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Zdravković, M.; Knežević, D.; Šoštarič,
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Abstract: Since its introduction, the number of heart surgeries has risen continuously. It is a high-risk
procedure, usually involving cardiopulmonary bypass, which is associated with an inflammatory
reaction that can lead to perioperative and postoperative organ dysfunction. The extent of complica-
tions following cardiac surgery has been the focus of interest for several years because of their impact
on patient outcomes. Recently, numerous scientific efforts have been made to uncover the complex
mechanisms of interaction between inflammation, oxidative stress, and endothelial dysfunction that
occur after cardiac surgery. Numerous factors, such as surgical and anesthetic techniques, hyperv-
olemia and hypovolemia, hypothermia, and various drugs used during cardiac surgery trigger the
development of systemic inflammatory response and the release of oxidative species. They affect
the endothelium, especially endothelial glycocalyx (EG), a thin surface endothelial layer responsible
for vascular hemostasis, its permeability and the interaction between leukocytes and endothelium.
This review highlights the current knowledge of the molecular mechanisms involved in endothelial
dysfunction, particularly in the degradation of EG. In addition, the major inflammatory events and
oxidative stress responses that occur in cardiac surgery, their interaction with EG, and the clinical
implications of these events have been summarized and discussed in detail. A better understanding
of the complex molecular mechanisms underlying cardiac surgery, leading to endothelial dysfunction,
is needed to improve patient management during and after surgery and to develop effective strategies
to prevent adverse outcomes that complicate recovery.

Keywords: cardiac surgery; endothelium; endothelial dysfunction; endothelial glycocalyx; inflammation;
oxidative stress
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1. Introduction

Cardiac surgery began to develop at the beginning of the 20th century with the
discovery of heparin, and protamine, and the development of extracorporeal circulation.
Most cardiac surgery would be impossible without cardiopulmonary bypass (CPB) which
allows adequate perfusion of the end-organ during the arrested (and protected) heart. It
also provides the surgeon a bloodless field to safely perform the procedure on the heart
and/or great vessels. Venous blood is collected via a venous cannula (double-stage or
bi-caval) in the venous reservoir of the CPB device. It passes through an oxygenator, a heat
exchanger, and filter and is returned as arterialised blood via an aortic cannula, which is
usually placed in the ascending aorta. A separate suction pump draws blood from the
surgical field to the CPB device, and another pump delivers a cardioplegic solution to arrest
the heart and protect the myocard.

Since the first successful use in 1953 by John H. Gibbon Jr. [1], the CPB components
have been modified several times to achieve the most physiological configuration and
minimize the complications [2].

Although rigid venous reservoirs allow for better management of venous air and
easier handling during CPB compared to collapsible “baggy” reservoirs, their silicone anti-
foam components have been found to increase activation of blood cells and the incidence
of microembolism formation [3,4]. In addition, the originally used bubble oxygenators
were replaced by membrane oxygenators. It has been shown that they enable better
blood gas management, produce fewer microemboli, and have less reactivity with blood
components [5,6]. Newer polymethylpentene oxygenators also reduce plasma leakage
during prolonged CPB [7].

Heparin-coated circuits have been developed with the intention of reducing the
dose of systemic heparin and its adverse effects on coagulation homeostasis and inflam-
mation [8–12]. Phosphorylcholine coating and other surface-modifying additives have also
been introduced with the idea of better biocompatibility and thus reduce the inflammatory
response [13–15]. Perfusion temperature is also related to the release of inflammatory
mediators, with the highest levels observed with normothermic CPB, while lower levels
were observed with hypothermic CPB [16,17].

Ultrafiltration/hemofiltration is used to remove excess fluid and low molecular weight
particles from the plasma during CPB. Reduction in complement activation, pro-inflammatory
cytokines, and clinical benefit have been noted in the pediatric population [18–20] but has
not shown improvement in clinical outcomes or reduction in inflammation, which has
been observed in adult patients [21]. Cytokine hemoadsorption (CytosorbTM) reduces the
concentration of pro-inflammatory cytokines with improved postoperative hemodynamic
and metabolic functions. The clinical benefit is manifested in the less frequent occurrence
of acute respiratory distress syndrome and shorter postoperative ventilation times [22–24].
However, the issue of CPB-related tissue/organ dysfunction and inflammation associated
with CPB still exists today. The term “whole-body inflammatory response” has been intro-
duced to describe CPB-related inflammatory responses [25]. Thus, surgical trauma, contact
of blood with non-endothelial surfaces, ischemia–reperfusion injury, and endotoxemia
contribute to systemic inflammatory response syndrome (SIRS). It is a condition that occurs
with varying intensity after cardiac surgery with CPB and influences the development of
postoperative complications [26].

The standard mode of CPB is non-pulsatile flow, which is the most commonly used.
While pulsatile CPB flow is possible, and logically, one would expect it to be a less detrimen-
tal to end-organ function, as it mimics the innate pulsatility of cardiovascular system, the
results published today are conflicting [27–30]. Currently, the use of pulsatile CPB is recom-
mended in the 2019 EACTS/EACTA/EBCP guidelines on CPB in adult cardiac surgery [31]
in patients at a high risk of renal and pulmonary complications. Pahwa et al. [32] analyzed
postoperative complications in 26.221 patients after cardiac surgery. Blood transfusions
occurred in 47.3%, atrial fibrillation in 32%, prolonged ventilation in 8.9%, renal failure in
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3.3%, reoperation for bleeding in 3.3%, and insertion of pacemaker/ICD in 3%. The study
showed that pneumonia, renal failure, and stroke were associated with poor outcomes.

Recently, much attention has been paid to the effects of cardiac surgery on the vascular
endothelium and the endothelial glycocalyx (EG) that cover it. Detachment of the EG
during cardiac surgery is primarily triggered by ischemia–reperfusion injury, inflammatory
responses, and oxidative stress. Degradation of EG during the perioperative period in
cardiac surgery is also a well-known phenomenon, and given the role of endothelial
function, its protection could improve patients’ outcomes [33].

In our previous work, much attention was paid to EG shedding in cardiac surgery,
strategies to prevent this shedding [34], and the role of pre-existing cardiovascular disease
that may affect the vascular endothelium and influence the outcome of cardiac surgery,
as well as potential improvements in patient management before and during surgical
procedures to minimize adverse events [35].

In this review, the complex mechanisms of endothelial dysfunction, oxidative stress,
and inflammation and their interdependence in patients undergoing cardiac surgery were
presented. The aim was to highlight the role of cardiac surgery as a trigger for each element
of the crucial triad—EG damage, oxidative stress, and inflammation. We also highlight
various factors that affect the endothelium and possible strategies to prevent its damage
during surgery, which could lead to better patient outcomes.

2. EG Structure

EG is a gel-like structure on the luminal surface of the vascular endothelial cells that
senses and transduces mechanical forces generated by blood flow [36]. In addition, it is
involved as an electrical and mechanical barrier, vascular permeability, leukocyte–endothelial
cell interaction, and vascular hemostasis [37,38]. Although EG covers the luminal surface
of all blood vessels, its thickness and structure vary and depend mainly on the shear stress
on the endothelial surface [39]. Therefore, we consider the EG as a dynamic structure, as it
maintains a balance between the synthesis and shedding of its components [40].

The main components of the EG are glycoproteins, proteoglycans, and glycosamino-
glycans (GAG) [41]. They are synthesized by the vascular endothelial cells, along with the
numerous signalling molecules [42], and anchor EG to the endothelial cells, providing a
matrix for other EG components, such as plasma proteins, cofactors, and enzymes such as
albumin, thrombomodulin, superoxide dismutase, and xanthine-oxidoreductase, which
contribute to EG homeostasis [42,43]. The glycoprotein orosomucoid is also incorporated
into the EG matrix. Orosomucoid apparently interacts with the pores of the endothelial
cells and thus reduce the amount of water that is filtered from plasma into the surrounding
tissues [44]. Hidden in the matrix are also the adhesion molecules such as intercellular
adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and platelet
endothelial cell adhesion molecule (PECAM-1), which are expressed on the surface of the
endothelial cells. Thus, the matrix controls the aggregation of platelets and leukocytes, as
well as leukodiapedesis, and prevents the initial steps in inflammation and coagulation in
the blood vessel [35].

Glycoproteins are complex glycosylated molecules in which the carbohydrate groups
are covalently bound to the protein. These carbohydrate side chains are short and capped
with sialic acid, which contributes significantly to the negative surface charge of EG [45].
Proteoglycans consist of a core protein and at least one GAG chain attached to it [46].
The most important proteoglycan core proteins belong to the syndecan (syndecan-1 to
syndecan-4) and glypican (glypican-1 to glypican-6) families, while the major GAGs
are heparan sulphate, chondroitin sulphate, and hyaluronic acid [40]. GAGs have un-
branched chains consisting of disaccharide units [47]. Heparan sulphate and chondroitin
sulphate can have 50 to 150 repeating disaccharide units, while hyaluronic acid has 2000 to
25,000 units [40]. Hyaluronic acid is not bound to the core proteins but forms electrostatic
bonds with other protein molecules of the EG, such as CD44, and thus provides structural
support or may be present in soluble form [48].
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Heparan sulphate makes up 50–90% of all GAGs in EG [43,48]. It shows structural
differences, depending on cell type, tissue, and some pathological conditions [49]. The high
proportion of heparan sulphate is consistent with its importance for the function of the EG.
It is involved in the regulation of transmural fluid transport, as it helps to form the tight
structure of the EG. Thus, macromolecules greater than 70 kDa cannot cross the EG barrier.

Heparan sulphate has been shown to be the primary sensor for the direction of
shear stress [50] and a transducer of shear stress from the circulation to the endothelial
intracellular space [51]. Shear stress activates endothelial nitric oxide synthase (eNOS)
at the endothelial surface [50]. Studies have showed that enzymatic removal of heparan
sulphate does not result in shear stress induced nitric oxide (NO) production [52].

The diverse function of heparan sulphate result from its ability to bind and modulate
the activity of a variety of proteins, including growth factors, cytokines, morphogens,
matrix structural proteins, enzymes or enzyme inhibitors, and surface proteins of the
pathogens [52]. Thus, heparan sulphate, that is released into circulation by degraded EG,
binds and inhibits the signalling pathways of inflammatory mediators during sepsis and
have an anti-inflammatory effect. On the other hand, heparan sulphate fragments have
been found to stimulate the release of pro-inflammatory cytokines and hyaluronan, which
increases inflammation by binding to TLR-4 receptors [53].

Syndecan consists of a variable extracellular domain, a transmembrane domain, and a
cytoplasmic tail [42]. The cytoplasmic tail is in contact with protein kinase C. Therefore,
it can transmit information about the mechanical forces acting on the apical side of the
vascular endothelial cell and initiate the appropriate intracellular signalling pathway [54]
(Figure 1).
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Figure 1. Schematic representation of the endothelial glycocalyx (EG) structure under physiological
conditions. The EG covers the luminal surface of blood vessels. Some elements (glycoprotein,
syndecan, and glypican) are bound to endothelial cells, while others (like heparan sulphate and
chondroitin sulphate) have an indirect connection. Some molecules (like orosomucoid and albumins)
are “trapped” within the matrix molecules. (ORM—orosomucoid).

Syndecans interact with the cytoskeleton, thus acting as a principal effector in cell
adhesion and cell shape change. Syndecan-1 has a tyrosine residue and thus interacts with
cytoskeletal proteins, while syndecan-4, in combination with integrins, rearranges the actin
stress fibres and adapts the cell for adhesion [55].

Glypicans are associated with the surface of the cell membrane, usually in lipid
raft regions with many signalling molecules. Thus, glypican-1 acts as a coreceptor in
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signalling pathways and modulates them [56]. As mentioned above, the effect of the
blood shear force leads to activation of eNOS, NO production, and vasodilation [34].
Glypican molecules mediate flow-induced eNOS activation. Recent studies have shown
that inhibition of glypican-1 enhances the expression of inflammatory gene and monocyte
adhesion but also inhibits NO expression, leading to impaired function of endothelial cells
and inflammation [57].

The normal structure of EG is of the most importance when knowing its physiological
functions within the vascular barrier. In case of ischemia or inflammation, the compo-
nents of EG start to disintegrate and shed, leading to impaired microcirculation, fluid
extravasation and edema, leukocyte and platelet adhesion, hypercoagulability, and loss
of flow-dependent vasodilatation [58]. As a result of shedding, EG components enter the
circulation, thus representing an effective tool for monitoring and evaluating EG function. It
has been noted that syndecan subtypes 1 and 3 increase in critical conditions, such as sepsis.
Hyaluronic acid and heparan sulphate are used as biomarkers of endothelial injury [59].
Shedding can be initiated by the influence of reactive oxygen species (ROS), inflammatory
mediators and catecholamines, enzymes released by damaged tissue (heparanases, matrix
metalloproteinases), ischemia, and acute hyperglycemia [60]. All these mechanisms can be
induced during cardiac surgery with CPB.

Recent studies have shown that prolonged cardiopulmonary bypass can be associated
with EG degradation [61,62] and suggested that in off-pump coronary artery bypass grafting
(CABG) surgery time reduction, reduction in compression and movement of the heart
during operation could decrease the degradation of EG [62]. Cardiac ischemia–reperfusion
that occurs during open heart surgery [63] could lead to the degradation and shedding
of EG [64–68] due to increased production of ROS and reactive nitrogen species (RNS) or
inflammation [69–71]. The concentration of the soluble glycocalyx component syndecan-1
has been shown to increase in the systemic circulation even before aortic cross-clamping
and the onset of ischemia [67,72]. In the case of ischemia followed by reperfusion under
CPB, increased concentration of syndecan-1 and heparan sulphate can be found in the
circulation [73]. The nucleosides adenosine and inosine have been proposed as mediators
of ischemia-induced EC degradation. They are produced by the degradation of ATP and
ADP during an insufficient oxygen supply [74]. Adenosine and inosine bind to adenosine
receptors on the surface of mast cells in the human myocardium, which contain the enzyme
heparanase stored in granules. When released, heparanase cleaves heparan sulphate from
EG [73]. Therefore, stabilization of mast cells and blockade of adenosine receptors can be
an option to inhibit post-ischemic shedding.

After injury, the EG can be repaired. It has been shown in animal models that the
glycocalyx requires five to seven days to fully recover [33]. Clinical studies have shown
that regeneration process can be even faster [56,75], suggesting that the regeneration and
protection of EG are especially significant in the early perioperative period.

3. Molecular Mechanisms of EG Degradation in Cardiac Surgery

Vascular endothelial function can be damaged and impaired during cardiac surgery
by several non-specific and specific factors that activate the inflammatory response. Non-
specific factors include mechanical damage due to surgical techniques, turbulent blood flow,
hypervolemia and hypovolemia due to transfusion or blood loss, and hypothermia [76,77].
The inflammatory response can be activated during CPB by direct contact with foreign
surfaces of the CPB circuit, ischemia–reperfusion injury to different organs [76] such as the
brain, heart, lungs, kidney, liver [78], and endotoxemia [79]. It has been shown that systemic
endotoxin following CPB correlates with the degree of cardiovascular dysfunction [67,80]. It
has been suggested that splanchnic hypoperfusion, common during and after CPB [81], may
damage the mucosal barrier, leading to translocation of endotoxin [82]. Also, endotoxin
may contaminate fluids that are routinely used during CPB, such as the cardioplegia and
circuit priming fluid [83].
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The main molecular mechanisms involved in detachment of EG, or glycocalyx shed-
ding, include activation of proteases, which degrade glycocalyx components. At the
same time, this degradation is further enhanced by increased concentrations of ROS and
inflammatory cytokines.

3.1. Shear Stress

Through mechanosensation and mechanotransduction, the EG senses the shear stress
of the blood flow and converts it into intracellular signals. Under normal physiological
conditions, shear stress from laminar blood flow maintains the integrity of EG by regulating
the synthesis of its components. However, the alteration of blood flow during cardiac
surgery contributes to the degradation of the glycocalyx since disruption of blood flow
and shear stress patterns can downregulate the expression of syndecan-1 and other EG
components [55]. The shear-stress-induced signalling pathway is activated by endothelial
cell junction proteins, such as PECAM-1. It is a cell-adhesion molecule and mechanosensor
of endothelial cells that acts in a complex of different junctional proteins, including vascular
endothelial cadherin (VE-cadherin) and vascular endothelial growth factor receptor 2
(VEGFR2) [35]. Heparan sulphate is crucial for endothelial mechanotransduction initiation
in the early phase. PECAM-1 and the G protein Gαq/11 form a mechanosensitive complex
containing endogenous heparan sulphate proteoglycans with a chondroitin sulphate chain
which is central to the assembly of the complex and regulation of the flow response.

This mechanical disruption weakens the structure of the EG and makes it more sus-
ceptible to enzymatic and oxidative damage. Shear-induced NO production is a hallmark
of endothelial mechanotransduction, which is central to flow-mediated vasodilatation [84].
The proteoglycan core protein glypican-1 transmits the fluid shear force sensed by GAG
side chains to the cell surface mainly via heparan sulphate but not via chondroitin sulphate
and syndecan-1, resulting in phosphorylation of eNOS to NO. Shear stress, which acts
directly on glypican-1 can also trigger NO production in in vitro models [85]. Glypican-1
is the primary upstream sensor for shear stress, highlighting the role of PECAM-1 as a
downstream mediator of shear-stress-induced NO formation. Treatment with heparinase
blocked both the early and late phases of NO production, partially by disrupting heparan
sulphate in complex with PECAM-1 [86].

Glycocalyx degradation is also mediated by exocytosis of Weibel–Palade bodies
and secretory lysosomes, which are visible as patch loss or craters in the glycocalyx [87].
Weibel–Palade bodies store adhesion receptors for platelets (von Willebrand factor) and
leukocytes (P-selectin). Therefore, the exocytosis Weibel–Palade body promotes platelet
clumping and adhesion of leukocytes to vascular endothelial cells [88].

3.2. Protease Activation

One of the key mechanisms for glycocalyx detachment is the activation of vari-
ous proteases/sheddases, including matrix metalloproteinases (MMPs), heparanase, and
hyaluronidase. Other potential molecules with a similar detachment function are neu-
trophil elastase, thrombin, plasmin, tryptase, and cathepsin B [89]. They are frequently
activated by ROS and pro-inflammatory cytokines [90] (Figure 2).

MMPs are a family of enzymes that degrade extracellular matrix components [91].
During cardiac surgery, ischemia–reperfusion injury leads to the activation of MMPs,
particularly MMP-2 and MMP-9 [92,93], which are released by phagocytes [94]. These
enzymes cleave the core proteins of proteoglycans and glycoproteins in the glycocalyx,
leading to their degradation [95]. It is hypothesized that the MMPs cleave the syndecan
ectodomain. Elevated MMPs levels have been associated with increased degradation of EG
and the resulting vascular permeability and inflammation [96]. Doxycycline, a non-selective
inhibitor of MMP activity, reduces glycocalyx detachment [94].

Heparanase specifically cleaves heparan sulphate, a major component of the EG.
Ischemia–reperfusion injury and inflammation caused by cardiac surgery significantly
increase heparanase activity [34]. The upregulation of heparanase not only degrades
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heparan sulphate but also promotes the release of growth factors and cytokines stored in
the EG, thus exacerbating inflammatory responses and endothelial dysfunction [97].
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Figure 2. Schematic representation of EG exposed to shear stress. Note the detachment of heparan
and chondroitin sulphate. Various proteases (primary matrix metalloproteinases (MMP), heparanase,
and hyaluronidase) are released by activated leukocytes or induced by mechanical stress. Proteases
cleave the core proteins of proteoglycans and glycoproteins in the endothelial glycocalyx, leading to
their degradation. (ORM—orosomucoid).

Hyaluronidase degrades hyaluronic acid, another important component of the EG.
Pro-inflammatory cytokines, such as tumour necrosis factor-alpha (TNF-α) and interleukin
(IL)-1β, which increase during cardiac surgery, stimulate hyaluronidase activity. This degra-
dation reduces the protective barrier function of the glycocalyx and increases endothelial
permeability and leukocyte adhesion [98].

Vascular leakage and EG damage are significant concerns in CPB surgery. Therefore,
several therapeutic interventions have been proposed to mitigate these issues. Imatinib, a
tyrosine kinase inhibitor, has shown promising results in reducing vascular leakage and
maintaining microcirculatory perfusion, potentially protecting the EG during CPB. Thus, it
could improve outcomes, such as lowering markers of renal injury [99]. Another strategy
to attenuate these effects in CPB is to target angiopoietin-2 (Ang-2), which is known for
its role in endothelial hyperpermeability and capillary leak [100,101]. Although general
strategies to treat vascular leakage in sepsis may be applicable, particularly to influence
inflammatory pathways and endothelial barrier function [102], treatment of systemic
capillary leak syndrome (SCLS) during CPB focuses on stabilizing the endothelial barrier
and reducing capillary leakage [103]. Therapeutic agents such as corticosteroids, albumin,
sphingosine-1-phosphate receptor agonists, and vasopressin have also been identified as
potential treatments due to their role in reducing inflammation, restoring colloid osmotic
pressure, and improving the integrity of the endothelial junction. Additional agents such
as angiopoietin-1 (Ang-1), anti-inflammatory drugs, and antioxidants such as ascorbic acid
offer additional therapeutic options. Furthermore, the protective effects of statins and the
potential use of heparin and heparanase inhibitors to prevent glycocalyx degradation in
CPB settings should be further investigated [102].

3.3. Oxidative Stress

Oxidative stress is the result of an imbalance between the production of ROS and
their degradation by various antioxidants, leading to an excess of ROS or RNS that is
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associated with numerous pathophysiological processes [104,105]. Reactive species are
normally produced in the body and act in balance with antioxidants, mainly as signalling
molecules, that significantly influence cell growth, cell differentiation, and cell ageing [106].
However, when reactive species accumulate, they can cause cellular and molecular damage.
Accumulation can be caused by external or internal causes. External causes include radia-
tion, heavy metals, and long-lasting stress. The predominant internal production of reactive
species is associated with mitochondria, cytochrome p450, and NADPH oxidases [106].

Oxidative stress is major contributor to the detachment of the EG during cardiac
surgery. Some components of EG, such as GAGs, heparan sulphate and hyaluronic acid,
are more susceptible to oxidative damage. Activated neutrophils produce ROS and RNS
and release granules containing proteases responsible for degradation [107]. One of the
most important sources is neutrophil-derived myeloperoxidase, which is bound to the
negatively charged GAG side chains. The reperfusion process after ischemia generates
ROS, including superoxide anions, hydrogen peroxide, and hydroxyl radicals. These
ROS directly damage the EG by oxidizing its components, leading to structural degra-
dation [108]. In addition, ROS activate redox-sensitive transcription factors such as the
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which upregulate
the expression of pro-inflammatory cytokines and adhesion molecules, and further promote
EG degradation [109].

Patients who have undergone cardiac surgery, either with or without CPB, are at risk
of the production of ROS and RNS [110]. The species can cause further damage, both
intraoperatively and postoperatively, leading to atrial fibrillation and ischemia, enhancing
the need for fluid resuscitation, which in turn can overload the heart, induce N-terminal
proBrain Natriuremic Peptide (NT-proBNP) production, and damage the EG. Therefore,
perioperative oxidative stress should be considered in cardiac surgery as well as possible
methods to reduce perioperative ROS production and the use of potential antioxidant
therapies to limit the impact in this vulnerable patients [111].

Resveratrol is a potential antioxidant. There are no human clinical studies in cardiac
surgery but with potential results in animal and human in vitro model studies [112,113].
Vitamin C is an antioxidant that is being researched in various areas, including cardiac
surgery. In cardiac surgery, vitamin C effects are focused in the intraoperative and post-
operative period including direct effects on the heart and other organs (lungs, kidneys),
blood coagulation, and immune function [114–116], although some controversy with publi-
cation as bias has been noted [117]. Coenzyme Q10 is another potential treatment method
that needs further studies and quality results [118]. Acetaminophen, as a more common
treatment option, both for postoperative pain and its anti-inflammatory and antioxidant
effects, has also been researched and showed positive results [119]. Various other dietary
supplements have been researched but showed variable results [120–122].

Most of the results are not yet conclusive or only offer short-term benefits and require
further research to confirm the results and reevaluate the protocols, doses used or long-
term outcomes.

3.4. Ischemia–Reperfusion Injury

Ischemia–Reperfusion injury disrupts the EG [123], leading to tissue damage [48].
Cardiac ischemia–reperfusion injury can occur during percutaneous coronary angioplasty,
CABG, and heart transplantation [63]. Studies have shown that cardiac surgery and CPB
can lead to degradation of the EG and shedding of its components, such as syndecan-1
and heparan sulphate, into the bloodstream [65,80,124–126]. In cardiac surgery patients,
early release of syndecan-1 and heparan sulphate was observed during reperfusion [72].
An inflammatory response due to CPB could result in EG component shedding even after
off-pump CABG surgery [127] due to ischemia–reperfusion injury from temporary ligation
of coronary arteries, reversible low cardiac output during surgery, or hypotension [69].
Ischemia–reperfusion injury to the brain, heart, lung, kidney, and liver [78] due to the aortic
cross-clamping and restoration of perfusion after its release is associated with activation
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of an inflammatory response [77]. According to the evidence from animal studies of
ischemia–reperfusion injury, the reduced thickness of EG can be observed as early as 5 min
after reperfusion, and glycocalyx shedding leads to NO-mediated endothelium-dependent
vasodilation [77,128].

As part of the crucial triad molecular circuit, ROS are important effectors in EG dam-
age during ischemia–reperfusion injury [39]. It has been shown that administration of the
antioxidative agent superoxide dismutase protects small vessels from ischemia–reperfusion
damage and protects EG [129]. Elevated blood levels of EG components, such as syndecan-
1 [130] and heparan sulphate [131], have been found in patients after CPB, survivors of
cardiac arrest and acute coronary syndrome, suggesting that syndecan-1 as a core protein
and heparan sulphate as a GAG side chain are affected in ischemia–reperfusion injury. Hep-
aran sulphate shedding during ischemia–reperfusion injury is associated with increased
vessel permeability, complement activation, thrombosis, and leukocyte infiltration into
the damaged tissue [39]. Endothelial dysfunction, complement activation, and interaction
of vascular endothelial cells with immune cells, such as neutrophils, occur as the earliest
inflammatory response during ischemia–reperfusion injury [132]. Animal studies have
shown that ischemia–reperfusion injury can result in EG shedding due to increased pro-
duction of ROS and RNS or a secondary inflammatory response [71], leading to increased
levels of syndecan-1 and heparan sulphate in the circulation [77,129].

Animal studies have also detected complement system involvement in ischemia–
reperfusion injury [133]. Deposits of complement components C3b and C5b-9 have been
detected in reperfused hearts of myocardial infarction patients [134], in association with the
increase in syndecan-1 shedding [135]. It has been suggested that increased complement
deposition and tissue injury might be caused by the loss of interaction of damaged EG
with complement regulatory proteins in plasma, such as C1-inhibitor [136]. It has also been
suggested that complement activation in ischemia–reperfusion injury may be due to the
expression of neoantigens on the endothelial cell surface [137], which bind to naturally
occurring IgM antibodies, leading to complement activation and tissue injury [138].

In addition to interacting with plasma proteins, EG plays a protective role in shielding
cell surface adhesion molecules and limiting their interaction with immune cells [139]. It
has been shown that damage to EG during myocardial infarction contributes to neutrophil
and platelet adhesion to vessel walls and vascular edema [140].

Damage to EG during the neutrophil-mediated immune response may occur by en-
zymatic degradation by MMPs and hyaluronidase or by oxidative stress [39]. In addition,
elastase, cathepsins, and MMPs released by neutrophils can cleave endothelial cell–cell
junctions, resulting in damaged junctional integrity and vascular leakage [141].

Activated neutrophils can form web-like structures of decondensed chromatin, hi-
stones, and cytoplasmic and granular proteins known as neutrophil extracellular traps
(NETs), which have been shown to be released in peripheral vascular disease, myocardial
infarction and stroke [142]. Histones released from NET formation are highly cytotoxic to
endothelial cells and, in reaction with EG, cause barrier dysfunction and microvascular
leakage [143]. Histone levels have been shown to correlate with infarct size [144].

Both neutrophil activation and complement deposition are tightly linked and play
a central role in EG damage during ischemia–reperfusion injury [39]. Animal studies
on complement receptor 5a knock-out mouse model of myocardial infarction showed a
reduction in neutrophil migration to postischemic myocardium and diminished expression
of MMP-9 [145].

The destruction and shedding of EG during ischemia–reperfusion injury is an im-
portant process involving the metalloproteinase family, especially MMPs, but also many
different sheddases [39,146,147]. Sheddases and sulfatases remove entire GAG side chains
and proteoglycans or alter the sulfation pattern of GAG side chains, thereby altering the
EG [39]. MMPs, which have been shown to cleave whole proteoglycans, are also released
during ischemia–reperfusion injury, possibly by cardiomyocytes and neutrophils [148,149].
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Shedding of syndecan-1 during ischemia–reperfusion injury is a consequence of MMPs
upregulation and downregulation of the MMPs tissue inhibitors [150].

Studies have linked MMP-3 and MMP-9 to cardiovascular disease, showing their elevated
levels in patients with ischemic heart disease and atherosclerotic plaques [39,151,152]. The
degradation and shedding of EG are facilitated by ischemia–reperfusion injury in patients
after cardiac surgery and CPB, resulting in the heparan sulphate and syndecan-1 release
into the circulation [127]. Therefore, elevated levels of glycocalyx components (syndecan-1,
heparan sulphate, hyaluronan) can be detected in the blood and urine of patients following
the activation of sheddases, heparinase, MMPs, and hyaluronidase, which are probably
of endothelial origin [76]. Cleavage of hyaluronan has been observed in ischemic stroke
patients, suggesting the involvement of sheddase hyaluronidase in EG degradation during
ischemia–reperfusion injury [153]. In addition, it has been shown that atrial natriuretic
peptide [154], tryptase-β [155], and heparinase [156] result in soluble syndecan-1 increase
in ischemia–reperfusion injury [157].

3.5. Inflammation

Inflammatory processes that occur during cardiac surgery represent a complex physi-
ological response that can be triggered by numerous factors. They are orchestrated by a
variety of different dynamics, linked by a number of molecular mechanisms that include
tissue injury, CPB-induced stress, ischemia–reperfusion injury, and systemic immune ac-
tivation. These multifaceted processes are mediated by the release of damage-associated
molecular patterns (DAMPs), activation of pattern recognition receptors (PRRs), genera-
tion of ROS, cytokine production, immune cell recruitment, and complement activation
(Figure 3) with a growing body of scientific evidence emphasizing new insights in this
field [158,159].
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Figure 3. Inflammatory response in heart damage. This Figure represents the autophagy process in
response to cardiac injury, such as ischemia, sepsis, or ischemia–reperfusion injury. Following cardiac
injury, an inflammatory response is triggered, which activates the autophagy pathway. Damaged cells,
including apoptotic cells, viruses, bacteria, damage-associated molecular patterns (DAMPs), and
damaged mitochondria, are encapsulated in a double-membrane structure called an autophagosome.
LC3-II is a marker protein involved in the formation of the autophagosome. The autophagosome then
fuses with a lysosome, forming an autolysosome. The lysosomal enzymes degrade the encapsulated
cell debris within the autolysosome, leading to its breakdown and recycling, thereby aiding cellular
recovery and homeostasis.
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Scientific and clinical research on inflammation-reducing techniques during cardiac
surgery, such as hemoadsorption and temperature management, shows promising results
in improving patient outcomes by mitigating the inflammatory response [22,113,160,161].

3.5.1. Tissue Injury

In the first line, the tissue injury caused by the surgical trauma leads to cell damage
and the release of intracellular contents, which further activates the immune system [162].
The surgical procedure disrupts the skin, resulting in damage to the tissue and organ
barriers. This leads to the activation of inflammatory mediators. Even in minimally
invasive surgeries that attempt to minimize tissue trauma, it is essentially impossible to
completely prevent the release of these mediators [163].

According to McCully and Moser, a ray of chemokines is harbouring in human
skin [164]. In a mouse model with surgical incision, C-X-C motif ligand 1 (CXCL1), also
known as keratinocyte chemoattractant (KC), is the first key chemokine released within
the first 12 h, followed by macrophage inflammatory protein-2 (MIP-2) which is released
after 24 h. Both chemokines attract neutrophils [165]. Although the differences between
rodents and humans are well known, surgical manipulation also causes the release of both
anti-inflammatory cytokines and pro-inflammatory cytokines in humans [166]. According
to the murine research, macrophages are usually present in skin tissue, and the influx of
neutrophils occurs within 24 h of an incision before declining sharply within eight days.
Before the influx of neutrophils into murine aseptic wounds, endothelial barrier perme-
ability increases. Even after neutrophil removal, permeability remains high, indicating
that it is not controlled by the cells alone during the inflammatory responses. Therefore,
the cellular inflammatory response seems to contribute to increased endothelial barrier
permeability but cannot cause it alone [167]. Furthermore, not only neutrophils but also
platelets are involved in the regulation of endothelial permeability, as shown by the reduced
thrombin-mediated endothelial permeability after platelet depletion in the skin incision
model [168].

3.5.2. CPB-Induced Stress

Secondly, CPB is a critical component of many cardiac surgeries, as blood comes
into contact with the artificial surfaces of the CPB circuit, causing additional stress and
inflammatory reactions. Direct contact of blood with CPB leads to activation of the comple-
ment cascade, mainly via an alternative pathway. In addition, the complement is activated
during tissue reperfusion and heparin neutralization with protamine [169].

The heparin–protamine complex can trigger the inflammatory response not only by
complement activation but also via histamine release, thromboxane and NO production,
and antibody formation [170,171]. The heparin–protamine complex activates complement
mainly through the classical (c4a) pathway [169]. Delayed activation of complement could
be observed in the first five days after the cardiac surgery, and it is associated with C
reactive protein due to heparin–protamine complexes [172].

The importance of complement activation during the inflammatory response after
cardiac surgery is highlighted by the action of complement-specific inhibitors which pre-
vent platelet, neutrophils, and/or monocyte activation [173]. In addition, the mechanical
forces in the CPB circuit can cause hemolysis and activate immune cells [174]. The activated
immune system further releases DAMPs, subsequently triggering PRRs [166]. The human
vascular endothelium expresses PRRs with variable distribution through main arteries, and
their increased expression in endothelial dysfunction due to diabetes, arterial hyperten-
sion, hypercholesterolemia, and hyperuricemia allows for endothelial activation by PRR
ligands [175].

The temporary restriction of the blood supply during surgery leads to tissue hypoxia
and cellular stress. The endothelial cells lining the blood vessels are activated and express
adhesion molecules that recruit further immune cells and contribute to vascular permeabil-
ity [174]. Activated lymphocytes secrete pro-inflammatory cytokines. They play a central
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role in the inflammatory process following cardiac surgery, which is characterized by an
early increase in TNF-α and IL-1β and a later increase in IL-6 and IL-8. Pro-inflammatory
mediators initiate various signal transduction pathways and activate the transcription
factor NF-κB, leading to gene transcription and translation of proteins required for en-
dothelial cell activation, such as adhesion molecules (e.g., E-selectin, intercellular adhesion
molecule-1) and cytokines (e.g., IL-8) [77].

It has been suggested that the clinical prognosis after CPB depends on the fine balance
between the production of pro-inflammatory and anti-inflammatory cytokines [26]. It
has been shown that an increase in pro-inflammatory cytokines correlates with a poorer
outcome after cardiac surgery. Mortality rate after pediatric cardiac surgery has been shown
to correlate with serum IL-6 levels [176]. A significant increase in cytokine concentration
has been found in cardiac surgery patients who develop SIRS. A significant increase in IL-8
and IL-18 was seen in non-survivors compared to survivors [77].

There are various efforts to reduce CPB-induced inflammation. Some of these methods
include lowering cytokine levels through hemoadsorption techniques and manipulating
temperature control during surgery. These treatments are designed to reduce the immune
response and improve patient outcomes after cardiac surgery [177].

3.5.3. Temperature Management and Reperfusion

Similarly, temperature management and restoration of blood flow in previously is-
chemic tissues contribute to inflammation [178]. Hypothermia is commonly used during
CPB to reduce metabolic demands and protect organs from ischemic damage. Nevertheless,
a more balanced approach is needed to avoid adverse consequences, considering recent
work that has drawn attention to the intricacy of temperature control and underscored
hazards tied to both cooling-down and warming-up processes [26]. During CPB, hypother-
mia can effectively reduce the overall inflammatory response and ROS formation. The
presence of such a protective mechanism is affected by reducing cellular metabolic rate
because of lowering body temperature. Similarly minimized during such processes, how-
ever, are treatments towards ischemia–reperfusion injury. These processes are associated
with decreased activation of pro-inflammatory signalling pathways and decreased cellular
endothelial activity, which limits the migration of leukocytes into the tissue by decreasing
vascular permeability [179,180].

Rewarming, an essential step post-CPB, must be carefully controlled to prevent a
sudden increase in inflammatory mediators. Rapid rewarming, on the other hand, can lead
to another phenomenon known as “rewarming shock”, which means a transient increase in
ROS production and a pronounced inflammatory response. During this period, increased
endothelial dysfunction, augmented vascular permeability, and increased potential of
invasion by immune cells, such as neutrophils or macrophages, can be triggered, leading to
further tissue damage [181].

To date, temperature management strategies have been developed to achieve optimal
results by precisely controlling the cooling and reheating rates to achieve thermal stabil-
ity with minimal inflammatory reactions. For instance, gradual rewarming reduces the
occurrence of rewarming shock and reduces some adverse effects associated with rapid
temperature changes [77]. In addition, pharmacological methods have been used in an
attempt to modulate the inflammatory cascade during the rewarming process. In this
context, studies on ROS scavengers, pro-inflammatory cytokine inhibitors, and endothelial
function enhancers are underway for their potential to reduce inflammation and improve
recovery after surgery [182,183].

3.5.4. SIRS

SIRS is defined as an extreme inflammatory reaction of the entire body, usually caused
by a severe infection or trauma. In cardiac surgery, this is of particular interest, as the pro-
cedures themselves are associated with severe stress and tissue damage. An early systemic
reaction can lead to complications during postoperative recovery and ultimately increase
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morbidity and mortality [26]. At the molecular level, SIRS is recognized during CPB, where
pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β are released, amplifying the
inflammatory response [137]. SIRS can lead to extensive inflammation affecting multiple
organs, potentially resulting in organ dysfunction. Likewise, CPB is known to activate the
complement system and thus contributes to the inflammatory processes [183].

Preventive measures for SIRS in cardiac surgery include several strategies aimed at
minimizing the inflammatory response triggered by surgical procedures. One of these is
the optimization of surgical techniques to reduce tissue trauma. In addition, less invasive
techniques can significantly reduce the inflammatory burden on the body. The use of
biocompatible materials in CPB circuits is important, as they reduce the contact activation
of blood components involved in triggering the inflammatory response during CPB [184].

The inflammatory response is also modulated by pharmacological agents, such as
anti-inflammatory drugs like corticosteroids or other immunomodulatory drugs. New
pharmacological interventions are currently being tested to further minimize the risk and
severity of SIRS in cardiac surgery patients [185].

To prevent such a serious condition as SIRS as a consequence of cardiac surgery,
early treatment and various approaches to prevent EG damage and shedding during
cardiac surgery, especially in the early postoperative period, are the subject of intensive
research [186–190]. There is increasing evidence that maintenance of fluid balance and
administration of glycocalyx-sparing “restrictive” fluid regimens [191], volatile anesthesia,
maintenance of normal plasma and albumin concentrations [192], and normoglycemia [193]
can minimize glycocalyx damage. Fresh frozen plasma [194] and the administration of
human albumin [195] have been shown to have a strong protective and regenerative effect
on the EG.

While sevoflurane can preserve EG in ischemia–reperfusion injury, a high dose of
propofol can lead to EG injury [188,196]. Since hyperglycemia can lead to endothelial
dysfunction and cause glycocalyx shedding [40], metformin has been suggested to enhance
glycocalyx density and thickness, thus improving glycocalyx function. Furthermore, insulin
and metformin have been shown to increase NO synthesis and arterial dilatation [197],
while empagliflozin preserves glycocalyx integrity [198].

4. Conclusions

The triad of EG dysfunction, oxidative stress, and inflammation in patients undergoing
cardiac surgery shares common pathways and is linked at the molecular level. In this
complex interplay, we have identified some key molecules, but their interdependence and
trends need to be better explored in the hope of identifying potential clinical interventions
that would reduce EG shedding, oxidative stress, and/or inflammation. Understanding
these mechanisms and their consequences during cardiac surgery is critical for developing
strategies to mitigate their effects and improve patient outcomes. Some of the potential
interventions to prevent the activation of the crucial triad include improvements in
surgical techniques to minimize surgical trauma, improvements in CPB device, and
anesthesia protocols, including optimal regulation of patient hemodynamic stability,
maintenance of normothermia, and use of medications during cardiac surgery and in
the postoperative period.
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