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Abstract: The cloud forest (CF), a hugely biodiverse ecosystem, is a hotspot of unexplored plants
with potential for discovering pharmacologically active compounds. Without sufficient ethnopharma-
cological information, developing strategies for rationally selecting plants for experimental studies is
crucial. With this goal, a CF metabolites library was created, and a ligand-based virtual screening
was conducted to identify molecules with potential hypoglycemic activity. From the most promising
botanical families, plants were collected, methanolic extracts were prepared, and hypoglycemic
activity was evaluated through in vitro enzyme inhibition assays on α-amylase, α-glucosidase, and
dipeptidyl peptidase IV (DPP-IV). Metabolomic analyses were performed to identify the dominant
metabolites in the species with the best inhibitory activity profile, and their affinity for the molecular
targets was evaluated using ensemble molecular docking. This strategy led to the identification of
twelve plants (in four botanical families) with hypoglycemic activity. Sida rhombifolia (Malvaceae)
stood out for its DPP-IV selective inhibition versus S. glabra. A comparison of chemical profiles led to
the annotation of twenty-seven metabolites over-accumulated in S. rhombifolia compared to S. glabra,
among which acanthoside D and cis-tiliroside were noteworthy for their potential selective inhibition
due to their specific intermolecular interactions with relevant amino acids of DPP-IV. The workflow
used in this study presents a novel targeting strategy for identifying novel bioactive natural sources,
which can complement the conventional selection criteria used in Natural Product Chemistry.

Keywords: ligand-based virtual screening; dipeptidyl peptidase IV; α-amylase; α-glucosidase; plant
metabolomics; ensemble molecular docking

1. Introduction

Diabetes mellitus (DM) is a metabolic disorder of heterogeneous etiology characterized
by chronic hyperglycemia, which in the long term produces renal failure, blindness, slow-
healing wounds, and arterial diseases [1,2]. DM is considered one of the fastest-growing
health emergencies of the 21st century: in 2021, 537 million DM patients were recorded,
and it is projected to increase to 643 million by 2030 and 783 million by 2045 [3]. Type II DM
(DMII) is caused by alterations in the secretion and action of insulin and is the most frequent
type, with 90–95% of cases. Due to chronic hyperglycemia, the pharmacotherapy used for
its treatment consists mainly of administering hypoglycemic oral agents that act through
different mechanisms of action [4]. Inhibition of α-amylase (αA) and α-glucosidase (αG)
enzymes delays the digestion of complex carbohydrates such as starch and prevents sudden
increases (spikes) in blood glucose levels [4–6]. Acarbose and voglibose are inhibitors of
both enzymes. However, they cause adverse side effects such as flatulence, diarrhea, and
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abdominal pain [5,7]. In addition to these targets, the inhibition of the dipeptidyl peptidase
IV enzyme (DPP-IV) prevents the hydrolysis of incretin hormones, glucagon-like peptide-
1 (GLP-1), and gastric inhibitory polypeptide (GIP) [8]. Among the functions of these
hormones is the activation of separate G protein-coupled receptors on pancreatic β cells,
associated with insulin secretion through exocytosis. GLP-1 also reduces glucagon secretion,
delays gastric emptying, and produces a satiety effect [9]. DPP-IV inhibition produces
a secondary anti-hyperglycemic effect caused by the action of endogenous substrates.
Gliptins (sitagliptin, vildagliptin, saxagliptin, alogliptin, and linagliptin) are a group of DPP-
IV inhibitors that do not present intrinsic hypoglycemic risk. However, they cause other
adverse side effects, such as nasopharyngitis, headache, nausea, and skin sensitivity [10,11].

Due to its undesirable side effect profiles and eventual decrease in effectiveness, it is
currently necessary to conduct scientific studies to search for alternatives in which better
therapeutic management of DMII can be carried out [12]. In this regard, it is well known
that plants and their derivatives (extracts, fractions, and pure compounds) are promising
and well-accepted alternatives for controlling DMII in different cultures worldwide [13].
Plant natural products are characterized by presenting a wide structural diversity opti-
mized to fulfill biological functions, such as regulating mechanisms involved in biotic
interactions [14]. Due to structural domain conservation in macromolecular targets across
many organisms, some plant natural products are recognized by human protein targets
with therapeutic relevance [15,16]. Conventionally, in Natural Products Chemistry (NPC),
the selection of plant materials for bioactive compounds discovery involves criteria such as
ethnopharmacological (uses in traditional medicine) [17], random (plant material availabil-
ity) [18], chemotaxonomic (plants phylogenetically related to other bioactive plants) [19],
and, recently, the application of chemical–computational tools (in silico prediction of bioac-
tivity) [20].

Chemotaxonomic classification is an approach used to organize taxa based on related
biosynthetic pathways and chemical structures of specialized metabolites, which is re-
stricted to phylogenetically related organisms [21]. In addition, regarding the techniques
used in computational criteria, virtual screening consists of reducing a library of com-
pounds to a limited number of potentially bioactive molecules [22]. Since its first report
in 1997, the applications of virtual screening have been increasing thanks to the increase
in data processing capacity, the structural characterization of macromolecules, and the
availability of libraries of chemically diverse compounds [23,24]. Currently, using computa-
tional tools in the study of the pharmacological properties of natural products has increased
the success rates in bioactive molecule identification in academia as well as at the industrial
level. Furthermore, it has reduced the investment of resources related to the introduction
of new drugs to the market [25]. Nevertheless, these computational approaches continue to
require the integration of robust experimental methods to validate their predictive capac-
ity, which helps refine the virtual models to produce data characterized by predictability,
computability, and stability [26].

In Mexico, cloud forest (CF) is considered the ecosystem with the highest biodiversity
per surface area unit, and it covers approximately 1% of the total territory of Mexico,
comprising 10% of the plant species described for the country (circa 30% endemic) [27]. CF
has also been identified as an unexplored niche of plants with phytomedicinal potential [28].
In recent years, our workgroup has described the antibacterial, antifungal, and insecticidal
potential of randomly selected CF plants in Veracruz, Mexico [18,29]. In these studies,
success rates in identifying those with promising activities yielded rates of from 13.3
to 76.5% of the total studied plants, and these species can now be used in strategies
for developing new control agents against pathogens that affect crops of commercial
interest [30]. However, there is still a gap in ethnobotanical knowledge about CF species,
which has limited their application in studies focused on determining their potential
therapeutic activities.
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This work aimed to establish a combined chemotaxonomic and computational criterion
to rationally target CF plants with potential hypoglycemic activity. The application of this
approach allowed the identification of plant species with inhibitory activity in DPP-IV,
αA, and αG from a highly biodiverse ecosystem, indicating that it could be used for
bioprospecting purposes in a complementary way to conventional selection approaches
in NPC.

2. Results
2.1. Rational Selection of the Cloud Forest Botanical Families with Potential
Hypoglycemic Activity

Using the Plant Metabolic Network (PMN) library for plants to identify the reported
families for the CF, we retrieved 13 families, including 43 species and 97,094 metabolites.
After the pre-processing step (see Section 4), the library was enriched to 129,119 metabolites
(100%) with defined stereochemistry. The library consisted of primary metabolites (pep-
tides, nitrogenated bases, carbohydrates, and lipids) and specialized metabolites (amine-
containing metabolites, phenolic compounds, and terpenoids). In the ligand-based virtual
screening (LBVS), a total of 548 metabolites (0.4% from the prepared library) distributed
in the three natural products groups (amine-containing metabolites, phenolics, and ter-
penoids) accomplished all criteria used for filtering (see Section 4). Thus, this final set of
compounds was selected due to its potential hypoglycemic activity (Figure 1). The search
for these molecules in the initial library allowed us to rank the 13 botanical families based
on the percentage of the potential hypoglycemic metabolites presented by the group. For
each case, the two families with the highest percentage were selected (Table 1). Considering
all the data, the Brassicaceae, Fagaceae, Euphorbiaceae, Solanaceae, and Malvaceae families
were the best candidates for the experimental evaluation of hypoglycemic activity.
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Table 1. Percentage of the potential hypoglycemic metabolites identified in the selected CF botanical
families using an LBVS.

Amine-Containing
TC ≥ 0.85 = 29 (A)

Amine-Containing
TC ≥ 0.85 = 195 (V)

Phenolics
TC ≥ 0.85 = 26 (A)

Phenolics
TC ≥ 0.85 = 170 (V)

Terpenoids
TC ≥ 0.85 = 3 (A)

Terpenoids
TC ≥ 0.85 = 125 (V)

1 Brassicaceae (79%) Brassicaceae (64%) Malvaceae (69%) Euphorbiaceae (63%) Euphorbiaceae (100%) Fagaceae (72%)
2 Fagaceae (38%) Fagaceae (53%) Solanaceae (65%) Fagaceae (62%) Fagaceae (100%) Solanaceae (64%)
3 Euphorbiaceae (34%) Euphorbiaceae (51%) Anacardiaceae (62%) Solanaceae (55%) Brassicaceae (100%) Brassicaceae (63%)
4 Solanaceae (28%) Solanaceae (47%) Amaranthaceae (58%) Myrtaceae (44%) Solanaceae (67%) Euphorbiaceae (57%)
5 Asteraceae (21%) Amaranthaceae (43%) Fagaceae (54%) Amaranthaceae (42%) Amaranthaceae (67%) Malvaceae (56%)
6 Malvaceae (21%) Malvaceae (40%) Euphorbiaceae (54%) Malvaceae (42%) Malvaceae (67%) Rutaceae (54%)
7 Rutaceae (21%) Rutaceae (39%) Myrtaceae (54%) Rutaceae (40%) Rutaceae (67%) Myrtaceae (49%)
8 Amaranthaceae (17%) Asteraceae (38%) Brassicaceae (50%) Anacardiaceae (39%) Anacardiaceae (67%) Amaranthaceae (47%)
9 Anacardiaceae (17%) Myrtaceae (36%) Asteraceae (46%) Brassicaceae (39%) Asteraceae (67%) Anacardiaceae (46%)

10 Cucurbitaceae (17%) Cucurbitaceae (35%) Rutaceae (38%) Asteraceae (37%) Cucurbitaceae (67%) Cucurbitaceae (44%)
11 Dioscoreaceae (17%) Anacardiaceae (34%) Cucurbitaceae (38%) Cucurbitaceae (35%) Myrtaceae (0%) Asteraceae (43%)
12 Myrtaceae (17%) Dioscoreaceae (30%) Dioscoreaceae (35%) Dioscoreaceae (34%) Dioscoreaceae (0%) Dioscoreaceae (35%)
13 Araceae (14%) Araceae (29%) Araceae (31%) Araceae (23%) Araceae (0%) Araceae (27%)

Molecules in each group with a Tanimoto coefficient (TC) ≥ 0.85 were calculated concerning acarbose (A) and
vildagliptin (V).

2.2. Enzymatic Inhibition Activity

Twelve species belonging to the Euphorbiaceae, Fagaceae, Malvaceae, and Solanaceae
families were recollected in the two study sites (Brassicaceae species were not found).
Specimens of all species were deposited in the collection of Herbarium XAL (see Section 4.3).
The inhibitory enzymatic activity of their crude extracts was assessed using in vitro assays
(Figure 2).
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significant difference (p > 0.05) compared to positive controls: acarbose (αA = 3 mM, αG = 30 mM),
and sitagliptin (DPP-IV), based on one-way analysis of variance with a post hoc Dunnett test. Results
are expressed as mean (n = 3) ± standard deviation.

The percentage of αA inhibition ranged from 1.8 ± 1.49% (Sida rhombifolia) to 98.6 ± 0.98%
(Acalypha alopecuroidea), and nine species (75%) displayed an inhibition higher than 50%
(Figure 2A). Also, for this enzyme, A. alopecuroidea (Euphorbiaceae), Quercus lancifolia, and
Q. xalapensis (Fagaceae) presented the same inhibitory activity as the positive control (3 mM
acarbose≈ 100% inhibition). According to the Dunnett test, they did not present statistically
significant differences (Figure 2A). The αG inhibition percentages were observed from
6.9 ± 0.59% (S. rhombifolia) to 99.9 ± 0.31 (Pavonia schiedeana), and eight species (67%)
exhibited more than 50% inhibition, which is in concordance with those species identified
with this criterion for αA [only exception: Solanum lanceolatum (Solanaceae)] (Figure 2B). In
addition, six species also showed a higher percentage of inhibition compared to the positive
control (30 mM acarbose= 80.1 ± 0.19%), among which Q. lancifolia, P. schiedeana, and
Malvaviscus arboreous (Malvaceae) stand out due to the fact that they reached an inhibition
of around 100% (Figure 2B). Finally, the DPP-IV enzyme’s inhibition percentages ranged
between 16.4 ± 8.71 (P. schiedeana) and 56.3 ± 3.37% (Q. xalapensis). Three species (25%)
presented more than 50% inhibition: Q. xalapensis, S. myriacanthum, and S. lanceolatum
(Figure 2C). From the total tested extracts, only those from Sida spp. (Malvaceae) presented
a selective inhibition profile when considering the three enzymes. S. rhombifolia reached an
inhibition of 39.2 ± 2.41% in DPP-IV, compared to 1.8 ± 1.49% and 6.9 ± 0.60% for αA and
αG, respectively. On the other hand, S. glabra was consistent for DPP-IV (47.4 ± 2.07%), but
presented higher inhibition on αA and αG (50.0 ± 1.29% and 62.5 ± 1.32%, respectively).

2.3. Determination of Half Maximal Inhibitory Concentration and Half Maximal Lethal
Concentration of Selected Extracts

The selective inhibition profile towards DPP-IV of S. rhombifolia concerning S. glabra
was confirmed by determining the half-maximal inhibitory concentration (IC50) of their
extracts (Table 2). Consistently with the preliminary evaluation, S. rhombifolia and S. glabra
exhibited similar inhibitory activity in DPP-IV (IC50 = 2.67 and 2.26 mg/mL, respectively).
On the other hand, S. rhombifolia showed an IC50 higher than 4 mg/mL in αA and αG,
while S. glabra showed lower values than 2 mg/mL for both enzymes. It is worth men-
tioning that S. glabra showed higher inhibitory activity on αG compared to the positive
control (0.33 vs. 2.88 mg/mL). In terms of toxicity, S. rhombifolia (1.41 mg/mL) and S. glabra
(>2 mg/mL) displayed higher half-maximal lethal concentration (LC50) values than the pos-
itive control colchicine (0.55 mg/mL). Both extracts were classified as non-toxic according
to the Clarkson index (LC50 > 1.0 mg/mL non-toxic, 0.5 < LC50 ≤ 1.0 mg/mL low toxicity,
0.1 < LC50 ≤ 0.5 mg/mL medium toxicity and LC50 ≤ 0.1 mg/mL high toxicity) [31].

Table 2. IC50 in enzymatic inhibition assays and LC50 in brine shrimp toxicity assay of S. rhombifolia
and S. glabra extracts.

Sample IC50 (mg/mL) LC50 (mg/mL)
αA αG DPP-IV

S. glabra 1.27 0.33 2.26 >2.00
S. rhombifolia >4.00 >4.00 2.67 1.41

Positive control 0.003 a 2.88 a 7.33 × 10−6 b [32,33] 0.55 c

a Acarbose, b sitagliptin, c colchicine.

Given the resulting biological activities and the intrinsic phylogenetic relationship
between S. rhombifolia and S. glabra, these results raised the possibility of identifying
metabolites accumulated in S. rhombifolia compared to S. glabra, with potential selective
inhibition for DPP-IV.
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2.4. Comparative Untargeted Metabolomic Analysis of Active Species

The untargeted metabolomic analysis of the extracts of S. rhombifolia and S. glabra
allowed us to obtain a combined spectra database of both ionization modes (ESI+ and
ESI−) with 2109 rt-m/z values (spectrometric features). Two main signal groups were
observed in the heatmap built with this database (Figure 3A), suggesting different chemical
profiles between these species. The species-based distribution of rt-m/z values consisted
of 1172 unique spectrometric features for S. glabra, 275 unique features for S. rhombifo-
lia, and 662 shared features, indicating that S. rhombifolia shares about 70% of its global
metabolic profile with S. glabra (Figure 3B). The pathway analysis revealed the tentative
presence of precursors and products for the biosynthesis of flavonoids, flavones, flavonols,
monoterpenoids, diterpenoids, phenylpropanoids, and isoquinoline alkaloids (Figure 3C
and Supplementary Information S1). Through the fold change analysis, 319 rt-m/z features
were found that could correspond to metabolites or their fragments over-accumulated in
S. rhombifolia compared to S. glabra (fold change ≥ 2, p ≤ 0.05), which could be responsible
for its selective inhibitory activity towards DPP-IV (Figure 3D). The search for experimental
exact mass values in different public spectral databases allowed us to tentatively identify
twenty-two over-accumulated specialized metabolites that have been described in plants
belonging to the Malvaceae family (59%), and other species that coincide with S. rhombifolia
at the malvids clade level (41%) (Table 3). These compounds were identified with confi-
dence level two (putative annotation) compared with MS/MS spectral data (Supplementary
Information S2).

Table 3. Tentatively identified specialized metabolites over-accumulated in S. rhombifolia compared to
S. glabra.

Fold
Change p Value Retention

Time (min) Exact Mass Name Metabolite Type Adduct Mass Error
(ppm) Plant Species

11.99 1.1 × 10−2 4.16 409.1822 Corchoionoside C Apocarotenoids [M+Na]+ −4.0 Corchorus olitorius * [34]

11.31 1.1 × 10−2 6.79 595.1442 cis-Tiliroside Flavonoids [M+H]+ −1.6 Lasiopetalum
macrophyllum * [35]

8.01 4.1 × 10−4 4.41 577.1547 Kaempferitrin Flavonoids [M−H]− −1.8 Tilia tomentosa * [36]
7.40 8.7 × 10−5 7.82 385.0916 Cleomiscosin A Coumarins [M−H]− −1.9 Hibiscus syriacus * [37]
7.25 4.4 × 10−5 4.44 333.1091 Cappariloside A Small peptides [M−H]− 1.3 Capparis spinosa [38]

7.18 8.8 × 10−3 6.55 617.1265 trans-Tiliroside Flavonoids [M+Na]+ −1.0 Lasiopetalum
macrophyllum * [35]

7.01 9.0 × 10−5 6.66 385.0924 Cleomiscosin B Coumarins [M−H]− 0.1 Hibiscus syriacus * [37]
7.01 8.9 × 10−5 3.88 741.1872 Depressonol A Flavonoids [M−H]− −0.8 Corchorus depressus * [39]

6.98 6.2 × 10−5 5.48 667.2601 Isolimonic acid
glucoside ** Triterpenoids [M−H]− −0.1 Citrus aurantium [40]

6.98 6.2 × 10−5 5.48 667.2601
Ichangic acid

17-β-D-
glucopyranoside **

Triterpenoids [M−H]− −0.1 Citrus aurantium [40]

6.89 3.1 × 10−5 5.85 371.1350 Citrusin E Phenylpropanoids [M−H]− 2.1 Citrus limon [41]
6.83 7.8 × 10−5 4.85 419.1338 Rhaponticin Stilbenoids [M−H]− −1.0 Eucalyptus rubida [42]

6.81 7.0 × 10−5 5.80 515.2773 20-
Hydroxyecdysone Steroids [M+Cl]− −0.5 Sida rhombifolia * [43]

6.80 5.9 × 10−5 4.27 741.2592 Acanthoside D Lignans [M−H]− −1.9 Daphne feddei [44]
6.67 7.1 × 10−5 7.63 415.1025 Cleomiscosin D Coumarins [M−H]− −1.0 Hibiscus syriacus * [37]
6.62 6.6 × 10−5 4.12 461.1094 Thermopsoside Flavonoids [M−H]− 2.2 Daphne feddei [45]
6.54 3.3 × 10−5 3.39 193.0497 Ferulic acid Phenylpropanoids [M−H]− −2.0 Sida acuta * [46]

6.51 8.1 × 10−5 4.26 385.1135 1-O-Sinapoyl-β-D-
glucose Phenylpropanoids [M−H]− 0.1 Arabidopsis thaliana [47]

5.47 5.0 × 10−7 13.59 612.2245 Neoacrimarine E Alkaloids [M−H]− 1.9 Citrus paradisi/C.
tangerina [48]

3.69 9.0 × 10−4 4.56 531.2717 Polypodine B Steroids [M+Cl]− −1.5 Sida szechuensis * [49]
2.67 3.4 × 10−2 12.49 699.3564 Corchorusoside D ** Steroids [M+H]+ −4.0 Corchorus olitorius * [50]
2.67 3.4 × 10−2 12.49 699.3564 Corchorusoside A ** Steroids [M+H]+ −4.0 Corchorus olitorius * [50]

* Reported in species from the Malvaceae family, ** undistinguished isomers.
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significant metabolic pathways identified with the rt-m/z features detected in S. rhombifolia and
S. glabra (generated using the Mummichog algorithm in MetaboAnalyst 6.0) with the Arabidopsis
thaliana library deposited in KEGG database. Red to yellow color scale is related to the significant
pathway impact [−log10(p)] value. (D) Volcano plot of the comparison of the global chemical
profiles of S. rhombifolia/S. glabra (fold change ≥ 2 and p < 0.05). Each circle corresponds to a rt-m/z
feature. Red and blue colors mean significant (t-test) positive and negative logarithmic fold change
values, respectively.

2.5. Identification and Quantification of Phenolic Compounds

Using the untargeted metabolomic approach, different phenolic compounds were
tentatively identified, followed by a phenolics-targeted metabolomic analysis. One phenolic
precursor and 29 phenolic compounds belonging to phenolic acids, phenylpropanoids,
flavonoids, coumarins, and lignans were identified and quantified. Of them, 24 were
identified in S. rhombifolia and 29 in S. glabra. In addition, the fold change analysis allowed
the identification of five metabolites over-accumulated in S. rhombifolia compared to S. glabra
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(fold change ≥ 2 and p < 0.05). These were kuromanin, naringin, vanillin, vanillic acid, and
trans-cinnamic acid (Table 4).

Table 4. Dereplicated phenolics by UPLC-MS/MS in the crude extracts of Sida species.

Metabolite Type Name SR * SG * SR/SG FC SR/SG p Value

Phenolic acids

4-Hydroxybenzoic acid 4.35 ± 0.46 2.63 ± 0.05 --- ---
Ellagic acid 1.21 ± 0.08 5.48 ± 0.38 0.221 1.84 × 10−7

Gallic acid 0.07 ± 0.02 0.25 ± 0.01 0.284 3.86 × 10−5

Protocatechuic acid 0.49 ± 0.05 1.55 ± 0.04 0.317 5.66 × 10−7

Salicylic acid 12.54 ± 0.54 20.83 ± 0.97 --- ---
Vanillic acid 11.06 ± 0.09 3.51 ± 0.09 3.153 3.00 × 10−10

Vanillin 17.50 ± 0.47 6.94 ± 0.06 2.523 5.05 × 10−9

Phenylpropanoids

4-Coumaric acid 1.78 ± 0.14 1.47 ± 0.03 --- ---
Caffeic acid 0.46 ± 0.04 1.28 ± 0.01 0.360 1.81 × 10−7

Chlorogenic acid 0.30 ± 0.03 107.72 ± 1.29 0.003 2.29 × 10−12

Ferulic acid 1.75 ± 0.04 1.03 ± 0.01 --- ---
Sinapic acid 0.00 0.18 ± 0.02 0.176 2.68 × 10−7

trans-Cinnamic acid 0.28 ± 0.01 0.13 ± 0.00 2.091 3.41 × 10−8

Flavonoids

(−)-Epicatechin 0.00 2.60 ± 0.04 0.196 3.71 × 10−11

(+)-Catechin 0.02 ± 0.01 ** 4.49 ± 0.05 0.005 7.82 × 10−10

Apigenin 0.02 ± 0.00 ** 0.16 ± 0.00 0.153 5.05 × 10−9

Kaempferide 0.00 0.84 ± 0.20 0.143 3.21 × 10−5

Flavonoids

Kaempferol 0.00 1.83 ± 0.07 0.190 2.85 × 10−9

Kaempferol-3-O-
glucoside 13.50 ± 0.57 48.34 ± 0.29 0.279 1.40 × 10−9

Kuromanin 0.10 ± 0.01 ** 0.01 ± 0.00 ** 10.732 1.29 × 10−6

Luteolin 0.05 ± 0.01 ** 0.07 ± 0.00 --- ---
Naringin 0.53 ± 0.03 0.00 5.338 1.68 × 10−8

Quercetin 0.00 0.50 ± 0.06 0.171 6.42 × 10−7

Quercetin-3,4′-di-O-
glucoside 0.07 ± 0.02 ** 3.57 ± 0.08 0.021 1.41 × 10−8

Quercetin-3-D-
galactoside 0.84 ± 0.02 8.38 ± 0.15 0.100 3.11 × 10−11

Quercetin-3-glucoside 1.56 ± 0.03 90.32 ± 1.37 0.017 2.29 × 10−12

Rutin 3.36 ± 0.18 267.47 ± 3.72 0.013 2.71 × 10−12

Coumarins Umbelliferone 0.04 ± 0.00 0.05 ± 0.00 --- ---

Lignans Secoisolariciresinol 0.33 ± 0.05 0.79 ± 0.09 0.41 1.06 × 10−4

Amino acids Phenylalanine 14.77 ± 0.38 19.95 ± 0.37 --- ---

SR = S. rhombifolia, SG = S. glabra, FC = fold change, and --- = no significant differences (p > 0.05). * Data are
expressed as µg of compound/g dry material of the mean (n = 4) ± standard deviation. ** Calculated below the
limit of quantification.

2.6. Ensemble Molecular Docking

The different metabolomic analyses allowed us to identify 27 specialized metabo-
lites (untargeted approach: 22, phenolics-targeted approach: five) over-accumulated in
S. rhombifolia compared to S. glabra. Through ensemble molecular docking, the affinity of
the identified metabolites for the enzymes DPP-IV, αA, and αG was evaluated based on
the mean binding free energy (BFE) and compared to commercial drugs used as controls
(Supplementary Information S3). For the three enzymes, the negative control metformin
presented the lowest affinity, obtaining the highest mean BFE value (DPP-IV = −3.5 ± 0.17,
αA = −3.5 ± 0.30, and αG = −4.0 ± 0.27 kcal/mol). Meanwhile, among the positive
controls, sitagliptin (reversible competitive inhibitor) presented a mean BFE value of
−8.0 ± 0.25 kcal/mol on DPP-IV. On the other hand, acarbose (reversible competitive in-
hibitor) presented BFE values of −8.1 ± 0.18 and −8.5 ± 0.41 kcal/mol for αA and αG,
respectively. Notably, below the BFE values for positive controls, 13 molecules were ob-
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served with potentially higher affinity for the active site of DPP-IV. In contrast, 12 and
nine molecules exhibited BFE values below positive controls for αA for αG, respectively
(Figure 4).
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To further investigate the binding modes between the identified metabolites and the
three molecular targets, ten compounds with the lowest BFE values were selected. These
were trans-tiliroside, cis-tiliroside, depressonol A, naringin, kaempferitrin, acanthoside D,
thermopsoside, kuromanin, corchorusoside D, and rhaponticin. Finally, by calculating the
intermolecular interactions (Supplementary Information S4–S6), it was observed that nine
of the selected metabolites established hydrogen bonds and Pi–Pi stacking interactions
with amino acids of the S1 (His 708), S2 (Arg 93), S2 extensive (Phe 325, Arg 326, Trp
595) subsites, and, to a lesser extent, with the catalytic triad of DPP-IV (His 708) [51]. In
contrast, only four metabolites exhibited interactions with the catalytic triads of αA (Asp
196, Glu 232, Asp 299) [52] and αG (Asp 212, Glu 274, Asp 349) [53] (Table 5). Among
these metabolites, acanthoside D and cis-tiliroside were particularly interesting since they
established hydrogen bonds and Pi–Pi stacking interactions with His 708 and Trp 595 of
DPP-IV. On the other hand, they did not show intermolecular interactions with any of the
amino acids of the catalytic triad of αA and αG (Figure 5).

Table 5. Intermolecular interactions for the ten metabolites from S. rhombifolia with the lowest FBE
values vs. the DMII molecular targets.

DPP-IV (PDB ID 3W2T)
Metabolite BFE ** (kcal/mol) Hydrogen Bond Pi–Pi Stacking

Acanthoside D * −9.5 ± 0.37 His 94, Lys 522 Tyr 515, His 708
cis-Tiliroside * −11.1 ± 0.59 - His 708, Trp 597, Trp 595

Corchorusoside D * −8.8 ± 0.33 Tyr 515, Arg 326, His 94 -
Depressonol A * −10.2 ± 0.47 Glu 174, Gln 521, Tyr 424, Asp 524, Tyr 638 Phe 325
Kaempferitrin * −9.5 ± 0.58 - Trp 595, Trp 597

Kuromanin −9.1 ± 0.54 - Trp 595, Trp 597
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Table 5. Cont.

DPP-IV (PDB ID 3W2T)
Metabolite BFE ** (kcal/mol) Hydrogen Bond Pi–Pi Stacking

Naringin * −9.5 ± 0.37 Asp 524, Arg 93, Asp 513, Val 514 Trp 597
Rhaponticin * −8.6 ± 0.51 Asp 513 Trp 597

Thermopsoside * −9.2 ± 0.43 Gly 709 Trp 595, Trp 597
trans-Tiliroside * −11.2 ± 0.57 Gln 521 Phe 325, Trp 595

Sitagliptin −8.0 ± 0.25 Asn 678, Tyr 630 Tyr 634
Metformin −3.5 ± 0.17 - -

αA (PDB ID 4W93)
Metabolite BFE ** (kcal/mol) Hydrogen bond Pi–Pi stacking

Acanthoside D −9.2 ± 0.33 Arg 194, Trp 58 Trp 58
cis-Tiliroside −11.4 ± 0.45 Gln 62, Trp 58 Trp 58, Trp 57, Trp 356

Corchorusoside D −9.1 ± 0.56 Thr 162, Asp 146 -
Depressonol A * −10.4 ± 0.21 Gln 62, Asp 196, Ala 105, Thr 162 Trp 58
Kaempferitrin −9.8 ± 0.68 Arg 194, Asp 355 Trp 57, Trp 58

Kuromanin −9.4 ± 0.21 - Trp 58
Naringin * −9.5 ± 0.34 Arg 194, Asp 196, Glu 232 Trp 58

Rhaponticin −9.4 ± 0.60 Gln 62, Arg 194 Trp 58
Thermopsoside * −9.7 ± 0.78 Glu 232, Asp 299 Trp 58
trans-Tiliroside * −11.4 ± 0.30 Glu 232, Ile 234, Tyr 61 His 200, Trp 57, Tyr 61

Acarbose −8.1 ± 0.18 Asp 299, His 14, Gln 40, Gln 62, Asp 196 -
Metformin −3.5 ± 0.30 Arg 194 -

αG (3A47)
Metabolite BFE ** (kcal/mol) Hydrogen bond Pi–Pi stacking

Acanthoside D −8.7 ± 0.81 Glu 405, Gln 350, Arg 312 -
cis-Tiliroside −10.9 ± 1.54 Arg 210 Tyr 69, Tyr 344

Corchorusoside D * −8.4 ± 0.90 Arg 210, Asp 212 -
Depressonol A −9.8 ± 1.53 Asn 347 Tyr 69
Kaempferitrin −8.6 ± 1.29 Asn 412, Asn 411, Phe 156, Arg 312 Phe 300

Kuromanin −8.7 ± 0.90 Gln 276 -
Naringin * −9.1 ± 1.12 Glu 274, Arg 443 Tyr 69

Rhaponticin * −9.0 ± 0.81 Arg 210, Glu 274, Tyr 155, Asp 304, Thr 307 Phe 175, Tyr 155
Thermopsoside * −9.0 ± 0.71 Glu 274, Asp 212, Asn 347, Tyr 344 Phe 300
trans-Tiliroside −10.8 ± 1.60 Arg 443 Tyr 69

Acarbose −8.5 ± 0.41 Gln 276, Glu 274, Asp 66, Asp 349 -
Metformin −4.0 ± 0.27 Gly 68, Asp 212 -

* Metabolites that interacted with relevant amino acids for the inhibitory activity. Key amino acids are shown in
bold. ** BFE was expressed as the mean of the binding modes of each compound (n = 5) and the conformers of
each enzyme (n = 6) ± standard deviation.
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3. Discussion

Within our research group, bioprospecting studies have recently been carried out in the
CF of Veracruz (Mexico). Through the random selection criterion, species with antibacterial,
antifungal, and insecticidal activity have been identified with the potential to be used
as agents for biological control of phytopathogens and vectors, with success percentages
ranging from 13.3 to 76.5% [18,29]. In this work, a bioprospecting study focused on the
therapeutic applications of plants was carried out for the first time in this ecosystem. When
pharmacological assays are used in combination with random selection criteria in regions
with high biodiversity and endemism [54], lower success percentages have been obtained
compared to the ethnopharmacological selection criterion [55,56]. For example, in the
search for plants in the tropical rainforest of the Amazon with antimycobacterial activity,
50% of the species with uses in traditional medicine were active compared to 16.7% of
those randomly selected [57]. The diversity of species that allowed the chemotaxonomic
computer-assisted approach to be selected in this work and the high inhibitory activity
exhibited by their extracts provide evidence of its successful predictive capacity. In that
sense, this strategy is placed as a complementary alternative to the conventional criteria that
could be used to discover plants with therapeutic applications. When considering a cut-off
criterion of 50% of enzymatic inhibition, success percentages of 25% (DPP-IV), 67% (αG),
and 75% (αA) were obtained, which exceed the results previously reported with the random
approach. Furthermore, the DPP-IV inhibitory activity of these 12 CF species is reported for
the first time, making them good candidates for bioassay- or metabolomic-guided isolation
to obtain potential new natural agents for controlling DMII.

For αA and αG inhibition results, the extract of the aerial parts of R. communis in
the Euphorbiaceae family presented an inhibitory activity of αA (75.5 ± 1.31%) similar to
that previously described for the n-butanol extract from the roots (68%) [58]. In this work,
the inhibitory activity of R. communis in αG is reported for the first time (96.4 ± 0.66%)
and placed in the group of the best inhibitors of this enzyme. It must be highlighted that
R. communis is used in treating diabetes in Mexico [59]; hence, its inhibitory profile supports
its use in traditional medicine and suggests that its components could act through the
inhibition of αA and αG.

For the Solanaceae family, similar results were obtained for S. betaceum to those de-
scribed in the literature, in which the aqueous extract of the leaves was not active in αA
and was moderately active in αG (IC50 = 1.617 mg/mL) [60]. This pattern coincides with
the observed in this work (αA = 4.5 ± 3.14%, αG = 25.6 ± 2.84%, DPP-IV = 31.9 ± 1.86%).
On the other hand, the extract of the aerial parts of S. nigrum inhibited αA by 46.8 ± 1.40%,
compared to 81.76 ± 1.4% reported for the methanolic extract of the whole plant [61].
Specialized metabolites regulate the chemical interaction between plants and their environ-
ment. Additionally, their biosynthesis is temporal and tissue-differential as an adaptive
mechanism, allowing plants to respond to the chemical information transference with
other organisms [62–64]. Within the genus Solanum, S. incanum, S. surattense, and S. torvum
roots are traditionally used in DM treatment, and their hypoglycemic activity has been
evaluated through in vivo experiments [65–67]. There is literature evidence about the
inhibitory capacity of αA by S. nigrum, and the hypoglycemic properties described for
the roots of Solanum species suggest the presence of metabolites accumulated in S. nigrum
tissues, which were not evaluated in this work, which could present inhibitory activity in
the enzymes of interest.

Within the Malvaceae family, M. arboreus exhibited the best inhibitory profile when
considering αA (90.6 ± 0.23%) and αG (99.4 ± 0.84%). In contrast, in a previous study, the
aqueous extract of M. arboreus leaves from Yucatan (Mexico) inhibited approximately 20%
of the activity of αA and αG [68]. This lower effect could be attributed to the solvent used
in the metabolite extraction or the environmental influence on metabolite biosynthesis. In-
dividuals of the same species subject to different abiotic conditions may present differences
in specialized metabolite profiles [64]. The Mexican CF has an archipelago-type geographic
distribution, where constant atmospheric saturation by water vapor produces its charac-
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teristic high relative humidity, manifested as clouds and fog. Besides its biogeographic
history, fragmented distribution and close contact with other vegetation types are proposed
as factors involved in the development of its high biodiversity [69]. The combination of
these biotic and abiotic factors could influence the production of specialized metabolites to
contribute to the adaptability of the CF plants and modify their biological activity profiles
compared with specimens from other ecosystems [29].

Among the phylogenetically related species evaluated in this work, only S. rhombifolia
showed a selective inhibition profile towards DPP-IV compared to S. glabra. This effect is
desirable because, due to its mechanism of action, therapy with DPP-IV inhibitors does not
present an intrinsic risk of hypoglycemia and has a favorable side effect profile compared
to those of αA and αG inhibition [8]. In addition, the inhibitory activity presented by
S. rhombifolia and S. glabra was interesting since the systematic analysis of ethnobotanical
patterns has recently shown that taxonomically related plants cover a similar chemical
space, which correlates with their therapeutic applications. Based on this chemotaxonomic
premise, plants with anti-hyperglycemic activity have been identified [70,71].

As far as we know, S. rhombifolia is not used in traditional Mexican medicine for
treating diabetes. However, it is used for this purpose in both Brazil and India [72].
In the pharmacological context, S. rhombifolia is a stand-out plant due to its antioxi-
dant [43,73], anti-inflammatory [43,74], and antifungal properties [75]. For hypoglycemic
activity, the ethanolic extract of the aerial parts presented inhibitory activity in vitro in
both αA (IC50 = 831.76 µg/mL) and αG (IC50 = 1202.3 µg/mL). Qualitative phytochemi-
cal analysis showed that this extract contained phenols, flavonoids, glycosides, tannins,
saponins, and steroids [76]. On the other hand, the acetone extract of the aerial parts
inhibited the activity of αG from Saccharomyces cerevisiae (IC50 = 8.1 ± 0.34 µg/mL).
From this extract, a β-sitosterol and stigmasterol mixture, 20-hydroxyecdysone 20,22-
monoacetonide, and p-hydroxyphenethyl trans-ferulate were isolated by vacuum column
chromatography. In addition, p-hydroxyphenethyl trans-ferulate was the most active
metabolite (IC50 = 19.24 ± 1.73 µM) [43].

The results obtained in this work suggested that, in the methanol-soluble fraction, there
is a low presence of metabolites with inhibitory activity in αA and αG. In contrast, there
is a major content of metabolites with inhibitory activity in DPP-IV. In addition, Sida spp.
extracts were classified as non-toxic based on their LC50 values from a preliminary brine
shrimp acute toxicity test (1.41 mg/mL and >2.00 mg/mL, for S. rhombifolia and S. glabra,
respectively), which also were notably higher than the control colchicine (0.55 mg/mL).
A. salina has been widely used as a model organism to test natural products’ toxicities
due to its simplicity, cheapness, and correlation with the results obtained using acute oral
toxicity assays in mice [31]. On the other hand, both crude extracts showed IC50 values with
a relationship that supported the selective DPP-IV inhibition of S. rhombifolia. However,
regarding effectiveness, higher IC50 values for DPP-IV were obtained (2.67 and 2.26 mg/mL
for S. rhombifolia and S. glabra, respectively) compared with the reported IC50 of sitagliptin
(7.33 × 10−6 mg/mL = 18 nM) [32,33]. This pattern indicated that chemical analysis must
be carried out to identify potential bioactive compounds with safer and more effective
activity profiles concerning the crude extracts.

Due to the biological activities exhibited by Sida species, several efforts have been
made to characterize their chemical composition [77,78]. In this work, 22 specialized over-
accumulated metabolites were tentatively identified in S. rhombifolia. In chemical–structural
terms, 59% of the annotations corresponded to phenolic compounds (flavonoids, coumarins,
phenylpropanoids, lignans, and stilbenoids), 27% for triterpenoids and steroids, and 15%
for apocarotenoids, alkaloids, and indole derivatives. The tentative presence of phenolic
compounds was particularly interesting since, according to the literature, these metabo-
lites have been positioned as naturally occurring DPP-IV inhibitors [79]. For example,
among more than 27 metabolites evaluated in vitro, resveratrol (IC50 = 0.6 ± 0.4 nM), luteolin
(IC50 = 0.12 ± 0.01 µM), apigenin (IC50 = 0.14 ± 0.02 µM), and flavone (IC50 = 0.17 ± 0.01 µM)
presented higher inhibitory activity than diprotin A (IC50 = 4.21 ± 2.01 µM), a known DPP-
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IV inhibitor with an Ile-Pro-Ile sequence. Additionally, through a molecular docking study,
it was observed that resveratrol and flavone bound well into the S1, S2, and S3 DPP-IV
subsites, whereas luteolin and apigenin could only bind into S2 and S3 subsites. For all
compounds, hydrogen bonding was the main binding interaction with the active site of the
enzyme [80]. Moreover, ecdysteroids have been tentatively identified in hydroalcoholic
extracts of S. rhombifolia [81]. From those, 20-hydroxyecdysone and polypodine B stand
out since they were identified in this work as some of the metabolites over-accumulated
in S. rhombifolia compared with S. glabra. Ecdysteroid hormones, whose presence in plants
protects against phytophagous insects, are a group of metabolites consistently identified
in the Sida genus [82]. In previous studies, oral administration of 20-hydroxyecdysone
decreased body fat and insulin resistance in C57BL/6J mice fed with a high-fat diet but
did not show inhibitory activity in αG in vitro [43,83]. To our knowledge, except for ferulic
acid (IC50 = 34.05 ± 0.29 mM) [84], the accumulated metabolites tentatively identified in
S. rhombifolia have not been evaluated in vitro to determine their inhibitory activity on
DPP-IV. On the other hand, corchoionoside C was inactive in αG (IC50 > 300 µM) [85], and
kaempferitrin exhibited activity in αG (IC50 > 86.51 µM) but was inactive in αA (<20%
inhibition at 500 µg/mL) [86]. trans-Tiliroside (IC50 = 2128 ± 63 µM) showed higher inhibi-
tion than acarbose (IC50 = 6561 ± 207 µM) in αG and has been inactive in αA [87]. Finally,
ferulic acid has shown inhibitory activity in both enzymes (IC50 = 622 and 866 µg/mL for
αA and αG, respectively) [88].

Based on the previous reports of phenolic compounds as novel DPP-IV inhibitors, a
dereplication study was carried out for the first time for S. glabra in this work, reporting
the presence of 29 phenolic compounds. Among those, rutin was the major metabolite
(267.5 ± 3.7 µg/g). Also, 12 compounds were quantified for the first time in S. rhomb-
ifolia: 4-hydroxybenzoic acid, trans-cinnamic acid, (+)-catechin, apigenin, kaempferide,
kaempferol-3-O-glucoside, kuromanin, luteolin, naringin, quercetin-3,4′-di-O-glucoside,
quercetin-3-D-galactoside, and secoisolariciresinol. In preceding phenolic dereplication
studies, 31 compounds were quantified in S. rhombifolia, of which isoquercetin was the
major one (8.6 ± 1.12 mg/g extract) [73]. In contrast, vanillin showed the highest concen-
tration in this work (17.5 ± 0.47 µg/g dry plant material). These findings contribute to
the phytochemical knowledge about the Sida genus and support these CF species as new
sources of phenolic compounds.

The comparative analysis of S. rhombifolia with S. glabra allowed us to identify naringin,
vanillin, vanillic acid, kuromanin, and trans-cinnamic acid as metabolites accumulated
in S. rhombifolia. It is essential to highlight that kuromanin has shown higher inhibition
of DPP-IV compared to αG [89], naringin has shown inhibition of DPP-IV comparable to
sitagliptin [90], and trans-cinnamic acid showed low inhibition of DPP-IV (4.4 ± 1.6%) at a
concentration of 500 µM [91]. Finally, for vanillic acid and vanillin, the inhibitory activity of
αA and αG has been evaluated [92,93], but no studies have been conducted on its activity
on DPP-IV.

Within computer-assisted drug development (CADD), virtual screening is the most
widely used tool since it allows systematic searches for novel small molecules with bio-
logical activity. With this aim, molecular docking is used to speed up the discovery of
active compounds when the 3D structure of a molecular target is available [94,95]. This
work’s ensemble molecular docking study allowed the selection of 10 natural products
over-accumulated in the S. rhombifolia methanolic extract with high affinity for the active
sites of DPP-IV, αA, and αG. From this subgroup, in addition to presenting lower BFE
values than the reference drug sitagliptin, acanthoside D and cis-tiliroside were positioned
as potential selective inhibitors of DPP-IV. The in silico study allowed us to determine that
both metabolites established intermolecular interactions with amino acids relevant to the
activity of DPP-IV: His 708 (catalytic triad of DPP-IV), Tyr 515, and Trp 595 (S1 and S2
extended, respectively). The interaction of a ligand with the amino acids in S1 and S2 is
indispensable for the inhibitory activity in DPP-IV. However, the additional interaction
with the S2 extended subsite has increased the potency of the enzymatic inhibition [51].
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The combination of experimental and computational approaches has recently allowed the
identification of compounds with selective inhibitory activity on molecular targets used
in treating DMII. For example, by chemical synthesis, a spiroimidazolidinedione deriva-
tive was obtained, which presented higher inhibitory activity on aldose reductase (ALR2,
IC50 = 0.47 µM) compared to aldehyde reductase (ALR1, IC50 = 60.1 µM). These enzymes
share 65% homology, but the difference in their active sites is critical for selectivity. Through
molecular docking studies, it was determined that the spiroimidazolidinedione derivative
presented more affinity for ALR2 (−7.2 kcal/mol) in contrast to ALR1 (−5.8 kcal/mol).
Also, this molecule established intermolecular interactions with Trp 111, Thr 113, and Cys
298, which are present in the active site of ALR2 [96]. On the other hand, anthocyanins
have been isolated from blueberry, among which cyanidin-3-arabinoside showed the best
inhibitory activity on protein tyrosine phosphatase 1B (IC50 = 8.91 ± 0.63 µM). Addition-
ally, cyanidin-3-arabinoside exhibited lower inhibition on the closest T-cell protein tyrosine
phosphatase (74% homology in their catalytic domain). A molecular docking study in-
dicated that the difference between the amino acids around the active pockets of both
enzymes could produce differences in their catalytic activity [97]. In that sense, evidence in
the literature suggests that molecular docking currently allows obtaining information to
propose protein–inhibitor interaction modes, which can generate plausible explanations for
the experimental profiles of biological activity.

Acanthoside D, also named (−)-syringaresinol-di-β-D-glucoside, is a furofuranoid-type
lignan described in different plants, including Daphne feddei and D. giraldii (Thymelaeaceae),
which are related to the order level with S. rhombifolia (Malvales) [44,98]. This metabolite
has exhibited significant inhibition of pulmonary inflammation in acute lung injury treated
with lipopolysaccharides in mice by oral administration, as well as alleviation of liver
injury induced by ischemia–reperfusion by inhibiting inflammatory cell infiltration [99,100].
Its hypoglycemic activity has not been experimentally evaluated. However, the related
metabolite acanthoside B, also named (−)-syringaresinol-β-D-glucoside, has been inactive
in in vitro enzyme inhibition assays in αG [101,102]. On the other hand, cis-tiliroside
(flavonoid) has been described in the Malvaceae family (Lasiopetalum macrophyllum) and has
reported inhibitory activity in αG (IC50 = 44.8 µM) [35,103]. As far as we know, acanthoside
D and cis-tiliroside were identified for the first time in S. rhombifolia in this work. The
results obtained about their in silico DPP-IV affinity, as well as the lack of experimental
information on their inhibitory activity, places both metabolites as the best candidates for
performing in vitro and in vivo biological activity assays in the future to evaluate them as
selective and naturally occurring DPP-IV inhibitors.

4. Materials and Methods
4.1. Chemicals

The phosphate buffer pH = 7.2 (17202), 2-chloro-4-nitrophenyl-α-D-maltotrioside (93834,
≥96.0% for HPLC), acarbose (A898, ≥95% for HPLC), 4-nitrophenyl α-D-glucopyranoside
(N1377, ≥99%), αA from porcine pancreas (A3176, Type VI-B, ≥five units/mg solid), αG
from S. cerevisiae (G0660, ≥100 units/mg protein), and DPP-IV inhibitor screening kit
(MAK203) were purchased from Sigma-Aldrich (St. Louis, MO, USA). The formic acid
(28905, >99% for LC-MS) was purchased from Thermo Fisher Scientific (Rockford, IL,
USA). The acetonitrile with 0.1% formic acid (14272, for LC-MS) and the methanol (34860,
≥99.9% for HPLC) were obtained from Honeywell (Muskegon, MI, USA). Water (9831-03,
for LC-MS) was purchased from J. T. Baker (Phillipsburg, NJ, USA).

4.2. Rational Selection of the Cloud Forest Botanical Families with Potential Hypoglycemic
Activity
4.2.1. Cloud Forest Reference Study Site

The “Santuario del Bosque de Niebla” (SBN) is an ecological reserve of 30 hectares
of CF belonging to the Institute of Ecology, A. C. (INECOL) in Xalapa, Veracruz, Mexico.
It comprises diverse plant communities in different conservation stages, including tree,
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shrub, herbaceous, liana, and vine species. It is estimated that, in its extension (0.24%
of the territory of the municipality of Xalapa), the SBN contains around 50% of the seed
plants described for the region. According to recent updates on its biodiversity, 450 native
angiosperms species have been found, distributed in 322 genera and 102 families, of which
there is a record in the XAL Herbarium of INECOL [104]. This list was used as a reference to
search for libraries of metabolites described for species belonging to the botanical families
present in this CF site.

4.2.2. Ligand-Based Virtual Screening

A metabolites library was built with molecules reported for 43 plants belonging to
13 families in the CF [104], which is available on the PMN platform [105]. The structures
were visualized with Maestro (release 2022-2, Schrödinger LLC, New York, NY, USA), and,
subsequently, the LigPrep tool was used to correct valence errors and define the stereochem-
istry. For each molecule, pharmacokinetic and physicochemical (ADME) properties were
predicted with the Qikprop tool V 13.2128. The processed library was reduced through
four filtering steps. The first step consisted of removing compounds with a molecular mass
lower than 150 Da and higher than 500 Da, in order to mainly eliminate monosaccharides
and nitrogenous bases (primary metabolites that are out of the scope of this study). In the
second step, metabolites with atypical physicochemical properties compared to commercial
oral drugs were removed. First, the drug-likeness of the metabolites was evaluated using
the #stars calculated by QikProp. This parameter corresponds to those descriptors that
fall outside of 95% of the values for known drugs. Metabolites with more than five stars
were eliminated since it is a cut-off that indicates the molecule’s properties are similar to
those drugs mostly used in a clinical setting [106]. In addition, molecules with more than
two violations of Lipinsky’s rule of five (molecular mass < 500, cLogP < 5, and hydrogen
bond donors and acceptors less than 5 and 10, respectively) and Jorgensen’s rule of three
(predicted log S > −6, Pcaco > 30 nm/s, maximum number of primary metabolites = 6)
were removed due to the fact that they exhibited properties associated with poor oral
drug absorption [107,108]. In the third step, we selected molecules with functional groups
present in phenolic compounds, amine-containing compounds, and terpenoids in order
to create a link with the characteristic structures of specialized metabolites. Finally, the
Tanimoto coefficient was calculated using the Platform for Unified Molecular Analysis
(PUMA) to select molecules with potential hypoglycemic activity [109]. In this way, a Tani-
moto coefficient ≥0.85 between two chemical structures is used as a cut-off for biological
activity prediction [110]. A value of 100% was assigned to the total metabolites present in
each group. Subsequently, matches were searched between the potentially active molecule
groups and the original chemical compounds library. The families with the highest percent-
age of representativeness of the molecules of interest in each case were selected as the best
candidates for their experimental study.

4.3. Plant Material Collection and Extract Preparation

The aerial parts of 12 species belonging to the potential hypoglycemic botanical fami-
lies were collected in July 2022 from two CF reserves in Veracruz, Mexico: the SBN (Xalapa
municipality, 19◦30′50.845′′ N, 96◦56′31.99′′ W) of INECOL and “La Martinica” (Banderilla
municipality, 19◦35′4.52′′ N, 96◦57′1.046′′ W) (Table 6). All species were taxonomically
identified by personnel from Herbarium XAL (INECOL). The plant material was cleaned
and stored at −20 ◦C. The samples were freeze-dried (FreeZone 2.5, Labconco, Kansas
City, MO, USA) and milled with a food processor (NBR-0801, Nutribullet, Los Angeles,
CA, USA). The extraction was performed with methanol using an accelerated solvent
extraction system (Dionex ASE 350, Thermo Fischer Scientific, Sunnyvale, CA, USA) [111].
The extraction temperature was 60 ◦C, and two static cycles of five minutes were used for
each sample, with a rinse volume of 30% of the cell volume and nitrogen as carrier gas.
The solvent was removed by rotatory evaporation (R-100, Büchi, Flawil, Switzerland) at
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40 ◦C. The extraction yield was calculated on the dry weight of the crude drug (Table 6).
The crude extracts were stored at −20 ◦C until use.

Table 6. Cloud forest plants targeted for hypoglycemic activity evaluation.

Botanical Family Specie Study Site Voucher Extraction Yield *

Euphorbiaceae Acalypha alopecuroidea Jacq. SBN XAL0151034 23.8%
Euphorbiaceae Ricinus communis L. SBN XAL0151031 29.5%

Fagaceae Quercus lancifolia Schltdl. and Cham. SBN XAL0151032 19.9%
Fagaceae Quercus xalapensis Bonpl. SBN XAL0151041 24.1%

Malvaceae Malvaviscus arboreous Cav. SBN XAL0151030 14.0%
Malvaceae Pavonia schiedeana Steud. SBN XAL0151035 16.1%
Malvaceae Sida glabra Mill. LM XAL0151040 7.3%
Malvaceae Sida rhombifolia L. SBN XAL0151025 9.9%
Solanaceae Solanum betaceum Cav. SBN XAL0151027 19.8%
Solanaceae Solanum lanceolatum Cav. LM XAL0151039 24.2%
Solanaceae Solanum myriacanthum Dunal SBN XAL0151042 27.6%
Solanaceae Solanum nigrum L. LM XAL0151037 12.3%

SBN = Santuario del Bosque de Niebla, LM = La Martinica. * The extraction yield was calculated on the dry
weight of the crude drug (dried plant material).

4.4. Enzymatic Inhibition Activity
4.4.1. αA and αG Inhibition Assays

Inhibition assays for αA and αG were performed as previously described by our
research group [112]. Briefly, for αA, all the reagents and extracts were prepared in a
phosphate buffer solution (40 mM, pH = 6.8). In 96-well plates, 60 µL of the extract
solution (1 mg/mL in the reaction mix) was mixed with 120 µL of 2-chloro-4-nitrophenyl-
α-D-maltotrioside (0.35 mM) and incubated for five minutes at 35 ◦C. Then, 30 µL of αA
(4 U/mL) was added, and the mix was incubated for ten minutes at 35 ◦C. Absorbance
was measured at 405 nm at the beginning and end of the reaction (Multiskan FC, Thermo
Fischer Scientific, Waltham, MA, USA). Acarbose (3 mM) was used as a positive control.
On the other hand, for αG, the reagents and extracts were prepared in a phosphate buffer
solution (100 mM, pH = 7.2). In 96-well plates, 20 µL of the extract solution (1 mg/mL in
the reaction mix) was mixed with 100 µL of 4-nitrophenyl α-D-glucopyranoside (1 mM)
and incubated for five minutes at 30 ◦C. Then, 100 µL de αG (0.005 mg/mL) was added,
and the mix was incubated for 30 min at 30 ◦C. Absorbance was measured at 405 nm at
the beginning and end of the reaction (Multiskan FC, Thermo Fischer Scientific, Waltham,
MA, USA). Acarbose (30 mM) was used as a positive control. For both αA and αG, a
reaction blank was included for each sample, and all assays were performed in triplicate.
IC50 for selected extracts and acarbose was obtained from a concentration–response curve.
The inhibition percentage (IP) was calculated with Equation (1), where AN corresponds to
the negative control absorbance (non-inhibited enzyme) and AI to the absorbance in the
presence of the inhibitor.

IP =

(
AN − AI

AN

)
× 100 (1)

4.4.2. DPP-IV Inhibition Assay

The in vitro inhibition of DPP-IV was evaluated with a commercial kit (see Section 4.1).
All the reagents were prepared according to the manufacturer’s instructions, and the assays
were carried out with some modifications. The extracts were prepared in the buffer solution
(1 mg/mL in the reaction mix). Then, 12.5 µL of the extract solution was mixed with
25 µL of DPP-IV enzyme solution and incubated for 10 min at 37 ◦C. After, 12.5 µL of Gly-
Pro-7-amido-4-methylcoumarin hydrobromide solution was added, and the fluorescence
(λex = 360/λem = 460 nm) was measured at 37 ◦C in kinetic mode for 30 min (Varioskan
LUX, Thermo Fischer Scientific, Waltham, MA, USA). Sitagliptin was used as a positive
control, and a reaction blank was included for each case. Assays were performed in
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triplicate. Fluorescence was plotted as a function of time, and its linear regression equation
was obtained. IC50 for selected extracts was obtained from a concentration–response curve.
The IP was calculated with Equation (2), where MN corresponds to the slope of the linear
regression equation of the negative control (non-inhibited enzyme) and MI to the slope of
the linear regression equation of the reaction in the presence of the inhibitor.

IP =

(
MN − MI

MN

)
× 100 (2)

4.5. Acute Toxicity Assay with Artemia Salina (Brine Shrimp)

The culture conditions and acute toxicity test of selected plant extracts were carried
out using a previously reported protocol [113]. One g/L of brine shrimp cysts (Ocean Star
International, Snowville, UT, USA) were incubated for 48 h in artificial seawater (40 g sea
salt/L, pH = 9.0) at 28 ◦C and a constant air supply. In 96-microwell plates, 100 µL of the
extract solution prepared in artificial seawater with dimethyl sulfoxide (2% v/v initial)
was mixed with 100 µL of the nauplius suspension (containing 13 ± 2 organisms). Each
concentration was evaluated in triplicate, and a vehicle control was included. The plate
was incubated at 28 ◦C for 24 h. After this, the dead nauplius (non-motile for 10 s) were
counted in each well. Finally, 100 µL of methanol was added, and, 30 min later, the total
number of nauplius was counted. LC50 was obtained from a concentration–response curve.

4.6. Untargeted Metabolomic Analysis

Crude extracts of selected plant species were dissolved in methanol (MS grade) at
50 mg/mL and filtered with a 0.2 µm PTFE membrane. Afterward, the analysis was
performed on an ultra-high-performance liquid chromatography system (Acquity UPLC
I Class, Waters, Milford, MA, USA) coupled with a high-resolution mass spectrometer
(Q-TOF; Synapt G2-Si, Waters, Milford, MA, USA). The samples were separated on an
Acquity BEH column (2.1 mm × 50 mm, 1.7 µm, C18, Waters, Milford, MA, USA) at
40 ◦C for the column oven and 15 ◦C for the autosampler. The chromatographic method
consisted of an elution gradient with water (A) and acetonitrile (B), both acidified with
formic acid (0.1% v/v), with an injection volume of 5 µL and a flow rate constant of
0.3 mL/min (Supplementary Information S7). Data management was performed with
MassLynx (V. 4.1, Waters, Milford, MA, USA) and MarkerLynx (V 4.1, Waters, Milford, MA,
USA). Exact mass values, retention times, and signal intensities (counts) were analyzed
in the MetaboAnalyst 6.0 bioinformatic platform [114]. The tentative annotation of the
over-accumulated selected metabolites was carried out by comparing the exact mass values
obtained with the spectrometric data available in public spectral databases, such as FooDB
V 1.0 [115], Lotus [116], PubChem [117] and MassBank [118].

4.7. Phenolics-Targeted Metabolomic Analysis

Thirty phenolic compounds were identified and quantified as previously described
by our research group [119]. This targeted analysis was carried out in an ultra-high-
performance liquid chromatography system (1290 Infinity series, Agilent Technologies,
Santa Clara, CA, USA) coupled to a triple-quadrupole mass spectrometer (QqQ; 6460,
Agilent Technologies, Santa Clara, CA, USA). The separation was performed on an Acquity
BEH column (2.1 mm × 50 mm, 1.7 µm, C18, Waters, Milford, MA, USA) at 40 ◦C. The
chromatographic method consisted of an elution gradient with water (A) and acetonitrile
(B), both acidified (0.1% v/v) with formic acid, with an injection volume of 2 µL and a
flow rate constant of 0.3 mL/min. The acquisition method consisted of Dynamic Mul-
tiple Reaction Monitoring (dMRM) (Supplementary Information S8). The identity of all
analytes was confirmed by co-elution with authentic standards under the same analytical
conditions. For the quantification, calibration curves in a concentration range of 0.5–19 µM
were used (r2 ≥ 0.97 for each case). Data management was performed with MassHunter
Workstation V B.06.00 (Agilent Technologies, Santa Clara, CA, USA) and MetaboAnalyst
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6.0. The results for the quantification of each analyte were expressed as mean (µg/g dried
material) ± standard deviation.

4.8. Ensemble Molecular Docking
4.8.1. Metabolites Library Preparation

The tentatively annotated metabolites and the phenolics dereplicated in the active
extracts were selected as candidates for potential selective inhibitory activity. The 3D
structures in sdf format for all the interest metabolites were retrieved from PubChem and
prepared with the molecular visualization software Maestro (release 2022-2, Schrödinger
LLC, New York, NY, USA). Additionally, the 3D structures of the drugs acarbose, sitagliptin,
and metformin were included to act as controls in the in silico study. All the structures
were processed with the protein preparation wizard tool (OPLS-AA forcefield), minimized
with the 3D builder tool, and exported in mol2 format.

4.8.2. Molecular Targets Preparation

The structures of the co-crystallized enzyme–inhibitor complexes of human pan-
creas αA (4W93), S. cerevisiae αG (3A47), and human DPP-IV (3W2T) were retrieved
from the RCSB Protein Data Bank database. The structures were visualized in Maestro
Suite V 12.4.072 (OPLS-AA forcefield) and processed with the protein preparation wiz-
ard tool for the identification of the atom types, bond distances, addition of hydrogens,
creation of disulfide bonds, and generation of ionization states corresponding to pH = 7
using the Propka method. Molecular dynamics simulations (MDs) were performed us-
ing pmemd.cuda from the Amber20 package to obtain a description of the flexibility
of each molecular target [120]. The parameters and topologies describing the enzyme
and the inhibitors come from the ff14SB and GAFF force field (for proteins and organic
molecules) within the Amber20 simulation package. The enzyme–inhibitor complexes
were solvated in an orthorhombic chemical space of 15 Å per side using the TIP3P water
model (optimized for solvated proteins) and 150 mM NaCl. The number of particles in
each system was as follows: DPP-IV = 345,125 atoms (1491 amino acids, 106,716 explicit
water molecules), αA = 325,392 atoms (495 amino acids, 39,120 explicit water molecules),
and αG = 132,773 atoms (586 amino acids, 41,039 water). The initial minimization (com-
bined steepest descendant and conjugated gradient scheme) and simulated annealing were
performed with an NvT ensemble. The annealing consisted of six steps: 300 ps at 10 K,
1000 ps at 100 K, 1000 ps at 300 K, 300 ps at 400 K, 500 ps at 400 K, and, finally, 2000 ps at
300 K. The system was then equilibrated for 7500 ps and conventional MDs was performed
for 250 ns, both with an NpT ensemble (p = 1 atm, Monte Carlo Barostat = 2). Long-range
electrostatic interactions were calculated with the Particle Mesh Ewald method, and an
integration time of 2 fs was used. Production calculations were performed for 250 ns of
Gaussian Accelerated MDs (sigma0 = 6.0 and sigma0D = 6.0).

4.8.3. Ensemble Molecular Docking Calculations

From the trajectories of MDs, six representative conformers of each target were ex-
tracted and docked with the molecules in the metabolite library using the GPU version
of AutoDock Vina (GNINA V 1.1) [121] and the Vinardo scoring function (Monte Carlo-
Metropolis exhaustive search method of 96) [122]. The chemical search space consisted of an
orthorhombic system of 30 Å per side and was situated in the Cartesian coordinates: DPP-IV
(83, 78, 82), αA (67, 42, 48), and αG (68, 52, 55). All BFE values in kcal/mol were reclassified
using a neural network method, which is included in the redock_default2018 set in the
GNINA program. The results were expressed as the mean of BFE (kcal/mol) ± standard
deviation of the values calculated between each conformer (n = 6) and the binding modes
of the ligands (n = 5) in the database (GraphPad Prism V 10.2.3, GraphPad Software, San
Diego, CA, USA).
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4.9. Statistical Analysis
4.9.1. Enzyme Inhibitory Activity and Acute Toxicity Evaluation

The results of the inhibitory enzymatic activity were expressed as a mean with a
standard deviation. Data normality was evaluated through the Shapiro–Wilk test. After
this, a one-way analysis of variance and a post hoc Dunnett test was performed to establish
a statistically significant difference compared to the positive controls (p ≤ 0.05). IC50 values
were determined by non-linear regression analysis of the log10[concentration]–response
curves. LC50 values in the brine shrimp toxicity test were calculated using a logistic
regression analysis. All the analyses mentioned in this section used GraphPad Prism V
10.2.3 for Windows (GraphPad Software, San Diego, CA, USA).

4.9.2. Metabolomic Informatic Analysis

Data analysis for chemical profiling of the selected species was performed in the
Metaboanalyst 6.0 platform [114]. For the untargeted analysis, analytical intensity values of
the spectrometric features (rt-m/z) were used, and the data were square root transformed
and ranged scaled. The hierarchical clustering heatmap was performed using the Euclidean
distance and Ward clustering methods. The volcano plot was made with a fold change
threshold ≥ 2 (S. rhombifolia/S. glabra) and an FDR value of 0.05. Finally, an enrichment
analysis of metabolic pathways was performed using the Mummichog algorithm, the KEGG
database, and the A. thaliana library (dicots). For the targeted analysis, the quantification
values of the phenolic compounds (µg/g dried material) were used, and the data were
Log10 transformed and mean centering scaled. The volcano plot was made with a fold
change threshold ≥ 2 (S. rhombifolia/S. glabra) and an FDR value of 0.05.

5. Conclusions

Bioactive plants from CF Veracruz were identified by applying the chemotaxonomic
computer-assisted selection strategy designed and validated in this work. The in silico
prediction of the hypoglycemic activity at the botanical family level allowed the inclusion of
species not used in traditional Mexican medicine to treat DM. The results obtained in eval-
uating the hypoglycemic activity contribute to the knowledge of the therapeutic properties
of CF species in Mexico and support this ecosystem as a reservoir of plants with pharmaco-
logical potential. The evaluated species are promising sources of specialized metabolites
with inhibitory activity on the enzymes αA, αG, and DPP-IV, among which S. rhombifolia
stands out for its selective DPP-IV inhibition profile. The experimental strategy allowed
us to identify 27 natural products to which the biological activity of S. rhombifolia could be
attributed. Through the ensemble molecular docking study, an additional filtering process
was incorporated, and acanthoside D and cis-tiliroside were selected as the best candidates
to continue with the discovery of potential natural hypoglycemic agents with selective
DPP-IV inhibition. Noteworthily, the overall workflow used in this work could be applied
to identify plants with different biological activities by including other reference drugs in
the LBVS and relevant biological assays in order to confirm the in silico predictions. Finally,
this approach is proposed as a novel tool for pharmacological bioprospecting that could
accelerate the discovery of bioactive compounds in biodiversity hotspots in which the lack
of ethnopharmacological information limits the use of conventional criteria.
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