (Rt = 14.68 min, 40.6 mg), verbascoside (Rt = 16.93 min, 2.2 mg) and a
mixture of allysonoside and forsythoside B (Rt = 17.27 min, 1.8 mg). A portion of 36.0 mg
from fraction G (78.0 mg) was further fractionated by semipreparative HPLC (MeOH:H2O,
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1:1, 1.00 mL/min), which allowed for the isolation of forsythoside B (Rt = 14.87 min, 8.0 mg)
and verbascoside (Rt = 17.24 min, 1.1 mg).

4.3. Cytotoxic Activity of the Studied Extracts

A standard cytotoxic activity test was performed [113] using the MTT (3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay [114,115]. The following cell
lines were used (cell lines were donated from the collection of cell lines of the Institute of
Virology, Vaccines and Serums “Torlak”, Belgrade, Serbia): RD (substrate: MEM Eagle/10%
FCS) (cell line derived from human rhabdomyosarcoma), Hep2c (medium: MEM Eagle/5%
FCS) (cell line derived from human cervix carcinoma–HeLa derivative) and L2OB (medium:
MEM Eagle/10% FCS) (cell line derived from murine fibroblast), against which the activ-
ity of the extracts was measured. The results were expressed as IC50 values (µg/mL), a
threshold which was defined as the concentration of an agent inhibiting cell survival by
50% in comparison to a vehicle-treated control [116]. The experiment was conducted in
accordance with the method described by Mašković et al., 2015 [116].

5. Conclusions

The work presented in this publication is the first report on the isolation and the
identification of the components of the Phlomis × commixta hybrid, an endemic plant of
Crete, Greece. The component analysis included extraction from the flowers, the leaves and
the roots of the plant, the subsequent component isolation using various chromatographic
techniques and identification by spectroscopic methods, such as UV/Vis, NMR, GC-MS
and LC-MS.

A total of thirty components were isolated, including flavonoids, phenylethanoic gly-
cosides, phenolic acids, tyrosol esters, steroids, a chromone and an aliphatic hydrocarbon.

This report includes a detailed structural elucidation of allylic alcohol glycoside
3-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranosyl-oct-1-ene-3-ol, which was fully char-
acterized as a natural product for the first time, and two tyrosol esters: tyrosol lignocerate
and the tyrosol methyl ether palmitate, the former one mentioned only once in the literature
as a component in a different species, and the latter one isolated as a natural product for
the first time.

All the root extracts tested showed a high cytotoxic activity against the Hep2c and RD
cell lines, with the leaf and flower extracts showing a moderate, though distinct, activity.
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21. Saracoğlu, I.; Varel, M.; Çaliş, I.; Dönmez, A.A. Neolignan, flavonoid, phenylethanoid and iridoid glycosides from Phlomis
integrifolia. Turk. J. Chem. 2003, 27, 739–747.

22. Khitri, W.; Smati, D.; Mitaine-Offer, A.C.; Paululat, T.; Lacaille-Dubois, M.A. Chemical constituents from Phlomis bovei Noë and
their chemotaxonomic significance. Biochem. Syst. Ecol. 2020, 91, 104054. [CrossRef]

23. Katagiri, M.; Ohtani, K.; Kasai, R.; Yamasaki, K.; Yang, C.R.; Tanaka, O. Diterpenoid glycosyl esters from Phlomis younghusbandii
and P. medicinalis roots. Phytochemistry 1994, 35, 439–442. [CrossRef] [PubMed]

24. Yalçin, F.N.; Ersöz, T.; Bedir, E.; Dönmez Ali, A.; Stavri, M.; Zloh, M.; Gibbons, S.; Çaliş, I. Amanicadol, a pimarane-type diterpene
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A source of biologically active Molecules for novel food Ingredients and pharmaceuticals. J. Funct. Foods 2015, 19, 479–486.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/14786419.2018.1480620
https://doi.org/10.1089/rej.2018.2093
https://www.ncbi.nlm.nih.gov/pubmed/30353767
https://doi.org/10.22037/ijpr.2019.14665.12599
https://doi.org/10.1016/j.eujim.2022.102188
https://doi.org/10.1016/j.supflu.2016.05.004
https://doi.org/10.1016/0022-1759(83)90303-4
https://www.ncbi.nlm.nih.gov/pubmed/6606682
https://doi.org/10.1016/j.jff.2015.09.054

	Introduction 
	Results 
	Isolated Compounds 
	Elucidation of the Compounds 
	Cytotoxicity 

	Discussion 
	Chemotaxonomic Significance of the Secondary Metabolites 
	Anticancer Activity of the Extracts 

	Materials and Methods 
	Plant Material 
	Extraction and Isolation 
	Component Isolation from the Flowers 
	Component Isolation from the Leaves 
	Component Isolation from the Roots 

	Cytotoxic Activity of the Studied Extracts 

	Conclusions 
	References

