Comparative Transcriptomic Analysis Reveals Domestication and Improvement Patterns of Broomcorn Millet (Panicum miliaceum L.)
Abstract
:1. Introduction
2. Results
2.1. Qualitative Evaluation of RNA-Seq
2.2. Gene Expression and Co-Expression Network
2.3. Functional Annotation and Enrichment Analysis of DEGs
2.4. Screening of Candidate Genes Related to Domestication and Improvement of Broomcorn Millet
2.5. Validation of Gene Expression Based on RNA-Seq Using qRT-PCR
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. RNA Extraction, cDNA Library Construction, and Sequencing
4.3. Read Mapping, Transcript Assembly, and SNP Calling
4.4. Gene Expression and Weighted Gene Co-Expression Network Analysis
4.5. Differential Gene Expression Analysis and Functional Annotation and Enrichment Analyses of Differentially Expressed Genes
4.6. Validation of Gene Expression with Quantitative Real-Time PCR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diamond, J. Evolution, Consequences and Future of Plant and Animal Domestication. Nature 2002, 418, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhou, A.; Sang, T. Rice Domestication by Reducing Shattering. Science 2006, 311, 1936–1939. [Google Scholar] [CrossRef] [PubMed]
- Doebley, J.; Stec, A.; Hubbard, L. The Evolution of Apical Dominance in Maize. Nature 1997, 386, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Doebley, J. The Genetics of Maize Evolution. Annu. Rev. Genet. 2004, 38, 37–59. [Google Scholar] [CrossRef] [PubMed]
- Frary, A.; Nesbitt, T.C.; Grandillo, S.; Knaap, E.; Cong, B.; Liu, J.; Meller, J.; Elber, R.; Alpert, K.B.; Tanksley, S.D. Fw2.2: A Quantitative Trait Locus Key to the Evolution of Tomato Fruit Size. Science 2000, 289, 85–88. [Google Scholar] [CrossRef]
- Wang, M.; Li, W.; Fang, C.; Xu, F.; Liu, Y.; Wang, Z.; Yang, R.; Zhang, M.; Liu, S.; Lu, S.; et al. Parallel Selection on a Dormancy Gene during Domestication of Crops from Multiple Families. Nat. Genet. 2018, 50, 1435–1441. [Google Scholar] [CrossRef]
- Jin, J.; Huang, W.; Gao, J.-P.; Yang, J.; Shi, M.; Zhu, M.-Z.; Luo, D.; Lin, H.-X. Genetic Control of Rice Plant Architecture under Domestication. Nat. Genet. 2008, 40, 1365–1369. [Google Scholar] [CrossRef]
- Tan, L.; Li, X.; Liu, F.; Sun, X.; Li, C.; Zhu, Z.; Fu, Y.; Cai, H.; Wang, X.; Xie, D.; et al. Control of a Key Transition from Prostrate to Erect Growth in Rice Domestication. Nat. Genet. 2008, 40, 1360–1364. [Google Scholar] [CrossRef]
- Singh, J.; Zhao, J.; Vallejos, C.E. Differential Transcriptome Patterns Associated with Early Seedling Development in a Wild and a Domesticated Common Bean (Phaseolus vulgaris L.) Accession. Plant Sci. 2018, 274, 153–162. [Google Scholar] [CrossRef]
- Abbo, S.; Pinhasi van-Oss, R.; Gopher, A.; Saranga, Y.; Ofner, I.; Peleg, Z. Plant Domestication versus Crop Evolution: A Conceptual Framework for Cereals and Grain Legumes. Trends Plant Sci. 2014, 19, 351–360. [Google Scholar] [CrossRef]
- Doebley, J.F.; Gaut, B.S.; Smith, B.D. The Molecular Genetics of Crop Domestication. Cell 2006, 127, 1309–1321. [Google Scholar] [CrossRef] [PubMed]
- Meyer, R.S.; Purugganan, M.D. Evolution of Crop Species: Genetics of Domestication and Diversification. Nat. Rev. Genet. 2013, 14, 840–852. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, Y.; Liu, M.; Guo, W.; Wang, Y.; He, Q.; Chen, W.; Liao, Y.; Zhang, W.; Gao, Y.; et al. Pangenome Analysis Reveals Genomic Variations Associated with Domestication Traits in Broomcorn Millet. Nat. Genet. 2023, 55, 2243–2254. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Zhao, H.; Zhang, Z.; Bai, Y.; Zhao, H.; Liu, G.; Liu, M.; Zheng, Y.; Zhao, H.; Gong, H.; et al. Genomic Variation in Weedy and Cultivated Broomcorn Millet Accessions Uncovers the Genetic Architecture of Agronomic Traits. Nat. Genet. 2024, 56, 1006–1017. [Google Scholar] [CrossRef]
- Huang, X.; Kurata, N.; Wei, X.; Wang, Z.-X.; Wang, A.; Zhao, Q.; Zhao, Y.; Liu, K.; Lu, H.; Li, W.; et al. A Map of Rice Genome Variation Reveals the Origin of Cultivated Rice. Nature 2012, 490, 497–501. [Google Scholar] [CrossRef]
- He, Z.; Zhai, W.; Wen, H.; Tang, T.; Wang, Y.; Lu, X.; Greenberg, A.J.; Hudson, R.R.; Wu, C.-I.; Shi, S. Two Evolutionary Histories in the Genome of Rice: The Roles of Domestication Genes. PLoS Genet. 2011, 7, e1002100. [Google Scholar] [CrossRef]
- Jing, C.-Y.; Zhang, F.-M.; Wang, X.-H.; Wang, M.-X.; Zhou, L.; Cai, Z.; Han, J.-D.; Geng, M.-F.; Yu, W.-H.; Jiao, Z.-H.; et al. Multiple Domestications of Asian Rice. Nat. Plants 2023, 9, 1221–1235. [Google Scholar] [CrossRef]
- Hufford, M.B.; Xu, X.; van Heerwaarden, J.; Pyhäjärvi, T.; Chia, J.-M.; Cartwright, R.A.; Elshire, R.J.; Glaubitz, J.C.; Guill, K.E.; Kaeppler, S.M.; et al. Comparative Population Genomics of Maize Domestication and Improvement. Nat. Genet. 2012, 44, 808–811. [Google Scholar] [CrossRef]
- Wang, B.; Lin, Z.; Li, X.; Zhao, Y.; Zhao, B.; Wu, G.; Ma, X.; Wang, H.; Xie, Y.; Li, Q.; et al. Genome-Wide Selection and Genetic Improvement during Modern Maize Breeding. Nat. Genet. 2020, 52, 565–571. [Google Scholar] [CrossRef]
- Zhang, M.; Kong, D.; Wang, H.; Zhang, M.; Kong, D.; Wang, H. Genomic Landscape of Maize Domestication and Breeding Improvement. Seed Biol. 2023, 2, 9. [Google Scholar] [CrossRef]
- Zhou, Z.; Jiang, Y.; Wang, Z.; Gou, Z.; Lyu, J.; Li, W.; Yu, Y.; Shu, L.; Zhao, Y.; Ma, Y.; et al. Resequencing 302 Wild and Cultivated Accessions Identifies Genes Related to Domestication and Improvement in Soybean. Nat. Biotechnol. 2015, 33, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhao, X.; Liu, D.; Li, Y.; Lightfoot, D.A.; Yang, Z.; Zhao, L.; Zhou, G.; Wang, Z.; Huang, L.; et al. Domestication Footprints Anchor Genomic Regions of Agronomic Importance in Soybeans. New Phytol. 2016, 209, 871–884. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, S.; Ma, J.; Li, D.; Yan, L.; Li, J.; Qi, X.; Guo, X.; Zhang, L.; He, W.; et al. Molecular Footprints of Domestication and Improvement in Soybean Revealed by Whole Genome Re-Sequencing. BMC Genom. 2013, 14, 579. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.-H.; Jeong, N.; Kim, J.; Lee, W.K.; Lee, Y.-G.; Lee, S.-H.; Yoon, W.; Kim, J.-H.; Choi, I.-Y.; Choi, H.-K.; et al. Population Structure and Domestication Revealed by High-Depth Resequencing of Korean Cultivated and Wild Soybean Genomes. DNA Res. 2014, 21, 153–167. [Google Scholar] [CrossRef]
- Zou, H.; Tzarfati, R.; Hübner, S.; Krugman, T.; Fahima, T.; Abbo, S.; Saranga, Y.; Korol, A.B. Transcriptome Profiling of Wheat Glumes in Wild Emmer, Hulled Landraces and Modern Cultivars. BMC Genom. 2015, 16, 777. [Google Scholar] [CrossRef]
- Li, X.; Gao, J.; Song, J.; Guo, K.; Hou, S.; Wang, X.; He, Q.; Zhang, Y.; Zhang, Y.; Yang, Y.; et al. Multi-Omics Analyses of 398 Foxtail Millet Accessions Reveal Genomic Regions Associated with Domestication, Metabolite Traits, and Anti-Inflammatory Effects. Mol. Plant 2022, 15, 1367–1383. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Y.; Luo, H.; Shang, L.; Leng, C.; Liu, Z.; Li, Z.; Lu, X.; Cai, H.; Hao, H.; et al. Genomic Footprints of Sorghum Domestication and Breeding Selection for Multiple End Uses. Mol. Plant 2022, 15, 537–551. [Google Scholar] [CrossRef]
- Schmutz, J.; McClean, P.E.; Mamidi, S.; Wu, G.A.; Cannon, S.B.; Grimwood, J.; Jenkins, J.; Shu, S.; Song, Q.; Chavarro, C.; et al. A Reference Genome for Common Bean and Genome-Wide Analysis of Dual Domestications. Nat. Genet. 2014, 46, 707–713. [Google Scholar] [CrossRef]
- Zhang, K.; He, M.; Fan, Y.; Zhao, H.; Gao, B.; Yang, K.; Li, F.; Tang, Y.; Gao, Q.; Lin, T.; et al. Resequencing of Global Tartary Buckwheat Accessions Reveals Multiple Domestication Events and Key Loci Associated with Agronomic Traits. Genome Biol. 2021, 22, 23. [Google Scholar] [CrossRef]
- Wang, N.; Li, Y.; Meng, Q.; Chen, M.; Wu, M.; Zhang, R.; Xu, Z.; Sun, J.; Zhang, X.; Nie, X.; et al. Genome and Haplotype Provide Insights into the Population Differentiation and Breeding Improvement of Gossypium barbadense. J. Adv. Res. 2023, 54, 15–27. [Google Scholar] [CrossRef]
- Lin, T.; Zhu, G.; Zhang, J.; Xu, X.; Yu, Q.; Zheng, Z.; Zhang, Z.; Lun, Y.; Li, S.; Wang, X.; et al. Genomic Analyses Provide Insights into the History of Tomato Breeding. Nat. Genet. 2014, 46, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Geng, L.; Lu, M.; Jin, W.; Nan, X.; He, P.-A.; Yao, Y. Comparative Transcriptome Analysis of the Different Tissues between the Cultivated and Wild Tomato. PLoS ONE 2017, 12, e0172411. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Gao, P.; Zhu, Q.; Zhu, Z.; Liu, H.; Wang, X.; Weng, Y.; Gao, M.; Luan, F. Resequencing of 297 Melon Accessions Reveals the Genomic History of Improvement and Loci Related to Fruit Traits in Melon. Plant Biotechnol. J. 2020, 18, 2545–2558. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.-S.; Chen, Y.; Zhang, X.-Y.; Feng, Y.; Comes, H.P.; Li, Z.; Zheng, Z.-S.; Yuan, Y.; Wang, L.-Y.; Huang, Z.-J.; et al. Genome Sequencing and Transcriptome Analyses Provide Insights into the Origin and Domestication of Water Caltrop (Trapa Spp., Lythraceae). Plant Biotechnol. J. 2022, 20, 761–776. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, K.; Yu, H.; Chen, S.; Xu, D.; Zhao, H.; Zhang, Z.; Yang, Y.; Gu, X.; Liu, X.; et al. Pepper Variome Reveals the History and Key Loci Associated with Fruit Domestication and Diversification. Mol. Plant 2022, 15, 1744–1758. [Google Scholar] [CrossRef]
- Chen, R.; Chen, K.; Yao, X.; Zhang, X.; Yang, Y.; Su, X.; Lyu, M.; Wang, Q.; Zhang, G.; Wang, M.; et al. Genomic Analyses Reveal the Stepwise Domestication and Genetic Mechanism of Curd Biogenesis in Cauliflower. Nat. Genet. 2024, 56, 1235–1244. [Google Scholar] [CrossRef]
- Coe, K.; Bostan, H.; Rolling, W.; Turner-Hissong, S.; Macko-Podgórni, A.; Senalik, D.; Liu, S.; Seth, R.; Curaba, J.; Mengist, M.F.; et al. Population Genomics Identifies Genetic Signatures of Carrot Domestication and Improvement and Uncovers the Origin of High-Carotenoid Orange Carrots. Nat. Plants 2023, 9, 1643–1658. [Google Scholar] [CrossRef]
- Wu, X.; Hu, Z.; Zhang, Y.; Li, M.; Liao, N.; Dong, J.; Wang, B.; Wu, J.; Wu, X.; Wang, Y.; et al. Differential Selection of Yield and Quality Traits Has Shaped Genomic Signatures of Cowpea Domestication and Improvement. Nat. Genet. 2024, 56, 992–1005. [Google Scholar] [CrossRef]
- Dai, F.; Zhuo, X.; Luo, G.; Wang, Z.; Xu, Y.; Wang, D.; Zhong, J.; Lin, S.; Chen, L.; Li, Z.; et al. Genomic Resequencing Unravels the Genetic Basis of Domestication, Expansion, and Trait Improvement in Morus atropurpurea. Adv. Sci. 2023, 10, e2300039. [Google Scholar] [CrossRef]
- Baute, G.J.; Kane, N.C.; Grassa, C.J.; Lai, Z.; Rieseberg, L.H. Genome Scans Reveal Candidate Domestication and Improvement Genes in Cultivated Sunflower, as Well as Post-Domestication Introgression with Wild Relatives. New Phytol. 2015, 206, 830–838. [Google Scholar] [CrossRef]
- Wang, X. Food Crops. In Crops and Their Wild Relatives in China; Dong, Y., Liu, X., Eds.; China Agriculture Press: Beijing, China, 2006. [Google Scholar]
- Zhao, Z. Study on origins of dry-land agriculture in North China based on flotation results from the Xinglonggou site, Inner Mongolia. In Antiquities of Eastern Asia; Department of Cultural Relics and Museology, Nanjing Normal University, Nanjing, China, Ed.; Wenwu Press: Beijing, China, 2004. [Google Scholar]
- Gansu Provincial Institute of Cultural Relics and Archaeology (GPICRA). Dadiwan in Qin’an—Report on Excavations at a Neolithic Site; Cultural Relics Publishing House: Beijing, China, 2006; pp. 693–694. [Google Scholar]
- Lu, H.; Zhang, J.; Liu, K.; Wu, N.; Li, Y.; Zhou, K.; Ye, M.; Zhang, T.; Zhang, H.; Yang, X.; et al. Earliest Domestication of Common Millet (Panicum miliaceum) in East Asia Extended to 10,000 Years Ago. Proc. Natl. Acad. Sci. USA 2009, 106, 7367–7372. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.F.; Spengler, R.N.; Frachetti, M. Millet Cultivation across Eurasia: Origins, Spread, and the Influence of Seasonal Climate. Holocene 2016, 26, 1566–1575. [Google Scholar] [CrossRef]
- Li, C.; Dong, Y.; Liu, M.; Lu, P.; Li, W.; Wang, Y.; Cui, X.; Zhou, H.; Xu, Y. Ancient DNA Analysis of Panicum miliaceum (Broomcorn Millet) from a Bronze Age Cemetery in Xinjiang, China. Veget. Hist. Archaeobot. 2016, 25, 469–477. [Google Scholar] [CrossRef]
- Xu, Y.; Minxuan, L.; Li, C.; Sun, F.; Lu, P.; Meng, F.; Zhao, X.; He, M.; Wang, F.; Zhu, X.; et al. Domestication and Spread of Broomcorn Millet (Panicum miliaceum L.) Revealed by Phylogeography of Cultivated and Weedy Populations. Agronomy 2019, 9, 835. [Google Scholar] [CrossRef]
- Dal Corso, M.; Pashkevych, G.; Filipović, D.; Liu, X.; Motuzaite Matuzeviciute, G.; Stobbe, A.; Shatilo, L.; Videiko, M.; Kirleis, W. Between Cereal Agriculture and Animal Husbandry: Millet in the Early Economy of the North Pontic Region. J. World Prehist. 2022, 35, 321–374. [Google Scholar] [CrossRef]
- Singh, A.K. Early Presence/Introduction of African and East Asian Millets in India: Integral to Traditional Agriculture. Nucleus 2023, 66, 261–271. [Google Scholar] [CrossRef]
- Martin, L.; Messager, E.; Bedianashvili, G.; Rusishvili, N.; Lebedeva, E.; Longford, C.; Hovsepyan, R.; Bitadze, L.; Chkadua, M.; Vanishvili, N.; et al. The Place of Millet in Food Globalization during Late Prehistory as Evidenced by New Bioarchaeological Data from the Caucasus. Sci. Rep. 2021, 11, 13124. [Google Scholar] [CrossRef]
- Filipović, D.; Meadows, J.; Corso, M.D.; Kirleis, W.; Alsleben, A.; Akeret, Ö.; Bittmann, F.; Bosi, G.; Ciută, B.; Dreslerová, D.; et al. New AMS 14C Dates Track the Arrival and Spread of Broomcorn Millet Cultivation and Agricultural Change in Prehistoric Europe. Sci. Rep. 2020, 10, 13698. [Google Scholar] [CrossRef]
- De Wet, J.M.J. The Three Phases of Cereal Domestication. In Grass Evolution and Domestication; Chapman, G.P., Ed.; Cambridge University Press: Cambridge, UK, 1992; pp. 176–198. [Google Scholar]
- Li, C.; Liu, M.; Sun, F.; Zhao, X.; He, M.; Li, T.; Lu, P.; Xu, Y. Genetic Divergence and Population Structure in Weedy and Cultivated Broomcorn Millets (Panicum miliaceum L.) Revealed by Specific-Locus Amplified Fragment Sequencing (SLAF-Seq). Front. Plant Sci. 2021, 12, 688444. [Google Scholar] [CrossRef]
- Krasavin, V.D.; Ul’yanova, T.N. How to distinguish weedy proso from cultivated proso. Sel. Semenovod. 1989, 6, 15–17. [Google Scholar]
- Zhang, J.; Lu, H.; Liu, M.; Diao, X.; Shao, K.; Wu, N. Phytolith Analysis for Differentiating between Broomcorn Millet (Panicum miliaceum) and Its Weed/Feral Type (Panicum ruderale). Sci. Rep. 2018, 8, 13022. [Google Scholar] [CrossRef] [PubMed]
- Vetriventhan, M.; Azevedo, V.C.R.; Upadhyaya, H.D.; Nirmalakumari, A.; Kane-Potaka, J.; Anitha, S.; Ceasar, S.A.; Muthamilarasan, M.; Bhat, B.V.; Hariprasanna, K.; et al. Genetic and Genomic Resources, and Breeding for Accelerating Improvement of Small Millets: Current Status and Future Interventions. Nucleus 2020, 63, 217–239. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, Z.; Chen, W.; Wu, C.; Chen, J.; Sui, Y. Establishment of Genome-Editing System and Assembly of a near-Complete Genome in Broomcorn Millet. J. Integr. Plant Biol. 2024, 66, 1688–1702. [Google Scholar] [CrossRef] [PubMed]
- Stark, R.; Grzelak, M.; Hadfield, J. RNA sequencing: The teenage years. Nat. Rev. Genet. 2019, 20, 631–656. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Wang, L.; Liu, H.; Yue, W.; Du, X.; Song, W.; Nie, X. De Novo Assembly and Characterization of the Transcriptome of Broomcorn Millet (Panicum miliaceum L.) for Gene Discovery and Marker Development. Front. Plant Sci. 2016, 7, 1083. [Google Scholar] [CrossRef]
- Yue, H.; Wang, M.; Liu, S.; Du, X.; Song, W.; Nie, X. Transcriptome-Wide Identification and Expression Profiles of the WRKY Transcription Factor Family in Broomcorn Millet (Panicum miliaceum L.). BMC Genom. 2016, 17, 343. [Google Scholar] [CrossRef]
- Shan, Z.; Jiang, Y.; Li, H.; Guo, J.; Dong, M.; Zhang, J.; Liu, G. Genome-Wide Analysis of the NAC Transcription Factor Family in Broomcorn Millet (Panicum miliaceum L.) and Expression Analysis under Drought Stress. BMC Genom. 2020, 21, 96. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Li, R.; Chen, L.; Tian, X.; Qiao, Z. Metabolomic and Transcriptomic Basis of Photoperiodic Response Regulation in Broomcorn Millet (Panicum miliaceum L.). Sci. Rep. 2024, 14, 21720. [Google Scholar] [CrossRef]
- Cao, X.; Hu, Y.; Song, J.; Feng, H.; Wang, J.; Chen, L.; Wang, L.; Diao, X.; Wan, Y.; Liu, S.; et al. Transcriptome Sequencing and Metabolome Analysis Reveals the Molecular Mechanism of Drought Stress in Millet. Int. J. Mol. Sci. 2022, 23, 10792. [Google Scholar] [CrossRef]
- Cheng, Y.; Dai, X.; Zhao, Y. Auxin Biosynthesis by the YUCCA Flavin Monooxygenases Controls the Formation of Floral Organs and Vascular Tissues in Arabidopsis. Gene Dev. 2006, 20, 1790–1799. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Kamiya, N.; Morinaka, Y.; Matsuoka, M.; Sazuka, T. Auxin Biosynthesis by the YUCCA Genes in Rice. Plant Physiol. 2007, 143, 1362–1371. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Mai, Y.-X.; Zhang, Y.-C.; Luo, Q.; Yang, H.-Q. MicroRNA171c-Targeted SCL6-II, SCL6-III, and SCL6-IV Genes Regulate Shoot Branching in Arabidopsis. Mol. Plant 2010, 3, 794–806. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-Y.; Huang, S.-N.; Chen, Y.-H.; Wang, G.; Guo, Z.-R. Identification and Characterization of Two Waterlogging Responsive Alcohol Dehydrogenase Genes (AdADH1 and AdADH2) in Actinidia Deliciosa. Mol. Breed. 2017, 37, 52. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Huang, S.-N.; Wang, G.; Xuan, J.-P.; Guo, Z.-R. Overexpression of Actinidia Deliciosa Pyruvate Decarboxylase 1 Gene Enhances Waterlogging Stress in Transgenic Arabidopsis thaliana. Plant Physiol. Biochem. 2016, 106, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.-T.; Zhang, J.-Y.; Wang, G.; Jia, Z.-H.; Huang, S.-N.; Wang, T.; Guo, Z.-R. Functional Characterization of Waterlogging and Heat Stresses Tolerance Gene Pyruvate Decarboxylase 2 from Actinidia deliciosa. Int. J. Mol. Sci. 2017, 18, 2377. [Google Scholar] [CrossRef]
- Himi, E.; Maekawa, M.; Miura, H.; Noda, K. Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat. Theor. Appl. Genet. 2011, 122, 1561–1576. [Google Scholar] [CrossRef]
- Stein, O.; Granot, D. An Overview of Sucrose Synthases in Plants. Front. Plant Sci. 2019, 10, 95. [Google Scholar] [CrossRef]
- Gulimina, T.; Wumaierxiati, T.; Shi, X. Response and Drought Resistance Evaluation of Different Panicum Miliaceum Materials at Germination and Seedling Stage to Drought Stress. Seed 2023, 40, 34–39. [Google Scholar]
- Xia, L.; Li, M.; Chen, Y.; Dai, Y.; Li, H.; Zhang, S. Sexually Dimorphic Acetyl-CoA Biosynthesis and Utilization in Response to Drought and Exogenous Acetic Acid. Plant J. 2024, 119, 1967–1985. [Google Scholar] [CrossRef]
- Chen, G.; Han, H.; Ma, H.; Dang, K.; Wang, M.; Yang, P.; Feng, B. Characteristics of Protein and Starch Accumulation Andthe Dynamic Changes of Key Enzymes during Grainfilling of Proso Millet (Panicum miliaceum L.). J. China Agric. Univ. 2019, 24, 28–36. [Google Scholar]
- Dash, M.; Malladi, A. The AINTEGUMENTA Genes, MdANT1 and MdANT2, Are Associated with the Regulation of Cell Production during Fruit Growth in Apple (Malus × Domestica Borkh.). BMC Plant Biol. 2012, 12, 98. [Google Scholar] [CrossRef] [PubMed]
- Chialva, C.; Eichler, E.; Grissi, C.; Muñoz, C.; Gomez-Talquenca, S.; Martínez-Zapater, J.M.; Lijavetzky, D. Expression of Grapevine AINTEGUMENTA-like Genes Is Associated with Variation in Ovary and Berry Size. Plant Mol. Biol. 2016, 91, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.K.; Santosh Kumar, V.V.; Yadav, S.K.; Pushkar, S.; Rao, M.V.; Chinnusamy, V. Overexpression of ABA Receptor PYL10 Gene Confers Drought and Cold Tolerance to Indica Rice. Front. Plant Sci. 2019, 10, 1488. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, M.; Stiller, J.; Liu, C. A Pan-Transcriptome Analysis Shows That Disease Resistance Genes Have Undergone More Selection Pressure during Barley Domestication. BMC Genom. 2019, 20, 12. [Google Scholar] [CrossRef]
- Liu, M.; Li, Y.; Ma, Y.; Zhao, Q.; Stiller, J.; Feng, Q.; Tian, Q.; Liu, D.; Han, B.; Liu, C. The Draft Genome of a Wild Barley Genotype Reveals Its Enrichment in Genes Related to Biotic and Abiotic Stresses Compared to Cultivated Barley. Plant Biotechnol. J. 2020, 18, 443–456. [Google Scholar] [CrossRef]
- Nasir, F.; Tian, L.; Shi, S.; Bahadur, A.; Batool, A. Asian cultivated rice domestication suppresses the expression of abiotic stress- and reactive oxygen species scavenging-related genes in roots. Pak. J. Bot. 2019, 51, 49–54. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.; Ming, M.; Hu, H.; Zhang, M.; Fan, J.; Song, B.; Zhang, S.; Wu, J. Comparative Transcriptomic Analysis Provides Insight into the Domestication and Improvement of Pear (P. pyrifolia) Fruit. Plant Physiol. 2019, 180, 435–452. [Google Scholar] [CrossRef]
- Guo, S.; Sun, H.; Zhang, H.; Liu, J.; Ren, Y.; Gong, G.; Jiao, C.; Zheng, Y.; Yang, W.; Fei, Z.; et al. Comparative Transcriptome Analysis of Cultivated and Wild Watermelon during Fruit Development. PLoS ONE 2015, 10, e0130267. [Google Scholar] [CrossRef]
- Abdel-Salam, E.M.; Faisal, M.; Alatar, A.A.; Saquib, Q.; Alwathnani, H.A. Comparative Analysis between Wild and Cultivated Cucumbers Reveals Transcriptional Changes during Domestication Process. Plants 2020, 9, 63. [Google Scholar] [CrossRef]
- Li, B.; Gschwend, A.R. Vitis labrusca Genome Assembly Reveals Diversification between Wild and Cultivated Grapevine Genomes. Front. Plant Sci. 2023, 14, 1234130. [Google Scholar] [CrossRef]
- Nadiya, F.; Anjali, N.; Thomas, J.; Gangaprasad, A.; Sabu, K.K. Genome-Wide Differential Expression Profiling in Wild and Cultivar Genotypes of Cardamom Reveals Regulation of Key Pathways in Plant Growth and Development. Agri Gene 2018, 8, 18–27. [Google Scholar] [CrossRef]
- Sharp, G.L.; Martin, J.M.; Lanning, S.P.; Blake, N.K.; Brey, C.W.; Sivamani, E.; Qu, R.; Talbert, L.E. Field Evaluation of Transgenic and Classical Sources of Wheat Streak Mosaic Virus Resistance. Crop Sci. 2002, 42, 105–110. [Google Scholar] [CrossRef] [PubMed]
- The, T.T.; Latter, B.D.H.; Mcintosh, R.A.; Ellison, F.W.; Brennan, P.S.; Fisher, J.; Hollamby, G.J.; Rathjen, A.J. Grain Yields of Near-Isogenic Lines with Added Genes for Stem Rust Resistance. In Proceedings of the 7th International Wheat Genetics Symposium; Miller, T.E., Koebner, R.M.D., Eds.; Cambridge University: Cambridge, UK, 1988; pp. 901–906. [Google Scholar]
- Jrgensen, I.H. Discovery, Characterization and Exploitation of Mlo Powdery Mildew Resistance in Barley. Euphytica 1992, 63, 141–152. [Google Scholar] [CrossRef]
- Karasov, T.L.; Kniskern, J.M.; Gao, L.; DeYoung, B.J.; Ding, J.; Dubiella, U.; Lastra, R.O.; Nallu, S.; Roux, F.; Innes, R.W.; et al. The Long-Term Maintenance of a Resistance Polymorphism through Diffuse Interactions. Nature 2014, 512, 436–440. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Zhang, X.; Ji, W.; Kang, Z. A Necessary Considering Factor for Breeding: Growth-Defense Tradeoff in Plants. Stress Biol. 2023, 3, 6. [Google Scholar] [CrossRef]
- Gao, M.; Hao, Z.; Ning, Y.; He, Z. Revisiting Growth-Defence Trade-Offs and Breeding Strategies in Crops. Plant Biotechnol. J. 2024, 22, 1198–1205. [Google Scholar] [CrossRef]
- Zou, C.; Li, L.; Miki, D.; Li, D.; Tang, Q.; Xiao, L.; Rajput, S.; Deng, P.; Peng, L.; Jia, W.; et al. The Genome of Broomcorn Millet. Nat. Commun. 2019, 10, 436. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A Fast Spliced Aligner with Low Memory Requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce Framework for Analyzing next-Generation DNA Sequencing Data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie Enables Improved Reconstruction of a Transcriptome from RNA-Seq Reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R Package for Weighted Correlation Network Analysis. BMC Bioinf. 2008, 9, 559. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.Y.; Li, J.Q.; Wu, S.F.; Zhu, Y.P.; Chen, Y.W.; He, F.C. Integrated Nr Database in Protein Annotation System and Its Localization. Comput. Eng. 2006, 32, 71–72. [Google Scholar]
- Finn, R.D.; Bateman, A.; Clements, J.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Heger, A.; Hetherington, K.; Holm, L.; Mistry, J.; et al. Pfam: The Protein Families Database. Nucleic Acids Res. 2014, 42, D222–D230. [Google Scholar] [CrossRef]
- Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; et al. UniProt: The Universal Protein Knowledgebase. Nucleic Acids Res. 2004, 32, D115–D119. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Galperin, M.Y.; Natale, D.A.; Koonin, E.V. The COG Database: A Tool for Genome-Scale Analysis of Protein Functions and Evolution. Nucleic Acids Res. 2000, 28, 33–36. [Google Scholar] [CrossRef]
- Koonin, E.V.; Fedorova, N.D.; Jackson, J.D.; Jacobs, A.R.; Krylov, D.M.; Makarova, K.S.; Mazumder, R.; Mekhedov, S.L.; Nikolskaya, A.N.; Rao, B.S.; et al. A Comprehensive Evolutionary Classification of Proteins Encoded in Complete Eukaryotic Genomes. Genome Biol. 2004, 5, R7. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernández-Plaza, A.; Forslund, S.K.; Cook, H.; Mende, D.R.; Letunic, I.; Rattei, T.; Jensen, L.J.; et al. eggNOG 5.0: A Hierarchical, Functionally and Phylogenetically Annotated Orthology Resource Based on 5090 Organisms and 2502 Viruses. Nucleic Acids Res. 2019, 47, D309–D314. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; et al. KEGG for Linking Genomes to Life and the Environment. Nucleic Acids Res. 2008, 36, D480–D484. [Google Scholar] [CrossRef]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene Ontology Analysis for RNA-Seq: Accounting for Selection Bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef] [PubMed]
- Walter, W.; Sánchez-Cabo, F.; Ricote, M. GOplot: An R Package for Visually Combining Expression Data with Functional Analysis. Bioinformatics 2015, 31, 2912–2914. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Cai, T.; Olyarchuk, J.G.; Wei, L. Automated Genome Annotation and Pathway Identification Using the KEGG Orthology (KO) as a Controlled Vocabulary. Bioinformatics 2005, 21, 3787–3793. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer Sequence (5′–3′) |
---|---|
PM08G10890 | F: CGTCATCAACCACCGCCTAT R: GTGTGCGTGTTGAATTGGCT |
PM08G24050 | F: AGCAATGTTCCCTTCTGGCT R: GGCCATTCTCACCCTTCCAC |
PM01G01760 | F: GGTTTGCTGAGAGAGACGGA R: ACACACAGCAGTCCCAACAG |
PM08G11440 | F: CGGAAGGAGAAAGTCAGCCA |
R: GCAACTGCTCCATAGGGTCA | |
PM05G29520 | F: ACGTCCCAGGTTCCTCAAAG R: CCGACTTCTGGTGGTAGCAG |
PM12G29210 | F: CGGCGAGGACAACATGGAGTA R: CCATCGTGTCGTGGATTCGAG |
PM05G31110 | F: CGCAGCCTAACGAGAACGAT R: GCATTTCAGCAGTGAGCGAG |
PM03G17760 | F: CACCGACTACGACGGCTACA |
R: AGACGACGCGCAGGTAGATG | |
18S rRNA | F: GCGAGTACGGTTCGGATTGA R: CTCATGCGCCAATGCTACAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Liu, M.; Li, C.; Zhang, J.; Li, T.; Sun, F.; Lu, P.; Xu, Y. Comparative Transcriptomic Analysis Reveals Domestication and Improvement Patterns of Broomcorn Millet (Panicum miliaceum L.). Int. J. Mol. Sci. 2024, 25, 11012. https://doi.org/10.3390/ijms252011012
Zhao X, Liu M, Li C, Zhang J, Li T, Sun F, Lu P, Xu Y. Comparative Transcriptomic Analysis Reveals Domestication and Improvement Patterns of Broomcorn Millet (Panicum miliaceum L.). International Journal of Molecular Sciences. 2024; 25(20):11012. https://doi.org/10.3390/ijms252011012
Chicago/Turabian StyleZhao, Xinyu, Minxuan Liu, Chunxiang Li, Jingyi Zhang, Tianshu Li, Fengjie Sun, Ping Lu, and Yue Xu. 2024. "Comparative Transcriptomic Analysis Reveals Domestication and Improvement Patterns of Broomcorn Millet (Panicum miliaceum L.)" International Journal of Molecular Sciences 25, no. 20: 11012. https://doi.org/10.3390/ijms252011012
APA StyleZhao, X., Liu, M., Li, C., Zhang, J., Li, T., Sun, F., Lu, P., & Xu, Y. (2024). Comparative Transcriptomic Analysis Reveals Domestication and Improvement Patterns of Broomcorn Millet (Panicum miliaceum L.). International Journal of Molecular Sciences, 25(20), 11012. https://doi.org/10.3390/ijms252011012