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Abstract: Breast cancer is one of the leading causes of death among women worldwide and can be
classified into four major distinct molecular subtypes based on the expression of specific receptors.
Despite significant advances, the lack of biomarkers for detailed diagnosis and prognosis remains a
major challenge in the field of oncology. This study aimed to identify short single-stranded oligonu-
cleotides known as aptamers to improve breast cancer diagnosis. The Cell-SELEX technique was
used to select aptamers specific to the MDA-MB-231 tumor cell line. After selection, five aptamers
demonstrated specific recognition for tumor breast cell lines and no binding to non-tumor breast cells.
Validation of aptamer specificity revealed recognition of primary and metastatic tumors of all subtypes.
In particular, AptaB4 and AptaB5 showed greater recognition of primary tumors and metastatic
tissue, respectively. Finally, a computational biology approach was used to identify potential aptamer
targets, which indicated that CSKP could interact with AptaB4. These results suggest that aptamers
are promising in breast cancer diagnosis and treatment due to their specificity and selectivity.

Keywords: breast cancer; aptamers; diagnosis; computational modeling

1. Introduction

Breast cancer is the most common cancer among women worldwide and is among
the leading causes of death among the female population. According to the World Health
Organization (WHO), 2.9 million cases were reported worldwide in the year 2018 [1,2].
Breast carcinoma is a complex disease, and its molecular diagnosis and therapeutic indi-
cation are based on histopathological findings from tissue biopsy samples in which the
presence and expression levels of estrogen and progesterone hormone receptors (ER and
PR) and growth receptors (HER2) in the membrane of the tumor cells are investigated [3].
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An analysis of these receptors indicates which target therapy should be applied for each
patient, as an initial attempt to personalize therapy. The tumors that are estrogen-negative,
progesterone-negative, and HER2-negative are known as triple-negative (TN) tumors,
accounting for about 15% of breast tumors, and are considered to present worse prognoses.
In this case, the patient will not benefit from target therapy, and chemotherapy is the
mainstay of treatment. Although molecular diagnosis has provided great progress in the
fight against breast tumors, the disease still presents important challenges. In search of
greater specificity for the diagnosis of breast cancer, precision medicine has invested in
tools that can act as biosensors for the identification of tumor-specific molecules, among
them are the aptamers [4].

Aptamers are synthetic oligonucleotides of DNA or RNA formed by a single-stranded
sequence flanked by two constant regions, which allows for synthesis using PCR amplifica-
tion. According to their primary sequences, aptamers acquire unique 3D structures, thus
being able to recognize with high selectivity and affinity a wide range of molecules with
high biological relevance [5–7]. The selection of aptamers could be performed with a library
of random sequences and using the systematic evolution of ligands by exponential enrich-
ment (SELEX) technique [8]. The goal is to select and identify specific aptamer sequences
for target molecules by exposing these targets to an aptamer’s sequences repeatedly. As
a variation of the technology of aptamer selection, the CELL-SELEX method stands out
as an important tool [9,10]; in this case, aptamers are incubated with a tumor cell and a
non-tumor control cell, thus allowing the selection of aptamers that specifically recognize
tumor cells [11,12]. Aptamers are often compared to antibodies due to their similarity in ap-
plications. However, the process of obtaining and improving aptamers is much easier and
less costly compared with monoclonal antibody production. The application of aptamers
in the diagnostic field is diverse and can be used in techniques such as histochemistry and
even for liquid biopsy. Thus, aptamers are presented as biosensors for bio-recognition with
possible application for molecular diagnosis [13,14]. Some groups are already studying
the application of multiplex aptamer–histofluorescence using more than one aptamer as
a molecular probe to characterize the profile of heterogeneity in glioblastoma [15]. In the
present study, we propose the identification of tumor-specific aptamers that can be used as
a diagnostic and prognostic tool for breast cancer. Here, we selected aptamers for breast
tumor cell lineage that are capable of recognizing subpopulations of the triple-negative
subtype. Furthermore, we validated the recognition in a 3D model and subsequently in
primary and metastatic site tumor samples. The Cell-SELEX approach has advantages in
selecting aptamers against living cells as it preserves proteins in their natural conformation.
However, it is not possible to conclude which target the aptamer recognizes. Therefore,
we used in silico methods to describe possible aptamer targets by predicting the structure
of the aptamer and its possible cellular target to perform molecular docking, potentially
leading to the discovery of new tumor biomarkers. Finally, we believe that aptamers can
play an additive role in conventional molecular diagnostics as well as being an important
tool for early metastasis detection.

2. Results
2.1. Selected Aptamers Specifically Recognize Breast Tumor Cells

To evaluate the tumor cell detection ability of each of the aptamers, we used increasing
concentrations of FAM-conjugated aptamers and flow cytometry. In general, all five
aptamers (AptaB1, AptaB2, AptaB3, AptaB4, and AptaB5) exhibited a dose response in
cellular recognition, ranging from 9% at the lowest dose of 25 nM to 96% at the highest
dose of 400 nM (Figure 1). The incubation of tumor cells with FAM-conjugated aptamers
at the higher dose of 400 nM presented the best results: MDA-MB-231 cell recognition
varied from 60% (AptaB1) to 75% (AptaB2), 96% (AptaB3), 59% (AptaB4), and 94% (AptaB5)
(Figure 1A,B). The binding specificity of all five aptamers for breast tumor cell recognition
was tested by incubating with non-tumor breast cells, MCF10A, at the same conditions. The
results indicated low recognition of non-tumor control cells by AptaB1, AptaB4, and AptaB5,
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reaching a maximum of 11% of cellular binding with the highest aptamer concentration.
However, both aptamers AptaB2 and AptaB3 showed undesired binding to MCF-10A cells,
with 50% and 30% of recognition, respectively (Figure 2A,B). To evaluate the binding affinity
of aptamers to their target cells, the dissociation constant (Kd) was calculated from the MFI
obtained using flow cytometry. The Kd analysis showed values in the nanomolar range,
evidencing the good affinity of the aptamers to their cellular targets: AptaB1 presented
Kd = 139 nM, AptaB2 presented Kd = 206 nM, AptaB3 presented Kd = 145 nM, AptaB4
presented Kd = 194 nM, and AptaB5 presented Kd = 126 nM (Table 1).
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Figure 1. Analysis of the binding capacity of the aptamer panel for the MDA-MB-231 strain. 
Histogram illustrating the percentage of cells incubated with binding buffer solution, initial library, 
and increasing doses of AptaB1–AptaB5 (A). Graphical representation of the mean percentage of 
binding of AptaB1–AptaB5 aptamers (B). Graphical representation of the average MFI (C). 

Figure 1. Analysis of the binding capacity of the aptamer panel for the MDA-MB-231 strain. Histogram
illustrating the percentage of cells incubated with binding buffer solution, initial library, and increasing
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doses of AptaB1–AptaB5 (A). Graphical representation of the mean percentage of binding of AptaB1–
AptaB5 aptamers (B). Graphical representation of the average MFI (C). * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 2. Analysis of the recognition specificity of the aptamer panel for the non-tumor line MCF-10A.
Histogram illustrating the percentage of cells incubated with binding buffer solution, initial library,
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and increasing doses of AptaB1–AptaB5 (A). Graphical representation of the mean percentage of
binding of AptaB1–AptaB5 aptamers (B). Graphical representation of the average of MFI AptaB1–
AptaB5 (C). * p < 0.05, ** p < 0.01, *** p < 0.001.

Table 1. Dissociation constant (Kd) analysis of aptamer binding to the target cell MDA-MB-231.

APTAMERS KD VALUES

APTAB1 139 ± 14 nM
APTAB2 206 ± 41 nM
APTAB3 145 ± 31 nM
APTAB4 194 ± 0.7 nM
APTAB5 126 ± 19 nM

2.2. Subcellular Localization of Aptamers in MDA-MB-231 Cells

To validate the recognition and specificity of the aptamers, we used the aptaflurescence
technique, in which the aptamers were incubated with MDA-MB-231 and MCF-10A, and
the number of recognized cells was quantified. The MDA-MB-231 cells were recognized by
all five aptamers (Figure 3A). The subcellular localization of the aptamers was distributed
as follows: AptaB1 labeling was predominantly in the nucleus, as 85% was observed in
the nucleus only, 12% in the nucleus and cytoplasm, and 3% in the cytoplasm only. The
AptaB2 intracellular localization was distributed as 40% in the nucleus and cytoplasm,
32% in the nucleus only, and 27% in the cytoplasm only. AptaB3 was observed at 42%
in the nucleus and cytoplasm, 37% in the nucleus only, and 21% in the cytoplasm only.
AptaB4 was observed at 47% in the nucleus and cytoplasm, 34% in the nucleus only,
and 18% in the cytoplasm only. Finally, AptaB5 labeling was observed at 55% in the
nucleus, 27% in the nucleus and cytoplasm, and 17% in the cytoplasm only (Figure 3A,B).
In addition, the cytoplasmic labeling of AptaB2, AptaB3, and AptaB4, presented a punctual
profile. Moreover, we observed the absence of staining in the non-tumoral MCF-10A cells
(Figure 3B).

Further, to validate the recognition and specificity of the aptamers for the tumor
lineage, we used a more complex culture system, MDA-MB-231 spheroids, which allows
better cell–cell interactions and mimics the tissue architecture found in the tumor. For this
purpose, MDA-MB-231 spheroids were incubated with the five individual aptamers at
400 nM, and we observed that all aptamers recognized the tumor 3D culture (Figure 4B–F).
Also, to assess non-specific labeling, the aptamer initial library was incubated with the
tumor spheroids, and no labeling was observed (Figure 4A). In parallel, to validate the
specificity of aptamer recognition for tumor cells only, we also constructed a 3D model
of the non-tumoral control cell line MCF-10A, and an absence or very weak labeling was
observed (Figure 4B–F).

2.3. Aptamers Detect an Expanded Panel of Triple-Negative Breast Tumor Cells

Breast cancer is a highly heterogeneous and diverse disease, and based on this scenario,
we evaluated if the aptamers could also recognize other triple-negative breast tumor cells
beyond MDA-MB-231, in which the selection process was conducted. The MDA-MB-231
cells lack hormone receptor expression and HER2 overexpression. They are therefore
classified as triple-negative. This subtype is the most challenging among the molecular
subtypes of breast disease, as it exhibits high complexity and molecular heterogeneity, even
being subdivided into intrinsic subtypes according to cell profile. Therefore, to evaluate
the potential of the selected aptamers as a diagnostic tool, we investigated the ability of
the five aptamers to detect cells of different intrinsic triple-negative subtypes. For this
purpose, we performed the aptafluorescence technique, in which cells were incubated with
the individual aptamers or with the aptamer initial library at 400 nM. It was observed
that all five aptamers showed expressive recognition for the MDA-MB-468 and HCC-70
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cell lines: AptaB1, AptaB2, and AptaB5 recognized more cells compared with AptaB3 and
AptaB4 (Figure 5). However, none of the tested aptamers recognized the HCC-1937 cell
line (Figure 5).
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Figure 4. Aptafluorescence assay in a three-dimensional culture model. Core in blue (DAPI); aptamer
conjugated to FAM in green. (A) Aptamer library, (B) AptaB1, (C) AptaB2, (D) AptaB3, (E) AptaB4,
and (F) AptaB5. The images were obtained using imagexpress Micro Confocal equipment in a 10×
objective. Bar = 200 µM.
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Figure 5. Evaluation of the detection capacity of aptamers in triple-negative cell lines. Aptafluo-
rescence assay with the aptamers AptaB1–AptaB5 or with the starting library—FAM (green) using
triple-negative cell lines MDA-MB-468, HCC-70, and HCC-1937; nucleus stained with DAPI (blue).

2.4. The Aptamer Panel Detects Breast Tumor Cells from the Luminal A, Luminal B, and HER 2
Molecular Subtypes

In addition to the triple-negative cell lines, it would be interesting to investigate
whether the five selected aptamers could recognize other breast tumor cells from the
other molecular subtypes luminal A, luminal B, and HER2. For this purpose, the FAM-
conjugated aptamers were incubated individually with the MCF-7, BT-474, and HCC-1954
cell lines, representing the luminal A, luminal B, and HER2 subtypes, respectively. The
aptamers recognized all breast tumor molecular subtypes. We observed a variation in
the recognition of the MCF-7 and HCC-1954 cell lines among the aptamers: AptaB1 and
AptaB3 showed greater recognition of MCF-7, and AptaB2, AptaB4, and AptaB5 showed
equivalent recognition among them (Figure 6).
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Figure 6. Evaluation of the detection capacity of aptamers in cell lines of the luminal A, luminal
B, and HER2+ molecular subtypes. Aptafluorescence assay with the aptamers AptaB1–AptaB5 or
with the starting library—FAM (green) using MCF-7 (luminal A), BT-474 (luminal B), and HCC-1954
(HER2) cell lines; nucleus stained with DAPI (blue). Representative images of the library—FAM
recognition. Overlay of the library—FAM recognition image and DAPI nucleus stain.

2.5. Aptamers Detect Human Breast Tumor Clinical Samples from Different Subtypes

After characterizing the specificity of the selected aptamers with potential use for
breast cancer diagnosis, we next aimed to validate their specificity and application in tissue
samples from patients with breast tumors. Thus, tissue microarrays were obtained to
test aptamer specificity. Tissue microarrays are paraffin blocks produced by extracting
cylindrical tissue cores from different paraffin donor blocks and re-embedding these into a
single block, the so-called microarray. Using this technique, up to 100 tissue samples were
arrayed for aptamer binding in a single paraffin block. Human breast tumor and non-tumor
samples were used to validate the binding capacity and specificity of the selected aptamers.
A cohort of 100 breast tissue samples, was distributed as follows: 10 adjacent non-tumoral
breast tissues, 40 metastatic carcinomas (lymph node metastatic), and 50 invasive breast
carcinoma primary sites (46 invasive carcinomas of no special type, 1 neuroendocrine
carcinoma, and 3 medullary carcinoma).

The individual aptamers were incubated with the TMA slide and the number of
recognized samples and staining intensity were analyzed, in which (+) was considered
low intensity, (++) was considered moderate intensity, and (+++) was considered high
intensity (Figure 7 and Table 2). AptaB1 recognized 14% of invasive carcinoma samples
and 12.5% of metastatic tissue samples at high intensity and very low staining intensity



Int. J. Mol. Sci. 2024, 25, 840 10 of 35

in 10% of control adjacent tissue samples (Table 2). AptaB2 recognized 36% of invasive
carcinoma samples and 12% of lymph node metastatic carcinoma tissue samples with
high intensity and recognized just 10% of adjacent tissue with low intensity. In contrast,
AptaB4 and AptaB5 detected 50% and 40%, respectively, of invasive carcinomas with
high staining intensity and 37.5% and 67.5%, respectively, of metastatic samples with high
labeling intensity, respectively. However, low-intensity labeling in 40% and 30% detection
of adjacent tissues was also observed (Table 2).
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Figure 7. Validation of MD1–MD5 aptamer recognition in breast cancer samples using the tissue
microarray technique (TMA). Triple-negative breast cancer (TNBC), HER2+ subtype (HER2+), luminal
subtype (LUM), lymph node metastasis (MET), and adjacent normal tissue (NAT). Aptamers AptaB1–
AptaB5 (green); cell nucleus stained with DAPI (blue).
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Table 2. Recognition of tissue samples from primary tumor, metastatic tissue, and tissue adjacent to
the tumor.

Aptamer Sample Recognition/
Total Number % Recognition Staining

Intensity

AptaB1
Adjacent tissue 1/10 10% (+)
Primary tumor tissue 7/50 14% (+++)
Metastatic tissue 5/40 12.5% (+++)

AptaB2
Adjacent tissue 1/10 10% (+)
Primary tumor tissue 18 /50 36% (+++)
Metastatic tissue 5/40 12.5% (++)

AptaB3
Adjacent tissue 1/10 10% (+)
Primary tumor tissue 3/50 6% (+++)
Metastatic tissue 6/40 15% (++)

AptaB4
Adjacent tissue 4/10 40% (+)
Primary tumor tissue 25/50 50% (+++)
Metastatic tissue 15/40 37.5% (+++)

AptaB5
Adjacent tissue 3/10 30% (+)
Primary tumor tissue 20/50 40% (+++)
Metastatic tissue 27/40 67.5% (+++)

(+) low labeling intensity; (++) moderate labeling intensity; (+++) high labeling intensity.

In addition, aptamer recognition was also performed to discriminate breast cancer
molecular subtypes. We observed that the aptamers recognized the luminal subtype with
high intensity: AptaB1 (10%), AptaB2 (28%), AptaB4 (42%), and AptaB5 (32%), except for
AptaB3, which recognized just one sample (Figure 7, Table 3). The detection rates of the
HER2 subtype were more expressive: AptaB1 (42%), AptaB2 (70%), AptaB3 (14%), AptaB4
(85%), and AptaB5 (70%) (Figure 7, Table 3). The aptamers also detected the triple-negative
subtype samples, in which we observed higher detection by AptaB5, AptaB4, and AptaB2
with 50%, 40%, and 10%, respectively, at high intensity (Figure 7 and Table 3).

Table 3. Recognition of breast carcinoma primary sites according to molecular subtype.

Aptamer Molecular Subtype
from Primary Tumor

Recognition/
Total Number % Recognition Staining

Intensity

AptaB1
Luminal 3/28 10.7 (+++)
HER 2 3/7 42 (+++)
Triple-negative 1/10 10 (+++)

AptaB2
Luminal 8/28 28 (+++)
HER 2 5/7 70 (+++)
Triple-negative 4/10 40 (+++)

AptaB3
Luminal 1/28 3.5 (+++)
HER 2 1/7 14 (+++)
Triple-negative 1/10 10 (++)

AptaB4
Luminal 12/28 42 (+++)
HER 2 6/7 85 (+++)
Triple-negative 4/10 40 (++)

AptaB5
Luminal 9/28 32 (+++)
HER 2 5/7 70 (+++)
Triple-negative 5/10 50 (+++)

(++) moderate labeling intensity; (+++) high labeling intensity.

Furthermore, the recognition was assessed based on the molecular subtype identified
in the metastatic lymph node tissue. Of the 40 analyzed samples, 33 contained data on
the expression of classical markers (ER, PR, HER2). This result gave us the opportunity to
investigate whether aptamers had differential recognition capabilities in metastatic lymph
node tissues according to molecular subtypes. In particular, AptaB1 showed exclusive
recognition of metastatic samples classified as luminal subtypes. In contrast, the other
aptamers showed recognition in metastatic tissues of all molecular subtypes (Table 4).
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Table 4. Recognition of metastatic lymph node tissue samples according to molecular subtype.

Aptamer
Molecular Subtype of
the
Metastatic Sample

Recognition/Number
of Samples % Recognition Staining

Intensity

AptaB1
Luminal 3/14 21% (+++)
HER 2 0/9 - (−)
Triple-negative 0/8 - (−)

AptaB2
Luminal 1/14 7.1% (+++)
HER 2 2/9 22% (+++)
Triple-negative 2/8 25% (+++)

AptaB3
Luminal 1/14 3.5% (+++)
HER 2 1/9 11% (+++)
Triple-negative 3/8 37.5% (++)

AptaB4
Luminal 6/14 42% (+++)
HER 2 1/9 11% (+++)
Triple-negative 5/8 62% (++)

AptaB5
Luminal 10/14 32% (+++)
HER 2 7/9 77% (+++)
Triple-negative 5/8 62% (+++)

(−) absence of staining; (++) moderate labeling intensity; (+++) high labeling intensity.

To investigate the extent of aptamer recognition, we established a correlation between
the binding results observed in the TMA samples and clinical and pathological information.
AptaB2, AptaB4, and AptaB5 recognized stage I tumor samples (Table 5). In contrast, all
aptamers were able to detect stage II tumors, with AptaB4 and AptaB2 showing the highest
sensitivity. Extending our analysis to stage III tumors, we found that all five aptamers
showed recognition potential, with the best results for AptaB5, AptaB1, and AptaB4, reaching
more than 50% recognition, despite the low number of samples from those stages (Table 5).
In addition, a difference in detection was observed between the aptamers according to
histological grade. The results showed that the AptaB1, AptaB2, AptaB4, and AptaB5 aptamers
recognized at least one Grade I specimen, with AptaB4 and AptaB5 recognizing most of the
cases, and these aptamers were also the most efficient in recognizing samples from Grades II
and III. The AptaB3 aptamer recognized only Grade II samples (Table 6).

Table 5. Recognition of aptamers according to the degree of tumor staging.

Stage Number of Samples AptaB1 AptaB2 AptaB3 AptaB4 AptaB5

I 4 0 1 0 3 2
II 39 4 15 3 20 4
III 3 2 1 1 2 3

Table 6. Recognition of aptamers according to the histological grade of the tumor.

Grade Number of Samples AptaB1 AptaB2 AptaB3 AptaB4 AptaB5

I 8 1 4 0 5 1
II 29 4 10 3 17 11
III 9 1 4 0 4 5

In addition, we performed an analysis of the recognition of clinical samples by ap-
tamers according to TMN classification. The classification system uses T for tumor size, N
for lymph node involvement, and M for metastases in distant organs. This classification is
fundamental in oncology for determining the stage of the disease and subsequent thera-
peutic approaches. Our results showed that AptaB2, AptaB4, and AptaB5 detected samples
at earlier (T1N0M0) and more advanced (T4N1M0) stages of the disease. Notably, AptaB5
showed recognition for primary tumor samples with lymph node involvement (T4N1M0)
(Table 7).
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Table 7. Recognition of clinical samples by aptamers according to the TMN classification.

TNM Number of Samples AptaB1 AptaB2 AptaB3 AptaB4 AptaB5

T1N0M0 4 0 1 0 3 2
T2N0M0 29 4 11 2 15 10
T2N1M0 6 0 2 1 3 3
T2N3M0 1 1 0 1 0 1
T3N0M0 4 0 2 0 2 0
T3N1M0 1 0 0 0 1 1
T4N0M0 3 1 2 0 2 2
T4N1M0 2 1 1 0 1 2

2.6. Evaluation of the Aptamer Panel as a Diagnostic Tool

The calculation of diagnostic indices is a widely used tool for evaluating the diagnostic
efficacy of a given biomarker. After quantifying the number of samples recognized by the set
of aptamers, it was possible to obtain the parameters of sensitivity, specificity, and accuracy
of the test. First, we evaluated the performance of the aptamers individually and observed
that the aptamers AptaB1, AptaB2, and AptaB3 showed low sensitivity, with values between
10% and 26%, but high specificity around 90%. The aptamers AptaB4 and AptaB5 had a
sensitivity of 44% and 52% and a specificity of 60% and 70%, respectively. The accuracy
test showed results that ranged from 21% to 54%. It was then observed that the aptamers
recognized different sample profiles, which could allow for greater diagnostic coverage.
Finally, we evaluated the combinations of two or more aptamers for diagnostic purposes.
The sample recognition sensitivity observed with the combination of the aptamers AptaB4
and AptaB5 was 77%. The combination of the five aptamers AptaB1, AptaB2, AptaB3,
AptaB4, and AptaB5 reached 96% sensitivity (Table 8). In addition, given the lack of
specific biomarkers for the triple-negative molecular subtype diagnosis, we investigated
the recognition profile with the aptamer combinations in this molecular subtype sample.
The individual aptamer results showed specificity above 50% and sensitivity ranging from
10% with AptaB1 to 50% with AptaB5. The combinations increased the sensitivity by up to
96% and the specificity by between 30% and 40% (Table 8).

Table 8. Diagnostic index calculated from the recognition of aptamers in primary, metastatic, and
adjacent tumor tissue.

Aptamers Sensitivity Specificity Accuracy

AptaB1 13% 90% 21%
AptaB2 26% 90% 32%
AptaB3 10% 90% 18%
AptaB4 44% 60% 46%
AptaB5 52% 70% 54%
AptaB4 + AptaB5 77% 40% 73%
AptaB2 + AptaB4 + AptaB5 87% 30% 81%
AptaB2 + AptaB3 + AptaB4 + AptaB5 89% 30% 83%
AptaB1 + AptaB2 + AptaB3 + AptaB4 + AptaB5 96% 30% 89%

2.7. In Silico Characterization of the Three-Dimensional Structure of Aptamers and Selection of
Potential Recognition Targets

After studying aptamer recognition in various cell lines and tissues, our goal was to
elucidate the potential molecular targets recognized by these aptamers. We first attempted
to elucidate the structure of the aptamers and then investigated the possible targets of
the aptamers based on proteomic data from the literature on the target tumor cell line
MDA-MB-231 and the control non-tumor cell line MCF-10A [16,17]. The sequential steps
of the aptamer analysis and potential target protein analysis are described in a pipeline
(Figure S1).
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2.8. Three-Dimensional Structural Characterization of Selected Aptamers for MDA-MB-231 Cells

The 2D structures predicted with NUPACK and mFold showed some general simi-
larities, such as large loops and minimal internal base pairing, suggesting open, flexible
conformations. However, the specific motifs differed, as evidenced by the variations in free
energy values calculated using the two servers.

For most aptamers, the mFold and NUPACK free energy values differed somewhat,
indicating differences in the predicted stability of the 2D folds. The one exception was AptaB2,
for which both servers calculated identical free energies of −6.15 kcal/mol. This implies that
the servers predicted the same minimum free energy 2D structure for AptaB2 (Figure 8).
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Figure 8. Representation of the secondary structure prediction of the aptamers selected for the
MDA-MB-231 strain. The first column shows the results obtained with the NUPACK server and
the second column shows the data from the mFold server. Below the structures, the free energy ∆G
values are presented. For the structure obtained with NUPACK, the color of the dots is related to the
equilibrium probability of paired bases, as showed in the equilibrium probability colored scale.
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Beyond the 2D structure, we also wanted to evaluate how the predicted 3D confor-
mations compared between mFold and NUPACK. To make this comparison, we used
RNA-align to calculate the TM score between the 3D models. The TM scores were low
(<0.3) for most of the aptamers, indicating substantial 3D structural deviations between the
mFold and NUPACK models. However, AptaB2 had a high TM score of 0.867, indicating
strong 3D structural similarity (Figure 9).
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Figure 9. Comparison of the predicted tertiary structures of aptamers obtained with RNAcompose
with 2D structures predicted using the mFold and NUPACK servers. Aptamer models generated
from mFold 2D structures are shown in blue, while models generated from NUPACK are shown in
red. Structural alignment and calculation of TM scores were performed using the RNA-align server
to quantitatively assess the similarity between the 3D models from the two sources. Tertiary structure
visualizations were generated using Pymol.

In summary, while NUPACK and mFold predicted similar general 2D features, the
exact base pairing and resulting 3D structures differed for most aptamers. However, AptaB2
showed consistency between servers for both 2D and 3D conformations, likely due to its
inherent structural rigidity.

Since the NUPACK models showed lower minimum free energies for the predicted 2D
structures, as well as greater 3D structural folding, these were selected as the starting 3D
conformations for further refinement using molecular dynamics simulations. By starting
with the NUPACK models, which appeared to be in lower energy states, the simulations
could provide deeper insights into the structural dynamics and inherent flexibility of
these aptamers.

2.9. Aptamer Structures Are Stable in Aqueous Solution

The structures generated with the NUPACK program with the lowest free energy
∆G values went on to the molecular dynamics stage. Molecular dynamics simulations
revealed that the structures of the five aptamers varied greatly from the conformations
obtained after the equilibration step. The RMSD of all systems raised over 13 Å in the first
50 ns of the simulation. The RMSD of AptaB1 and AptaB2 raised gradually until 15 Å and
showed huge oscillations, ranging from 6 to 18 Å. AptaB3 was the most stable aptamer
since its RMSD was smoothly elevated over the simulation. AptaB4 reached near 28 Å and
stabilized around 25 Å after the first 250 ns. Finally, AptaB5 fluctuated from 8 to 15 Å for
most of the simulation (Figure 10).

A cluster analysis was carried out to group the conformations assumed by each aptamer
according to the RMSD variation. Several clusters were formed for each of them. AptaB2
formed 19 groups of conformations and was the system with the lowest number of clusters,
whereas AptaB4 reached 45 clusters. Figure 11 shows the five biggest clusters observed for
each aptamer. In general, most of the aptamers formed a major group of conformations
encompassing over 50% of the simulation range. However, for AptaB5, we observed two
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major clusters, indicating the existence of two stable conformations (Figure 11E). In this
context, we retrieved one representative structure for each aptamer, except AptaB5, for
which we considered two representative structures for the molecular docking steps.
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Figure 10. Analysis of conformational changes in structures during molecular dynamics simulation.
The root mean square deviation (RMSD) is shown in Angstrons at the left, while the simulation time is
given at the bottom. Black lines indicate the RMSD, while the shaded red line shows the tendency of
the graph. (A): the RMSD of APTAB1 oscillated between 6 and 16 Å. The greatest variations happened
between 30 ns and 300 ns. After 300 ns the RMSD stabilized around 13 Å and rose steadily until 16 Å.
(B): The RMSD of AptaB2 did not stabilize throughout the simulation time. (C): AptaB3 was the less
unstable aptamer among all 5. The RMSD of AptaB3 fluctuated around 14 Å and varied less than
4 Å for most of the simulation. (D): AptaB4 was quite unstable in the first half of the simulation,
reaching 20 Å before the first 50 ns. Around 250 ns it stabilized near 24 Å and kept oscillating less
than 4 Å until the end. (E): The RMSD of AptaB5 fluctuated around 13 Å, but showed great variations,
reaching nearly 17 Å on its highest peak.
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Figure 11. Clusters analysis based on the change in RMSD. Each cluster represents a group of
conformations assumed along the molecular dynamic trajectory with AptaB1–AptaB5. The five
biggest clusters are shown for each aptamer. Time is given at the bottom, while the cluster index is
given at the left. Each structure is shown as a square. Black horizontal bars indicate a high density
of squares grouped. Red vertical lines delimit the simulation time of the three replicates. (A): The
five biggest clusters of AptaB1. The most expressive cluster comprises the three replicates indicating
only one representative structure for the whole simulation. (B): Among the five biggest clusters of
AptaB2, the cluster 1 also comprises the three replicates and appears as the most significant in all of
them. (C): Cluster 1 in also the most expressive cluster in all three replicates of AptaB3. However, in
the first 200 ns cluster 2 and cluster 3 are more frequent than cluster 1. (D): Among the five biggest
clusters of AptaB4, cluster 1 is the most frequent cluster in all three replicates. However, in the first
250 ns, the conformations are clustered in several other cluster in despite of cluster 1. (E): The five
biggest clusters of AptaB5. The cluster 1 is more frequent in the replicates 1 and 3, however, in the
simulation time between 500 ns and 100 ns (corresponding to replicate 2) the cluster 2 is the biggest
cluster formed. This result indicates the existence of two stable conformations for this aptamer.



Int. J. Mol. Sci. 2024, 25, 840 18 of 35

2.10. Search for Potential Aptamer Targets in MDA-MB-231 Cell Lines

To identify the potential protein targets recognized by the aptamers within the lineage
from which they were selected, we used proteomic data obtained from both the MDA-
MB-231 and non-tumor MCF-10A cells, as provided by Lawrence et al., 2015 [16]. We
specifically selected 289 proteins that exhibited at least a 2-fold increase in the target lineage
compared with the control lineage. We then confirmed the overexpression of the selected
proteins using a second study performed by Ziegler et al., 2014 [17] which specifically
examined the proteomics of membrane proteins present in the cells of interest. Following
these criteria, we identified 40 candidate proteins for the subsequent molecular docking
phase (Table S1).

Taking into account our aptafluorescence results, we found that the aptamers initially
selected for the MDA-MB-231 cell line also recognized the MDA-MB-468, BT-474, and
MCF-7 cell lines but did not recognize the HCC-1937 cell line. We evaluated the data from
Lawrence et al., of which the forty selected proteins were overexpressed in the MDA-MB-
468, BT-474, and MCF-7 cell lines and under-expressed in the HCC-1937 cell line. Using
this filter, we identified four proteins: CSKP, TMEM205, CD151, and TM9S3. The proteins
selected as possible targets were evaluated for their electrostatic potential. This information
is important because positively charged amino acids favor the binding of negatively charged
nucleic acids. We observed that the four selected proteins presented spatial orientation
with large portions of their structure oriented toward the extracellular region of the lipid
bilayer with positively charged regions (in blue). This indicates electrostatic potential for
interacting with the negatively charged DNA aptamers (Figure S2), and thus validation to
proceed to the next step of molecular docking.

2.11. Characterizing Protein–Aptamer Complexes using Molecular Docking

For the molecular docking stage, we utilized the four chosen proteins (CSKP, TMEM205,
TM9S3, and CD-151) and the central structures of the largest cluster that was observed
with molecular dynamics of the aptamers individually (AptaB1, Cluster 1, AptaB2, Cluster
1, AptaB3, Cluster 1, AptaB4, Cluster 1, AptaB5, Cluster 1 and Cluster 2). Following the
molecular docking process, a more negative Haddock score indicates a higher recogni-
tion of spontaneity. Hence, we selected the best complexes based on the score values
observed (see Table 9). The docking results reveal the highest scores for the TM9S3–
AptaB1 (Haddock score = −76.7), CD151–AptaB2 (Haddock score = −53.1), TMEM205–
AptaB3 (Haddock score = −34.2), CSKP–AptaB4 (Haddock score = −34.7), TM9S3–AptaB5.1
(Haddock score = −41.2), and TM9S3–AptaB5.2 (Haddock score = −81.2) complexes. After
coupling, the complex file was utilized as input in the OPM to display the outcome in a
system with membranes (Figure 12).

Following the molecular docking step, we obtained six complexes, one for each of
the four first aptamers (AptaB1–AptaB4) and two for AptaB5, which had two conforma-
tions (AptaB5.1 and AptaB5.2) submitted to molecular docking, hence producing two
independent outcomes. The complex selection was performed in a way that each aptamer
was complexed to a protein, and we selected the conformations that generated the most
negative Haddock scores.
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Table 9. Haddock score for the result of the molecular docking with the selected proteins and
representative structures of the AptaB1, AptaB2, AptaB3, AptaB4, AptaB5.1, and AptaB5.2 aptamers.

Protein–AptaB1 Haddock Score

A CSKP–AptaB1 −34.9 +/− 7.5

B TM9S3–AptaB1 −76.7 +/− 33.4

C TMEM205–AptaB1 −48.1 +/− 8.0

D CD151–AptaB1 2.8 +/− 9.4

Protein–AptaB2 Haddock Score

A CSKP–AptaB2 −8.3 +/− 8.9

B TM9S3–AptaB2 −11.1 +/− 18.0

C TMEM205–AptaB2 −46.7 +/− 6.1

D CD151–AptaB2 −53.1 +/− 9.2

Protein–AptaB3 Haddock Score

A CSKP–AptaB3 −8.7 +/− 21.7

B TM9S3–AptaB3 −31.2 +/− 3.9

C TMEM205–AptaB3 −34.2 +/− 3.5

D CD151–AptaB3 17.3 +/− 9.9

Protein–AptaB4 Haddock Score

A CSK–AptaB4 −34.7 +/− 11.1

B TM9S3–AptaB4 −22.3 +/− 4.0

C TMEM205–AptaB4 −23.9 +/− 6.5

D CD151–AptaB4 −8.4 +/− 25.8

Protein–AptaB5.1 Haddock Score

A CSKP–AptaB5.1 20.5 +/− 27.0

B TM9S3–AptaB5.1 −41.2 +/− 16.2

C TMEM205–AptaB5.1 12.3 +/− 11.5

D CD151–AptaB5.1 18.0 +/− 13.2

Protein–AptaB5.2 Haddock Score

A CSKP–AptaB5.2 −4.7 +/− 22.0

B TM9S3–AptaB5.2 −81.2 +/− 4.4

C TMEM205–AptaB5.2 −3.7 +/− 13.9

D CD151–AptaB5.2 6.5 +/− 6.5
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Figure 12. The best binding complexes for potential aptamer targets. Image representing the best
clusters from the molecular docking step for the TMPS3–AptaB1, CD151–AptaB2, TMEM205–AptaB3,
CSKPAptaB4, TM9S3–AptaB5.1, and TM9S3–AptaB5.2 complexes. For the spatial orientation, the red
portion indicates the extracellular region and the blue portion indicates the intracellular region.

2.12. Molecular Dynamics Details the Interactions between Proteins and Aptamers

The hydrogen bond (hbond) occupancy between two pairs of atoms is one of the
most important measurements to study interactions using molecular dynamics. In this
regard, hydrogen bonds were formed between the aptamer and the protein in all evaluated
complexes. In general, each system had at least four pairs of atoms forming hydrogen
bonds with occupancies higher than 20% of the simulation time (Figure 13). In particular,
the complex composed of CSKP and Apta4 stood out in terms of the number of interactions,
as well as in hbond occupancy. In this context, CSKPApta4 had over 30 pairs of atoms
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forming hbonds with occupancies over 20% and 12 hbonds that remained for at least 95% of
the simulation time (Figure 13D). Contrastingly, the complex formed by CD151 and Apta2
showed lower hbond occupancies among all systems. The higher hbond occupancy for this
system was between GLN 194 and C 322, which was kept for around 30% (Figure 13B).
Interestingly, the systems TM9S3Apta5.1 and TM9S3Apta5.2 are composed of the same protein
and the same aptamer sequence, diverging only by the conformation of the aptamer. Even
so, the hbond interactions formed in those two complexes were not identical. Both systems
formed four hbonds with occupancies over 20% and had ASN 53 as the residue involved
in the most stable hbond with nearly 74% occupancy. However, TM9S3Apta5.1 formed an
hbond with the aptamer involving the residue HID 127 that did not appear among the
interactions over 20% occupancy in TM9S3Apta5.2. Similarly, the pair formed by C 617 and
LYS 542 in TM9S3Apta5.2 was not among the most stable hbonds of TM9S3Apta5.1.
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Figure 13. Hydrogen bond occupancy between the aptamer and the protein. The interacting pair
of atoms are shown on the left, while the percentage of hbond occupancy is given on the right.
The simulation time is shown in ns at the bottom. Horizontal black bars indicate each point of the
simulation time that the interactions happened, whereas vertical red bars delimit each replicate
time. Only hbond occupancies with 20% length or more are shown. (A): The binding of TM9S3 with
AptaB1 is held mostly by the pair DA 659 and ASN 166. This interaction happens in all the replicates
and covers 68.8% of the simulation time. 5 other weaker interactions above 20% hbond occupancy
help to stabilize the binding throughout the simulation time. (B): In CD151AptaB2 there are just four
interacting pairs with hbond occupancies over 20%, whereas the highest one happens for only 30.8%
of the simulation. In several points of the simulation time there are no interaction happening at all.
(C): In TM205AptaB3 There are 7 interacting pairs above 20% hbond occupancy. However, four of them
does not happen in one of the replicates. (D): The system CSKPAptaB4 stands out in terms of hbond
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occupancy since its 12 higher hbond occupancy values are above 95%. (E): TM9S3AptaB5.1 formed
4 hbond with over 20% occupancy. Two of those hbonds does not happen in one of the replicates
so the pair DA 606 and ASN 53 held the interaction for most of the time (74.4%). (F): similarly to
TM9S3AptaB1, TM9S3AptaB5.2, also formed 4 hbond with over 20% occupancy and two of them also
involved the same residues, ASN 53 and HID 52, being the former part of the most stable interacting
pair (DC 617-ASN 53: 74.2%).

Following the hbond calculations, we applied the MM/GBSA method to estimate the
∆Gbind between each aptamer/protein complex and assess the interactions from the energy
perspective. ∆Gbind estimations are among some of the most reliable indications of the
interaction between two molecules and provide information about the spontaneity of the
recognition process.

Overall, evaluations on all systems resulted in negative ∆Gbind values, indicating
molecular association (Table 10). The most negative ∆Gbind was observed for the system
composed of CSKP and AptaB4 (−117.7 ± 2.2 kcal/mol), followed by the complex formed
by TM9S3 with AptaB1 (−68.1 ± 2.4 kcal/mol). Contrastingly, the interaction between
CD151 and AptaB2 appears to be the weakest among all systems (−3.6 ± 3.7 kcal/mol).
These results suggest that CSKP might be a target for AptaB4.

Table 10. Binding free energy change (∆Gbind) for all complexes calculated using MM/GBSA.

System ∆Evdw ∆ele ∆egb ∆Gesurf ∆Gbind

TM9S3AptaB1 −212.04 4821.73 −4654.34 −23.45 −68.1 ± 2.7
CD151AptaB2 −31.49 983.92 −952.11 −3.99 −03.6 ± 3.7
TM205AptaB3 −52.77 874.05 −842.43 −13.90 −35.0 ± 3.3
CSKPAptaB4 −246.40 5174.56 −5015.07 −30.90 −117.8 ± 2.2

TMS9AptaB 5.1 −209.31 4883.27 −4703.32 −24.24 −53.6 ± 2.1
TMS9AptaB 5.2 −210.58 4925.62 −4745.78 −28.66 −59.4 ± 2.5

2.13. Affinity Calculations Suggest Spontaneous Interactions between the Aptamers and
the Proteins

∆Gbind estimations are among the most reliable indications of an interaction be-
tween two molecules. In this regard, the ∆Gbind estimation between the best complex
aptamer/protein, as chosen using the molecular docking assay, provided a perspective on
the spontaneity in the recognition process through the energetic behavior of the interact-
ing molecules.

Overall, evaluations on all systems resulted in negative ∆Gbind values, indicating
molecular association. The most negative ∆Gbind was observed for the system composed
of CSKP and Apta B4 −117.7 ± 0.2 kcal/mol, followed by the complex formed by TM9S3
with AptaB5.2 −98.4 ± 0.5 kcal/mol. Contrastingly, the interaction between TMEM205 and
AptaB2 appeared to be the weakest among all systems (Table 10). These results suggest
that CSK and TM9S3 might be targets for AptaB4 and AptaB5, respectively.

All values are given in kcal/mol. ∆Gbind = ∆Evdw + ∆Eele + ∆Gesurf + ∆Gegb. The
average error follows the symbol “±”.

We also decomposed the ∆Gbind to evaluate the individual contribution of each residue
to ∆Gbind. In general, the residues forming the strongest hbonds in each system also
appeared to have the most negative energies. In other words, those residues contributed
more to achieving the negative ∆Gbind observed and kept the interaction between the
protein and the aptamer (Figure 14). Once again, CSKPApta4 was distinguished among
the systems in this study by the elevated number of residues showing negative energies
(Figure 14D). This finding is in accordance with the elevated number of hbonds previously
described for this complex.
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Figure 14. Decomposition of ∆Gbind. The individual contribution of each residue to the total energy
is depicted as vertical black bars. Negative energy values stand for residues working in favor of the
binding process, while positive values denote residues disturbing the interaction. (A): Several residues
are contributing to the binding of TM9S3 with AptaB1 reaching near 2.5 Kcal/mol. Contrastingly,
highly positive energies are observed, particularly between residues 60 and 80. (B): Most of the
residues in CD151 has nearly insignificant participation in the interaction with AptaB2. Despite
showing some residues with highly negative energies, the number of residues repealing the ligand
is superior, which resulted in the less negative ∆Gbind observed among all the systems. (C): In
TM205AptaB3 the number of negative energies overcomes the positive ones. Besides the residues
with positive energies do not reach 1.5 kcal/mol. (D): The system CSKPAptaB4 has considerably
more residues with negative energies than residues with positive energies. Besides, several residues
are reaching −3 kcal/mol, while a few one’s overpass −4 kcal/mol. In contrast, the most positive
energies do not reach 2 kcal/mol resulting in a deeply negative ∆Gbind. (E): TM9S3AptaB5.1 has some
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similarities with TM9S3AptaB1. However, the negative contributions and positive ones have lower
absolute values. (F): TM9S3AptaB5.2 is like TM9S3AptaB1, but with higher absolute values. The residues
with the most negative energies in TM9S3AptaB5.2 reached −5 kcal/mol almost while in TM9S3AptaB5.1

the most negative energies are close to −2.5 kcal/mol.

3. Discussion

Breast cancer is a serious public health problem, and the aim of the present work
was to identify specific aptamers for this tumor type with potential diagnostic function.
Currently, the diagnosis of the disease is made by searching for receptors present in the
tumor cell membrane (ER, PR, and HER2), which allows the classification of tumors into
four major molecular subtypes [18]. Tumors expressing the hormone receptors ER and
PR or the growth factor HER2 benefit from targeted therapies, and the triple-negative
subtype is treated with cytotoxic chemotherapy and, in some cases, immunotherapy [19,20].
However, in clinical practice, the molecular classification based on these three receptors
is not sufficient to define a more accurate diagnosis and prognosis, mainly for the triple-
negative subtype [21]. The study of ssDNA aptamers capable of detecting the disease can
serve as a tool to complement the currently used diagnosis, and the identification of the
aptamer’s targets could be used as new TNBC biomarkers, thus developing strategies for
personalized therapy.

Initially, flow cytometry was used to characterize the specificity of the aptamers in
recognizing only tumoral cells. The analyses showed that the five selected aptamers were
effective in recognizing MDA-MB-231 tumor cells. A dose response was observed in the
detection of tumor lineage by the aptamers. The analyses indicated that AptaB3 and
AptaB5 were most effective in detecting the highest number of cells, followed by AptaB2,
AptaB4, and AptaB1, respectively. In addition to tumor specificity, the affinity for the
recognized target was analyzed using the dissociation constant (Kd), where the lower the
value of Kd, the stronger the affinity of the aptamer to its target. The aptamer AptaB5
had the lowest Kd, followed by aptamers AptaB3, AptaB4, and AptaB1. Aptamer AptaB2
showed a very high Kd, indicating a low affinity for its target. The aptamers described
in the literature have Kd values ranging from 10 to 800 nM, depending on the recognized
target [22], such as the aptamers for the CD63 receptor with a Kd of 100 nM and for CA50
with a Kd of 30.7 nM [23]. With the advancement of aptamer improvement techniques,
many authors are adding punctate modifications to aptamers to increase the stability and
affinity of the aptamer for its targets, thus presenting lower Kd values. The aptamers
used in the present study do not have structural modifications and, therefore, the data are
based on the specificity and affinity of the aptamers in their original conformation. The
Kd values observed in the assays ranged from 126 nM for the aptamer AptaB5 to 206 nM
for AptaB2.

The identification of five specific aptamers is particularly relevant in the context of
intra-tumor heterogeneity, a concept based on the composition of different cellular sub-
populations within the tumor mass, and clusters of cells with genetic and phenotypic
variations. Its causes and consequences are widely discussed and reviewed in the literature,
and it is believed to be the result of the carcinogenesis process, in which the accumulation
of random mutations occurs during tumor development, with interference from the mi-
croenvironment and the immune system [24]. Although it is a concept more addressed in
the clinic, cellular heterogeneity has already been reported in the MDA-MB-231 lineage,
and some studies point to the existence of subpopulations within this cell, such as a stem
cell-like profile, presenting a higher expression of surface receptors as CD44, CD105, and
CD90 [25–27]. In addition, breast cancer therapy is still a challenge, as the drugs in use
are not specific for different clusters but rather treat the tumor as a homogeneous mass,
consequently impairing the total elimination of tumor cells that do not have sensitivity to
the drug used, which favors disease relapse [28]. Due to their high specificity, aptamers can
identify subtle differences among cells [29], and one of their applications is the targeted
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delivery of drugs [30]. These two characteristics make them a potential tool to circumvent
the problem of tumor heterogeneity; thus, it is extremely important that the aptamer does
not have expressive recognition of the non-tumor cell. Therefore, we investigated the recog-
nition and the affinity of the five aptamers by the non-tumor MCF-10A cells, showing low
recognition and low affinity, with the exception of AptaB2 and AptaB3, which recognized
the non-tumor cell but with low affinity, as indicated by the high Kd values.

Aptafluorescence assays were also performed to evaluate aptamer recognition and
specificity, which confirmed that all aptamers recognized the MDA-MB-231 cells. Curiously,
with the use of the 2D culture model, no aptamer binding was observed for the non-tumoral
breast cell MCF-10A, but the flow cytometry analysis revealed MCF-10A recognition
by AptaB2 and AptaB5. Therefore, we could speculate that the trypsinization process
performed for the flow cytometry analysis could alter the cell membrane and thus may
have caused this inconsistency, as opposed to the adhered cells used in aptafluorescence.

In addition, the aptafluorescence analysis suggested the cellular localization of the
aptamers after binding to their targets. It was observed that after 1 h incubation with tumor
cells, the aptamers AptaB2, AptaB3, AptaB4, and AptaB5 were predominantly localized in
the nucleus and cytoplasm, while aptamer AptaB1 was only localized in the nucleus. This
information could help to understand the intracellular tracking of the selected aptamers,
giving clues to their biological function and possible mechanisms involved in a potential
anti-tumor action.

In addition to the analysis in 2D culture, the use of the aptamers was also evaluated in
a three-dimensional (3D) cell culture model. In recent years, several studies have shown
how this system overlaps with 2D models, as 3D culture provides greater interaction
between cells and more closely mimics the tissue scaffold, representing an important
advance in the field of cell biology. Therefore, we investigated if the selected aptamers
would be able to recognize tumor cells in a more complex culture model. The results
corroborate those obtained in the monolayer model. All five aptamers recognized the
tumor cell spheroids (MDA-MB-231), with no recognition of the non-tumor control cell
lineage spheroids (MCF-10A).

After evaluating tumor cell specificity for the MDA-MB-231 cells, the extension of
the aptamer’s recognition was explored in other BC subtypes. The TNBC diversity is
stratified into intrinsic subtypes according to the molecular profile of the cells. Aptamers
were selected for the MDA-MB-231 lineage, which belongs to the intrinsic subset of the
mesenchymal type, whose main characteristic is the expression of genes related to cell
differentiation and epithelial-mesenchymal transition. The profile of this subset is charac-
terized by cells with higher invasive potential and strong interaction with the extracellular
matrix and is reported to be associated with approximately 20% of TNBC cases. To further
investigate the ability of aptamers to detect breast tumors from other intrinsic subsets
of TNBC cells, we performed an aptafluorescence assay using the MDA-MB-468 and
HCC-1937 lines, which belong to the basal-like 1 (BL1) intrinsic subgroup. Interestingly,
all five aptamers showed strong recognition for the MDA-MB-468 cell line and did not
recognize the HCC-1937 cell line. Although they belong to the same intrinsic subtype,
they are molecularly and genetically distinct. The HCC-1937 cell line was isolated from
a primary tumor of germline origin in a premenopausal woman. The MDA-MB-468 cell
line was isolated from a pleural infiltrate of a postmenopausal woman, as well as the
MDA-MB-231 cell line [31]. The BL1 and BL2 subtypes account for approximately 50% of
TNBC. Therefore, we also evaluated aptamer recognition for the HCC-70 lineage, which
belongs to the intrinsic BL2 subtype. Moderate aptamer recognition of this lineage was
observed. The BL1 and BL2 intrinsic subtypes share basal characteristics but were divided
into two subtypes because BL1 is characterized by higher expression of genes involved in
DNA repair and cell cycle progression, while BL2 is characterized by higher expression of
growth factor-related genes. Our results thus demonstrate that aptamers could recognize
cells with different molecular profiles, including cells of the three most common intrinsic
subtypes in TNBC. These data are particularly relevant because it is worth noting that TN
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is diagnosed based on the absence of expression of known classical receptors (ER, PR, and
HER2). Therefore, it is of great value to identify tools capable of precisely detecting this
subtype as additional diagnostic information. After verifying that the aptamers used in
the present study recognized other TN cells in addition to the lineage in which they were
selected, we also evaluated their possible use to recognize lineages of other subtypes of BC,
as an interesting analysis to evaluate the specificity of aptamers for the TN subtype. For this
purpose, we also performed an aptafluorescence assay with luminal A (MCF-7), luminal B
(BT-474), and HER2 (HCC-1954) lines and observed that the five aptamers recognized lines
of all molecular subtypes, expanding their applicability in tumor diagnosis.

Finally, the validation step was performed on breast cancer tissue samples, using the
TMA assay, in which we confirmed the detection of tumor tissues of all molecular subtypes.
Interestingly, we highlighted that AptaB4 recognized tumors from initial phases such as
stage I, Grade I, and TNM classification T1 and T2, indicating its potential use for the
early detection of BC. Furthermore, we performed a comparison of aptamer recognition
on invasive carcinoma samples, lymph node metastatic carcinoma samples, and tissue
samples adjacent to the tumor. The AptaB4 and AptaB5 aptamers recognized the highest
number of invasive carcinoma samples and metastatic carcinoma samples, respectively.
Tissue adjacent to the tumor is often used as a negative control in histological analyses,
but it is important to note that, despite presenting morphological characteristics of healthy
tissue, transcriptome studies of adjacent tissue samples reveal increased expression of some
genes that activate signaling pathways common to cancer. Thus, they can be considered
intermediaries between healthy tissue and tumor tissue [32,33]. The identification of
tumor-specific aptamers is outstanding and with great urgency, especially when detecting
metastases. In addition, aptamers are also potential tools for drug delivery, dramatically
reducing the side effects of nonspecific tumor therapy.

After selecting aptamers with specificity and affinity for BC tumor cells, it is impor-
tant to understand how the aptamer interacts with its targets. In this scenario, in silico
methodologies are gaining more and more prominence, as they allow for the analysis of
the recognition and binding stability of aptamer–target [34,35]. The aptamer interaction
with its target depends entirely on its three-dimensional (3D) structure. We therefore used
computational approaches to predict both the two-dimensional (2D) and 3D structures of
aptamers. To do this, we relied on two servers: mFold and NUPACK. When comparing the
results obtained from these two servers, we noticed a notable discrepancy in the structural
predictions, except in the case of AptaB2.

As a result, we chose to select the aptamers with the lowest free energy, as determined
using the mFold server. To increase the reliability of the conformation adopted by the
aptamer, we subjected the predicted structures to a molecular dynamics process, in which
it was observed that AptaB5 adopted two predominant stable conformations. At the end
of the molecular dynamics process, we were able to obtain the most likely conformation
for each aptamer. Although aptamers can bind to a variety of molecules, in our study,
we focused on membrane protein targets as we used the cell-SELEX method to select the
aptamers. We therefore focused our efforts on identifying overexpressed proteins present in
the MDA-MB-231 cell line. After using the pipeline filters to confirm the cellular localization
and the expression levels in the other lineages recognized by the aptamers, four possible
targets were proposed followed by the molecular docking assays.

To define the best complex for each aptamer, we used the Haddock score as a criterion.
This score is the sum of the Van der Waals, electrostatic, desolvation and restriction violation
energies, and the surface area that interacts with the ligand. Thus, the value represents
the overall analysis of the binding force [36]. The molecular docking methodology was
used by Niazi et al. to identify the best aptamer and HER2 protein binding complexes,
and the average Haddock score of the best complexes ranged from −57 to −47 [37]. Here,
the proteins identified as potential targets for aptamers have been previously associated
with cancer. CSKP, a peripheral plasma membrane protein, showed strong interaction with
AptaB4; we obtained remarkable in silico results with the CSKP-AptaB4 complex, indicating
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that CSKP is indeed the AptaB4 target. Thus, it would be important to further validate these
data using bench approaches, such as surface plasmon resonance and calorimetry methods.
CSKP is described as participating in the regulation of cell proliferation and remodeling
of the cytoskeleton. Increased CSKP expression is associated with a more aggressive
phenotype and unfavorable clinical outcomes in colorectal cancer. In vitro silencing of
CSKP in pancreatic tumor cells inhibits cell proliferation. In vivo experiments carried out
with CSKP knockout revealed the activation of apoptosis pathways. CSKP is therefore a
prospective biomarker with prognostic significance and a candidate for targeted therapy in
liver cancer [38–40]. Another interesting result was observed with the TM9SF3 and AptaB5
complexes. However, the Haddock score values revealed that the conformation adopted in
Cluster 2 (AptaB5.2) scored better than that adopted in Cluster 1 (AptaB5.1). This finding
reveals the importance of the conformation adopted by the aptamer for interacting with
the target molecule. Transmembrane protein 9, a member of family 3, has been reported
to be overexpressed in several tumor types. Analysis of the expression of this protein in
clinical specimens showed high expression of TM9SF3 in triple-negative breast tumors
when compared with the expression observed in tissues adjacent to the tumor. Functional
analysis results show that protein depletion inhibits the proliferation and migration of
triple-negative lineage cells [41]. In addition, the in silico approach is increasingly being
used in aptamer research. The computational biology field can make great strides related
to aptamer technology, from the selection step to the optimization for better interaction
with its specific target. As a result, it is possible to make the necessary modifications to
improve the aptamer function. With these results, we hope to contribute to the ratification
of aptamers as biosensors to be used in laboratory tests for breast cancer screening.

4. Materials and Methods
4.1. Cell Lines and Culture Conditions

Breast tumor cell lines MDA-MB-231, MDA- MB-468, HCC-70, and HCC-1937 were
cultured with RPMI 1640 supplemented with 10% fetal bovine serum and 100 Ul/mL
penicillin/streptomycin (Sigma, San Antonio, TX, USA—P4333); BT-474, MCF-7, and HCC-
1954 cells were cultured with DEMEM supplemented with 10% fetal bovine serum and
100 Ul/mL penicillin/streptomycin (Sigma, TX, USA—P4333); MCF-10A was cultured
with MEGM™ Mammary Epithelial Cell Growth Medium (Lonza/Clonectics Corporation,
Basel, Switzerland—CC-3150—MEGM BulletKit), + BPE; rhEGF; hydrocortisone; insulin;
penicillin/streptomycin at 100 Ul/mL (Sigma, TX, USA—P4333) and cholera toxin at
10 ng/mL (Sigma, TX, USA—C8052).

4.2. Cell-SELEX

Triple-negative breast tumor cell lines (MDA-MB-231) and their respective non-tumor
control cells (MCF-10A) were used (Figure 15). Aptamers specific to the MDA-MB-231
tumor cell lines were previously selected by our group using the Cell-SELEX method after
12 rounds of selection [42]. Successive rounds of Cell-SELEX resulted in the selection of ap-
tamers specifically recognized by breast tumor cells. A library of N30 oligonucleotide DNA
aptamers (5 nmol) was initially incubated with the tumor cells for screening and selection of
aptamers that bind to molecules present on the cell surface. The bound aptamers were then
amplified in a PCR reaction. After 12 rounds of selection and amplification, we obtained
the exponential enrichment of specific aptamers that were submitted to sequencing.
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the unbounded sequences were amplified using PCR and used in the subsequent Cell-SELEX 
rounds. 4—After 12 rounds of selection, the resulting aptamer pool was sequenced using the NGS 
methodology. 5—Finally, the aptamers were computationally analyzed, and the five most frequent 
sequences (AptaB1, AptaB2, AptaB3, AptaB4, and AptaB5) were selected for further validation steps. 
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Figure 15. Summary schematic representation of Cell-SELEX (systematic evolution of ligands by
exponential enrichment). 1—Initially, the DNA aptamer library (N30) was incubated with MDA-
MB-231 target cells. 2—The cells were washed to remove unbounded sequences, and the bounded
sequences were collected and amplified using PCR. 3—The aptamers went through the negative
selection step in the MCF-10A cells, and the bound sequences were removed and eliminated, while
the unbounded sequences were amplified using PCR and used in the subsequent Cell-SELEX rounds.
4—After 12 rounds of selection, the resulting aptamer pool was sequenced using the NGS methodol-
ogy. 5—Finally, the aptamers were computationally analyzed, and the five most frequent sequences
(AptaB1, AptaB2, AptaB3, AptaB4, and AptaB5) were selected for further validation steps.

4.3. Identification and Analysis of Selected Aptamer Sequences for MDA-MB-231 Cells

The identification of aptamer sequences for breast tumor cells was generated using
next-generation sequencing (NGS) methodologies, MiSeq (Illumina, San Diego, CA, USA)
on the NGS Plataform of the Rede de Plataformas Tecnológicas Fiocruz, at the Laboratório
de Genômica Aplicada e Bioinovações (IOC/Fiocruz). The quality of generated sequences
was analyzed for the last five rounds (R8, R9, R10, R11, and R12) using the FastQC tool [43].
The results of the FastQC analyses were visualized in HTML format files containing
sequences’ basic statistics, such as the number and size of generated reads, the distribution
of quality values for each one of the bases, and the GC content. Nextera XT adapters,
used to anchor the sequencing primers and low-quality sequences were removed using
Trimmomatic software (Version: 0.39) [43]. Among the options available for running the
Trimmomatic was SLIDINGWINDOW with the 4:20 option so that the end sequences
were cut whenever the average quality was less than 30 (Phred Quality Score, Q ≥ 30)
in four base intervals. The option MINLEN 74 was also used so that the sequences were
eliminated if, after filtering, they had a length less than 74 bases, corresponding to the
minimum expected size of the sequence. After trimming, the sequences were re-evaluated
with FastQC to verify the filtering efficiency. Sequences trimmed in fastq format were
converted to fasta format with the seqtk tool [44] to evaluate frequencies in each run. Thus,
it was possible to analyze the generated data with shell script and obtain a manageable
and organized database of candidate aptamer sequences.
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4.4. Evaluation of Specificity of Aptamers Using Flow Cytometry

After identifying the sequences of the selected aptamers specific for MDA-MB-231
cells, the five most abundant sequences present in the last round of selection were evaluated
for their specificity. MDA-MB-231 and MCF-10A cells were dissociated in Trypsin/EDTA
(0.25%, Sigma, TX, USA) and counted in an automated cell counter (Countess II, Thermo
Fisher Scientific, Waltham, MA, USA), and then 5 × 105 cells were incubated with FAM-
conjugated aptamers at concentrations of 25, 50, 100, 200, and 400 nM for 1 h in 5% CO2 at
37 ◦C. Binding buffer solution (DPBS, 4.5 g glucose, 1 g BSA, and 5 mL 1 M MgCl2) and
the initial library with random sequences at concentration 400 nM were used as a negative
control. The samples were analyzed on a FACScanto flow cytometer at the Flow Cytometry
platform of Fiocruz—Rede de Plataformas Tecnológicas Fiocruz, with FlowJo software
version 10. Three independent replicates were carried out for each test.

4.5. Analysis of the Dissociation Constant (Kd)

In order to analyze the binding affinity of the aptamers within tumoral and non-
tumoral cells, the Kd value of total binding was verified using the median fluorescence
intensity (MFI) obtained using flow cytometry. The analysis was performed using Prisma
5.0 and applying the equation (Bmax × X/(X + Kd) + NS × X + Background), where Bmax
is the maximum number of binding sites, NS is the value of nonspecific binding, and X is
the concentration of the aptamers used in the assay. The nonspecific binding was calculated
from control samples incubated with no aptamers or with the initial aptamer library in
400 nM. Three independent replicates were carried out for each test.

4.6. Aptafluorescence

Breast tumor cell lines MDA-MB-231, MDA-MD-468, MCF-7, HCC-70, BT-474, HCC-
1954, and HCC-1937 and the non-tumor cell line MCF-10A were plated (5 × 104) in Labtek
chamber slides. They were subsequently blocked with binding buffer solution (DPBS, 4.5 g
glucose, 1 g BSA, and 5 mL 1 M MgCl2) and incubated with FAM-conjugated aptamers at
400 nM for 1 h in 5% CO2 at 37 ◦C. After the incubation time, the cells were washed with
PBS and fixed in 4% paraformaldehyde for 5 min. The cells were incubated for 10 min with
DAPI (1:5000) to counterstain nuclei, washed again in PBS, and mounted with DABCO.
Image acquisition was performed on a Nikon Eclipse microscope (Tokyo, Japan) with
Nikon Instruments software (Software Version 7.7.4). To analyze aptamer localization,
300 cells were observed. Three independent replicates were carried out for each test.

4.7. Three-Dimensional In Vitro Tumor Model

The 96-well configuration from n3D Biosciences, Inc. (Houston, TX, USA) was used to
construct the 3D in vitro breast tumor model. The breast tumor cell line MDA-MB-231 and
the non-tumor cell MCF-10A were plated (1 × 106) in a 6-well plate and incubated with
magnetic nanospheres at a ratio of 76 µL of nanosphere for every 1 × 106 cells. After 24 h,
the cells were then detached and plated (3 × 104 cells per well) in a 96-well non-adherent
plate. Next, the plate was placed over a magnet plate, and the spheroids were formed
after 24 h. After this time, the spheroids were fixed with 4% paraformaldehyde under
gentle stirring. For the binding assay, the spheroids were incubated for 2 h with the FAM-
conjugated aptamers at 400 nM and with the aptamer initial library, diluted in binding
buffer solution, under gentle shaking at room temperature. Next, the spheroids were
washed with PBS and incubated with DAPI (Thermo Fisher Scientific, Waltham, MA, USA)
for 20 min (1:5000) under gentle agitation, and then washed and finally incubated with
DABCO (Sigma, TX, USA). Images were acquired by the High Content Screening System
imagexpress Micro Confocal equipment (Thermo Fisher Scientific, Waltham, MA, USA) of
the Bioassays platform of Fiocruz-Rede de Plataformas tecnológicas, Fiocruz, Brazil. Two
independent replicates were carried out for each test.
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4.8. Validation of Aptamer Recognition in Breast Cancer Samples Using Tissue Microarray (TMA)

The assays using clinical specimens from patients with breast cancer were performed
with tissue microarray slides purchased from US Biomax Inc. (Rockville, MD, USA) (ref.:
BR1008b). The slides were kept at 60 ◦C for 2 h before use. For the deparaffinization step,
the slides were bathed in xylol (3× for 5 min), and then the sections were dehydrated in
decreasing concentrations of ethanol (100%, 95%, 80%, and 70% for 5 min each). Then, the
tissues were hydrated in water for 5 min. For antigenic recovery, the slides were placed
in a streamer containing Citrate pH 6.0/Tris EDTA pH 9.0/Trilogy™ (Cell Marque, TX,
USA) solution for 30 min. Then, after washes with TBS (3× for 5 min), the nonspecific
binding was blocked with Novolink™ Protein Block (Leica Biosystems, Sao Paulo, Brazil)
for 5 min. Then, the slides were incubated with FAM-conjugated aptamers AptaB1, AptaB2,
AptaB3, AptaB4, and AptaB5, at a concentration of 400 nM for 1 h at room temperature
and then washed with TBS and incubated with DAPI (1:5000 for 10 min). After washing
in TBS, ProLong™ Gold Antifade (Thermo Fischer, Waltham, MA, USA) was used to
mount the slides. After 24 h of polymerization, an analysis was performed in a Nikon
Eclipse microscope (Tokyo, Japan), and the images were obtained using Nikon Instruments
software (Software Version 7.7.4).

4.9. Analysis of the Efficiency of Recognition of Aptamers for Diagnostic Application

To evaluate the accuracy and efficacy of aptamers as a diagnostic tool, we calculated
the diagnostic index to identify the predictive value of aptamers and the best combination
between them for application in a diagnostic test. Thus, the number of samples recognized
by aptamers were quantified such as sensitivity: TP/(TP + FN), specificity: VN/(FP + TN),
and accuracy: (VP + TN)/(TP + FP + FN + TN), where tumor samples with aptamer
labeling were considered true positive (TP), tumor samples without aptamer labeling were
considered false negative (FN), non-tumor samples with aptamer labeling were considered
false positive (FP), and non-tumor samples without aptamer labeling were considered true
negative (TN).

4.10. Three-Dimensional Structural Characterization of Aptamers

To predict the 2D structures of the aptamers, we input the sequences into the UNAfold
Web Server using the mFold extension (http://mFold.rna.albany.edu/?=mFold, accessed
on 10 December 2022) available on the server’s website. Subsequently, to obtain a second
prediction and compare the results, we utilized the NUPACK server (http://www.nupack.
org, accessed on 12 December 2022). Both servers provided predictions of the secondary
structure of aptamers in the parenthesis–dot code format, along with corresponding free
energy values denoted as ∆G.

Due to the limited availability of methodologies for predicting the 3D structural
attributes of ssDNA aptamers in the existing literature, a critical transformation step was
implemented. This involved converting the nucleotide sequences from DNA to RNA
and subsequently switching back to DNA. The 3D structural predictions of aptamers
followed a methodology adapted from Jeddi and Saiz (2017) [45]. The initially derived
secondary structures in parenthesis–dot code format were used and submitted, along with
the respective nucleotide sequences, to the RNA composer server (https://rnacomposer.
cs.put.poznan.pl/, accessed on 20 December 2022). Thymine bases were replaced with
uracil during this conversion. The outcome of this step produced the tertiary structure of
RNA aptamers.

To obtain the original DNA sequence and subsequent 3D structure of the DNA aptamer,
the x3DNA server (http://web.x3dna.org/index.php/mutatio, accessed on 21 December
2022) was utilized. The server assisted in converting uracil bases back into thymine and
ribose sugars back into deoxyribose. Following this, the pdb file representing the 3D
structure underwent refinement for geometry minimization using Phenix software, version
1.19.2-4158 (2-25-2021) [46].

http://mFold.rna.albany.edu/?=mFold
http://www.nupack.org
http://www.nupack.org
https://rnacomposer.cs.put.poznan.pl/
https://rnacomposer.cs.put.poznan.pl/
http://web.x3dna.org/index.php/mutatio


Int. J. Mol. Sci. 2024, 25, 840 31 of 35

4.11. Molecular Dynamics Simulations of the Aptamers

Molecular dynamics (MD) simulations were performed using Amber 22 [47,48] soft-
ware with the FF14SB forcefield, adding the parameters of parmbsc1 force field for DNA sim-
ulation. Molecular topologies of the complexes were created using the tLEaP tool [47,48].

The systems were placed in triclinic boxes filled with TIP3P water molecules. The
minimum distance from the solute to the edge of the box was set to 12 Å. Sodium and
chloride ions were added to neutralize the systems. Electrostatic interactions were treated
using the Particle Mesh Ewald (PME) method [49,50], with a cutoff of 10 Å, while the
switching approach was applied to treat interactions between unbound atoms.

We executed cycles of geometry optimization and energy minimization, using the
steepest descent algorithm for the initial 1000 steps of each cycle, followed by the conjugate
gradient method for the remaining steps. The maximum number of steps was set at 5000
as a stop condition. The positions of the heavy atoms in the aptamer and the ligand were
initially kept restricted using a harmonic potential of the force constant of 10 kcal/(mol, and
we gradually decreased the force constant in each cycle until we achieved an unrestrained
state of the molecules.

We raised the systems’ temperature from 20 to 300 K, with a cap of 500,000 steps
during the heating simulation procedure. The weak coupling approach [51,52] was used to
maintain the pressure at 1 atm. Ions and water molecules were kept free while the positions
of the heavy atoms were constrained using a harmonic potential with a force constant of
10 kcal/(mol). Initial velocities at T = 20 K were obtained using the Maxwell–Boltzmann
distribution. We limited this procedure to 500 picoseconds and used an integration time of
two femtoseconds.

After the heating process, 4 ns long equilibrium dynamics were conducted. To control
the position restraints of the heavy atoms, we used force constants. The force constants
started at 5 kcal/ (mol), and we decreased them toward zero over the equilibrium phase.
A Langevin thermostat was used to maintain the temperature at 300 K with a collision
frequency of 2.0 ps.

A molecular dynamics simulation was performed using the NPT statistical ensemble.
A Berendsen barostat [53,54] with an isotropic position scale was used to regulate the
pressure. We generated three replicates with 500 ns long in each of them.

4.12. Trajectory Analysis

Root mean square deviation (RMSD), root mean square fluctuation (RMSF), and the
clustering analysis were performed with Gromacs [52,55]. The clustering analysis was
performed using the GROMOS method with a cutoff of 2.5 Å.

4.13. Selection of Candidate Proteins for Possible Targets Recognized by the Aptamer Using an In
Silico Approach

To identify potential aptamer targets, we utilized Lawrence et al.’s (2015) entire pro-
teomic dataset to identify proteins that exhibited double the expression in the tumor lineage
(MDA-MB-231) compared with the non-tumor lineage (MCF-10A) [16]. In order to validate
the overexpression of the selected proteins and select proteins that are attached to the
cell membrane, we utilized proteomic data obtained from Ziegler et al. (2015) [17]. In
addition, we predicted the cellular localization of the proteins using Psort II predictor and
Uniprot (https://www.uniprot.org/, accessed on 10 December 2022). Following these
steps, we identified 40 membrane proteins overexpressed in MDA-MB-231 compared with
the MCF-10A cell line. A third filtering step was applied based on the cellular recognition
by the five individual aptamers using the data previously published by Lawrence and
colleagues (2015), and finally, 4 proteins were selected.

4.14. Obtaining the Three-Dimensional Structure of the Candidate Proteins for Molecular Docking

Molecular docking was carried out to predict the possible binding of the aptamer with
the four selected proteins, and thus the three-dimensional structure of the target protein

https://www.uniprot.org/
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had to meet specific criteria. Therefore, we obtained the structure of the selected proteins
in the Protein Data Bank (PDB—https://www.rcsb.org/, accessed on 12 December 2022)
and AlphaFold (https://alphafold.ebi.ac.uk, accessed on 15 December 2022) [56]. Only
structures with a prediction quality index defined by AlphaFold as very reliable or reliable
(pLDDT > 70) progressed to the molecular docking phase.

4.15. Spatial Orientation Analysis and Electrostatic Potential Characterization of Selected Proteins

The Psort II server (https://psort.hgc, accessed on 22 December 2022) was utilized to
verify the spatial orientation of plasma membrane proteins, with the membrane topology
identified using the MTOP algorithm. To determine the protein’s spatial orientation, we
used the PPM 2.0 web server, accessible on the OPM database (https://opm.phar.umich.
edu/, accessed on 26 December 2022). An electrostatic potential analysis was carried out
using the APBS program (https://server.poissonboltzmann.org, accessed on 23 December
2022) [57]. The PDB2PQR server, available in APBS, was used to add the charge and
radius parameters of the Amber Force Field. The electrostatic potential of the protein
was represented and colored on a scale from −10 (red) to +10 (blue) using the ChimeraX
program, version 1.6.1.

4.16. Molecular Docking

The protonation state of the selected proteins was predicted using the H++ web
server (http://newbiophysics.cs.vt.edu/H++/index.php, accessed on 28 December 2022).
In addition, the GETAREA server (https://curie.utmb.edu/getarea.html, accessed on 28
December 2022) [58] was used to identify residues with relative solvent accessibility >80%,
thus identifying the active residues of the protein. For aptamers, the active residue was
defined as the entire aptamer (76 nucleotides). The HADDOCK 2.4 server was used to run
and analyze the molecular docking in standard mode.

4.17. Molecular Dynamics Simulations of the Complexes

The complexes obtained after the molecular docking step were subjected to molec-
ular dynamics simulations using the structures obtained in the molecular docking as
initial conformations. Charmm-gui’s Membrane Builder tool [59,60] was used to construct
the systems and insert a double-layer membrane of 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine (POPC) into each of them. Then, the structures generated with charmm-
gui were used as input for the tleap program with the addition of the parameters of the
lipid21 force field for the simulation of lipids. The remaining stages of the preparation
and execution of the molecular dynamics for the complexes were conducted using the
same parameters described above for the aptamers. Then, we performed molecular dy-
namics simulations using the best structures obtained from the molecular docking step as
initial conformations.

4.18. Target–Aptamers Binding Evaluation

The MM/GBSA was performed in Amber software using 50 ns of each simulation for
the calculations, using the optimized generalized Born (GB) model called the OBC model
defined by igb = 2 [61–64]. For the energy decomposition, we applied a per-residue basis
scheme, defined by idecomp = 2. We applied the MM/GBSA method to calculate the Gibbs
free energy change ∆G. ∆G was obtained according to the following equation:

∆G = ∆Evdw + ∆Eele + ∆Gesurf + ∆Gegb.

where ∆Evdw stands for the Van der Waals interaction change, ∆Eele is the electrostatic
energy change, ∆Gesurf accounts for the surface free energy change, and ∆Gegb denotes
the generalized Born free energy change.
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5. Conclusions

In conclusion, the data presented in this study reinforce the capacity of aptamers as a
promising diagnostic tool for breast cancer. The selected aptamers recognized all molecular
subtypes of breast cancer and, moreover, the different intrinsic subtypes of the triple-
negative breast tumor. The validation of the recognition in clinical samples at different
stages confirms the possibility of using aptamers as a strategy for more accurate diagnostic
and prognosis of the disease. In the near future, aptamers will open the avenue for the
minimally invasive BC diagnosis based on liquid biopsy. Finally, the in silico methodology
showed the potential to be used to determine possible aptamer targets, and CSKP could
then be suggested as a new biomarker for BC.

6. Patents

The aptamer sequences are protected under patent filing PCT/BR2022/050356.
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