Molecular Engineering of Virus Tropism
Abstract
:1. Introduction
2. Viral Envelopes and Capsids
3. Engineered Tropism of Recombinant Non-Enveloped Viruses (AAVs and Adenoviruses)
3.1. Adeno-Associated Viruses
3.1.1. Rational Design
3.1.2. Directed Evolution
3.1.3. In Silico- or Machine Learning (ML)-Based Design
3.2. Adenoviruses
4. Engineering Tropism of Recombinant Enveloped Viruses (Retro/Lentiviruses, Rabies-dG and HSVs)
4.1. Budding from the Plasma Membrane vs. Intracellular Vesicles
4.2. Pseudotyping Envelopped Viruses
4.2.1. Retro/Lentiviral Pseudotyping
4.2.2. Rabies-dG and VSV-dG Psueodtyping
4.2.3. HSV Pseudotyping and Its Applications
4.3. Chimera Envelope Proteins for Viral Vector Pseudotyping
5. Discussion and Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Nomaguchi, M.; Fujita, M.; Miyazaki, Y.; Adachi, A. Viral tropism. Front. Microbiol. 2012, 3, 281. [Google Scholar] [CrossRef]
- Bardhan, M.; Ray, I.; Roy, S.; Bhatt, P.; Patel, S.; Asri, S.; Shariff, S.; Shree, A.; Mitra, S.; Roy, P.; et al. Emerging zoonotic diseases and COVID-19 pandemic: Global Perspective and Indian Scenario. Ann. Med. Surg. 2023, 85, 3997–4004. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.N.; Rouse, B.T. Immune responses to viruses. In Clinical Immunology; Mosby: Maryland Heights, MI, USA, 2008; pp. 421–431. [Google Scholar] [CrossRef]
- Woodham, A.W.; Skeate, J.G.; Sanna, A.M.; Taylor, J.R.; Da Silva, D.M.; Cannon, P.M.; Kast, W.M. Human Immunodeficiency Virus Immune Cell Receptors, Coreceptors, and Cofactors: Implications for Prevention and Treatment. AIDS Patient Care STDS 2016, 30, 291–306. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Sastre, A. Influenza virus receptor specificity: Disease and transmission. Am. J. Pathol. 2010, 176, 1584–1585. [Google Scholar] [CrossRef]
- Li, W. The hepatitis B virus receptor. Annu. Rev. Cell Dev. Biol. 2015, 31, 125–147. [Google Scholar] [CrossRef]
- Lafon, M. Rabies virus receptors. J. Neurovirol. 2005, 11, 82–87. [Google Scholar] [CrossRef]
- Mazzon, M.; Marsh, M. Targeting viral entry as a strategy for broad-spectrum antivirals. F1000Research 2019, 8, 1628. [Google Scholar] [CrossRef]
- Park, J.; Chariou, P.L.; Steinmetz, N.F. Site-Specific Antibody Conjugation Strategy to Functionalize Virus-Based Nanoparticles. Bioconjug Chem. 2020, 31, 1408–1416. [Google Scholar] [CrossRef]
- Chen, S.H.; Haam, J.; Walker, M.; Scappini, E.; Naughton, J.; Martin, N.P. Recombinant Viral Vectors as Neuroscience Tools. Curr. Protoc. Neurosci. 2019, 87, e67. [Google Scholar] [CrossRef]
- Papouin, T.; Haydon, P.G. Obtaining Acute Brain Slices. Bio-Protocol 2018, 8, e2699. [Google Scholar] [CrossRef]
- Louten, J. Virus Structure and Classification. In Essential Human Virology; Academic Press: Cambridge, MA, USA, 2016; pp. 19–29. [Google Scholar] [CrossRef]
- Garoff, H.; Hewson, R.; Opstelten, D.J. Virus maturation by budding. Microbiol. Mol. Biol. Rev. 1998, 62, 1171–1190. [Google Scholar] [CrossRef] [PubMed]
- Prather, K.A.; Marr, L.C.; Schooley, R.T.; McDiarmid, M.A.; Wilson, M.E.; Milton, D.K. Airborne transmission of SARS-CoV-2. Science 2020, 370, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Tarka, P.; Nitsch-Osuch, A. Evaluating the Virucidal Activity of Disinfectants According to European Union Standards. Viruses 2021, 13, 534. [Google Scholar] [CrossRef]
- Eggers, M.; Schwebke, I.; Blümel, J.; Brandt, F.; Fickenscher, H.; Gebel, J.; Hübner, N.; Müller, J.A.; Rabenau, H.F.; Rapp, I.; et al. Suitable Disinfectants with Proven Efficacy for Genetically Modified Viruses and Viral Vectors. Viruses 2023, 15, 2179. [Google Scholar] [CrossRef] [PubMed]
- Air, G.M.; West, J.T. Antigenic Variation. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Naso, M.F.; Tomkowicz, B.; Perry, W.L., 3rd; Strohl, W.R. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs 2017, 31, 317–334. [Google Scholar] [CrossRef]
- Lee, C.S.; Bishop, E.S.; Zhang, R.; Yu, X.; Farina, E.M.; Yan, S.; Zhao, C.; Zheng, Z.; Shu, Y.; Wu, X.; et al. Adenovirus-Mediated Gene Delivery: Potential Applications for Gene and Cell-Based Therapies in the New Era of Personalized Medicine. Genes Dis. 2017, 4, 43–63. [Google Scholar] [CrossRef]
- Wang, D.; Tai, P.W.L.; Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 2019, 18, 358–378. [Google Scholar] [CrossRef]
- Yla-Herttuala, S. Endgame: Glybera finally recommended for approval as the first gene therapy drug in the European union. Mol. Ther. 2012, 20, 1831–1832. [Google Scholar] [CrossRef]
- Gao, J.; Hussain, R.M.; Weng, C.Y. Voretigene Neparvovec in Retinal Diseases: A Review of the Current Clinical Evidence. Clin. Ophthalmol. 2020, 14, 3855–3869. [Google Scholar] [CrossRef]
- Agbandje-McKenna, M.; Kleinschmidt, J. AAV capsid structure and cell interactions. Methods Mol. Biol. 2011, 807, 47–92. [Google Scholar] [CrossRef]
- Srivastava, A. In vivo tissue-tropism of adeno-associated viral vectors. Curr. Opin. Virol. 2016, 21, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Denard, J.; Rouillon, J.; Leger, T.; Garcia, C.; Lambert, M.P.; Griffith, G.; Jenny, C.; Camadro, J.M.; Garcia, L.; Svinartchouk, F. AAV-8 and AAV-9 Vectors Cooperate with Serum Proteins Differently Than AAV-1 and AAV-6. Mol. Ther. Methods Clin. Dev. 2018, 10, 291–302. [Google Scholar] [CrossRef]
- Summerford, C.; Samulski, R.J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol. 1998, 72, 1438–1445. [Google Scholar] [CrossRef]
- Qing, K.; Mah, C.; Hansen, J.; Zhou, S.; Dwarki, V.; Srivastava, A. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat. Med. 1999, 5, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Summerford, C.; Bartlett, J.S.; Samulski, R.J. AlphaVbeta5 integrin: A co-receptor for adeno-associated virus type 2 infection. Nat. Med. 1999, 5, 78–82. [Google Scholar] [CrossRef]
- Ling, C.; Lu, Y.; Kalsi, J.K.; Jayandharan, G.R.; Li, B.; Ma, W.; Cheng, B.; Gee, S.W.; McGoogan, K.E.; Govindasamy, L.; et al. Human hepatocyte growth factor receptor is a cellular coreceptor for adeno-associated virus serotype 3. Hum. Gene Ther. 2010, 21, 1741–1747. [Google Scholar] [CrossRef]
- Weller, M.L.; Amornphimoltham, P.; Schmidt, M.; Wilson, P.A.; Gutkind, J.S.; Chiorini, J.A. Epidermal growth factor receptor is a co-receptor for adeno-associated virus serotype 6. Nat. Med. 2010, 16, 662–664. [Google Scholar] [CrossRef]
- Akache, B.; Grimm, D.; Pandey, K.; Yant, S.R.; Xu, H.; Kay, M.A. The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J. Virol. 2006, 80, 9831–9836. [Google Scholar] [CrossRef]
- Shen, S.; Berry, G.E.; Castellanos Rivera, R.M.; Cheung, R.Y.; Troupes, A.N.; Brown, S.M.; Kafri, T.; Asokan, A. Functional analysis of the putative integrin recognition motif on adeno-associated virus 9. J. Biol. Chem. 2015, 290, 1496–1504. [Google Scholar] [CrossRef]
- Pillay, S.; Meyer, N.L.; Puschnik, A.S.; Davulcu, O.; Diep, J.; Ishikawa, Y.; Jae, L.T.; Wosen, J.E.; Nagamine, C.M.; Chapman, M.S.; et al. An essential receptor for adeno-associated virus infection. Nature 2016, 530, 108–112. [Google Scholar] [CrossRef]
- Wang, J.H.; Gessler, D.J.; Zhan, W.; Gallagher, T.L.; Gao, G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct. Target. Ther. 2024, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Li, B.; Mah, C.S.; Govindasamy, L.; Agbandje-McKenna, M.; Cooper, M.; Herzog, R.W.; Zolotukhin, I.; Warrington, K.H., Jr.; Weigel-Van Aken, K.A.; et al. Next generation of adeno-associated virus 2 vectors: Point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc. Natl. Acad. Sci. USA 2008, 105, 7827–7832. [Google Scholar] [CrossRef] [PubMed]
- Kanaan, N.M.; Sellnow, R.C.; Boye, S.L.; Coberly, B.; Bennett, A.; Agbandje-McKenna, M.; Sortwell, C.E.; Hauswirth, W.W.; Boye, S.E.; Manfredsson, F.P. Rationally Engineered AAV Capsids Improve Transduction and Volumetric Spread in the CNS. Mol. Ther. Nucleic Acids 2017, 8, 184–197. [Google Scholar] [CrossRef]
- Gilkes, J.A.; Judkins, B.L.; Herrera, B.N.; Mandel, R.J.; Boye, S.L.; Boye, S.E.; Srivastava, A.; Heldermon, C.D. Site-specific modifications to AAV8 capsid yields enhanced brain transduction in the neonatal MPS IIIB mouse. Gene Ther. 2021, 28, 447–455. [Google Scholar] [CrossRef]
- Yu, H.; Koilkonda, R.D.; Chou, T.H.; Porciatti, V.; Ozdemir, S.S.; Chiodo, V.; Boye, S.L.; Boye, S.E.; Hauswirth, W.W.; Lewin, A.S.; et al. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model. Proc. Natl. Acad. Sci. USA 2012, 109, E1238–E1247. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, J.; Liu, Y.; Qu, Y.; Wang, K.; Zhang, Y.; Chang, Y.; Yang, Z.; Wan, J.; Liu, J.; et al. Variants of the adeno-associated virus serotype 9 with enhanced penetration of the blood-brain barrier in rodents and primates. Nat. Biomed. Eng. 2022, 6, 1257–1271. [Google Scholar] [CrossRef] [PubMed]
- Theuerkauf, S.A.; Herrera-Carrillo, E.; John, F.; Zinser, L.J.; Molina, M.A.; Riechert, V.; Thalheimer, F.B.; Borner, K.; Grimm, D.; Chlanda, P.; et al. AAV vectors displaying bispecific DARPins enable dual-control targeted gene delivery. Biomaterials 2023, 303, 122399. [Google Scholar] [CrossRef]
- Tervo, D.G.; Hwang, B.Y.; Viswanathan, S.; Gaj, T.; Lavzin, M.; Ritola, K.D.; Lindo, S.; Michael, S.; Kuleshova, E.; Ojala, D.; et al. A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons. Neuron 2016, 92, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, H.; Peraramelli, S.; Luo, N.; Chen, X.; Li, J.; Gong, X.; Santillan, E.; Huynh, D.; Li, S.; et al. Macular retina-targeting AAV capsid identified through multi-species screening in mice, rabbits, pigs, and monkeys. Investig. Ophthalmol. Vis. Sci. 2024, 65, 5323. [Google Scholar]
- Chan, K.Y.; Jang, M.J.; Yoo, B.B.; Greenbaum, A.; Ravi, N.; Wu, W.L.; Sanchez-Guardado, L.; Lois, C.; Mazmanian, S.K.; Deverman, B.E.; et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 2017, 20, 1172–1179. [Google Scholar] [CrossRef]
- Krolak, T.; Chan, K.Y.; Kaplan, L.; Huang, Q.; Wu, J.; Zheng, Q.; Kozareva, V.; Beddow, T.; Tobey, I.G.; Pacouret, S.; et al. A High-Efficiency AAV for Endothelial Cell Transduction Throughout the Central Nervous System. Nat. Cardiovasc. Res. 2022, 1, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Goertsen, D.; Flytzanis, N.C.; Goeden, N.; Chuapoco, M.R.; Cummins, A.; Chen, Y.; Fan, Y.; Zhang, Q.; Sharma, J.; Duan, Y.; et al. AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat. Neurosci. 2022, 25, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Davidsson, M.; Wang, G.; Aldrin-Kirk, P.; Cardoso, T.; Nolbrant, S.; Hartnor, M.; Mudannayake, J.; Parmar, M.; Bjorklund, T. A systematic capsid evolution approach performed in vivo for the design of AAV vectors with tailored properties and tropism. Proc. Natl. Acad. Sci. USA 2019, 116, 27053–27062. [Google Scholar] [CrossRef]
- Nonnenmacher, M.; Wang, W.; Child, M.A.; Ren, X.Q.; Huang, C.; Ren, A.Z.; Tocci, J.; Chen, Q.; Bittner, K.; Tyson, K.; et al. Rapid evolution of blood-brain-barrier-penetrating AAV capsids by RNA-driven biopanning. Mol. Ther. Methods Clin. Dev. 2021, 20, 366–378. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Avery, R.; Brown, D.M.; Heier, J.S.; Ho, A.C.; Huddleston, S.M.; Jaffe, G.J.; Khanani, A.M.; Pakola, S.; Pieramici, D.J.; et al. Gene therapy for neovascular age-related macular degeneration by subretinal delivery of RGX-314: A phase 1/2a dose-escalation study. Lancet 2024, 403, 1563–1573. [Google Scholar] [CrossRef]
- Zinn, E.; Pacouret, S.; Khaychuk, V.; Turunen, H.T.; Carvalho, L.S.; Andres-Mateos, E.; Shah, S.; Shelke, R.; Maurer, A.C.; Plovie, E.; et al. In Silico Reconstruction of the Viral Evolutionary Lineage Yields a Potent Gene Therapy Vector. Cell Rep. 2015, 12, 1056–1068. [Google Scholar] [CrossRef]
- Landegger, L.D.; Pan, B.; Askew, C.; Wassmer, S.J.; Gluck, S.D.; Galvin, A.; Taylor, R.; Forge, A.; Stankovic, K.M.; Holt, J.R.; et al. A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nat. Biotechnol. 2017, 35, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, J.; Hashimoto, K.; Xiao, R.; Vandenberghe, L.H.; Liberman, M.C. Cochlear gene therapy with ancestral AAV in adult mice: Complete transduction of inner hair cells without cochlear dysfunction. Sci. Rep. 2017, 7, 45524. [Google Scholar] [CrossRef]
- Carvalho, L.S.; Xiao, R.; Wassmer, S.J.; Langsdorf, A.; Zinn, E.; Pacouret, S.; Shah, S.; Comander, J.I.; Kim, L.A.; Lim, L.; et al. Synthetic Adeno-Associated Viral Vector Efficiently Targets Mouse and Nonhuman Primate Retina In Vivo. Hum. Gene Ther. 2018, 29, 771–784. [Google Scholar] [CrossRef]
- Ikeda, Y.; Sun, Z.; Ru, X.; Vandenberghe, L.H.; Humphreys, B.D. Efficient Gene Transfer to Kidney Mesenchymal Cells Using a Synthetic Adeno-Associated Viral Vector. J. Am. Soc. Nephrol. 2018, 29, 2287–2297. [Google Scholar] [CrossRef]
- Ogden, P.J.; Kelsic, E.D.; Sinai, S.; Church, G.M. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design. Science 2019, 366, 1139–1143. [Google Scholar] [CrossRef] [PubMed]
- Bryant, D.H.; Bashir, A.; Sinai, S.; Jain, N.K.; Ogden, P.J.; Riley, P.F.; Church, G.M.; Colwell, L.J.; Kelsic, E.D. Deep diversification of an AAV capsid protein by machine learning. Nat. Biotechnol. 2021, 39, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.D.; Kummer, M.; Kondratov, O.; Banerjee, A.; Moskalenko, O.; Zolotukhin, S. Applying machine learning to predict viral assembly for adeno-associated virus capsid libraries. Mol. Ther. Methods Clin. Dev. 2021, 20, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, L.; Alba, R.; Parker, A.L.; Bradshaw, A.C.; McNeish, I.A.; Nicklin, S.A.; Baker, A.H. Tropism-modification strategies for targeted gene delivery using adenoviral vectors. Viruses 2010, 2, 2290–2355. [Google Scholar] [CrossRef]
- Yao, J.; Atasheva, S.; Wagner, N.; Di Paolo, N.C.; Stewart, P.L.; Shayakhmetov, D.M. Targeted, safe, and efficient gene delivery to human hematopoietic stem and progenitor cells in vivo using the engineered AVID adenovirus vector platform. Mol. Ther. 2024, 32, 103–123. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.D.; Zdechlik, A.C.; He, Y.; Nedrud, D.; Aslanidi, G.; Gordon, W.; Schmidt, D. Multiparametric domain insertional profiling of adeno-associated virus VP1. Mol. Ther. Methods Clin. Dev. 2023, 31, 101143. [Google Scholar] [CrossRef]
- Gray, S.J.; Blake, B.L.; Criswell, H.E.; Nicolson, S.C.; Samulski, R.J.; McCown, T.J.; Li, W. Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood-brain barrier (BBB). Mol. Ther. 2010, 18, 570–578. [Google Scholar] [CrossRef]
- Deverman, B.E.; Pravdo, P.L.; Simpson, B.P.; Kumar, S.R.; Chan, K.Y.; Banerjee, A.; Wu, W.L.; Yang, B.; Huber, N.; Pasca, S.P.; et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 2016, 34, 204–209. [Google Scholar] [CrossRef]
- Santiago-Ortiz, J.; Ojala, D.S.; Westesson, O.; Weinstein, J.R.; Wong, S.Y.; Steinsapir, A.; Kumar, S.; Holmes, I.; Schaffer, D.V. AAV ancestral reconstruction library enables selection of broadly infectious viral variants. Gene Ther. 2015, 22, 934–946. [Google Scholar] [CrossRef]
- Park, A.; Lee, J.Y. Adenoviral Vector System: A Comprehensive Overview of Constructions, Therapeutic Applications and Host Responses. J. Microbiol. 2024, 62, 491–509. [Google Scholar] [CrossRef]
- Qian, X.; Ning, W.; Dunmall, L.C.; Qu, Y.; Wang, Y.; Zhang, H. Treatment of intracranial inflammatory myofibroblastic tumor with PD-L1 inhibitor and novel oncolytic adenovirus Ad-TD-nsIL12: A case report and literature review. Front. Immunol. 2024, 15, 1427554. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.L.; Hu, C.Y.; Lee, Y.C.; Chang, C.C.; Chen, Y.C.; Lee, P.R.; Su, B.H.; Chen, P.C.; Shiau, A.L.; Shieh, G.S.; et al. Syngeneic mesenchymal stem cells loaded with telomerase-dependent oncolytic adenoviruses enhance anti-metastatic efficacy. Stem Cells Transl. Med. 2024, 13, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Di Paolo, N.C.; Miao, E.A.; Iwakura, Y.; Murali-Krishna, K.; Aderem, A.; Flavell, R.A.; Papayannopoulou, T.; Shayakhmetov, D.M. Virus Binding to a Plasma Membrane Receptor Triggers Interleukin-1α-Mediated Proinflammatory Macrophage Response In Vivo. Immunity 2009, 31, 110–121. [Google Scholar] [CrossRef]
- Chavda, V.P.; Bezbaruah, R.; Valu, D.; Patel, B.; Kumar, A.; Prasad, S.; Kakoti, B.B.; Kaushik, A.; Jesawadawala, M. Adenoviral Vector-Based Vaccine Platform for COVID-19: Current Status. Vaccines 2023, 11, 432. [Google Scholar] [CrossRef]
- Cao, C.; Dong, X.; Wu, X.; Wen, B.; Ji, G.; Cheng, L.; Liu, H. Conserved fiber-penton base interaction revealed by nearly atomic resolution cryo-electron microscopy of the structure of adenovirus provides insight into receptor interaction. J. Virol. 2012, 86, 12322–12329. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.; Zhang, X.Y.; Reiser, J. Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther. 2005, 5, 387–398. [Google Scholar] [CrossRef] [PubMed]
- V’kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021, 19, 155–170. [Google Scholar] [CrossRef]
- Gutierrez-Guerrero, A.; Cosset, F.L.; Verhoeyen, E. Lentiviral Vector Pseudotypes: Precious Tools to Improve Gene Modification of Hematopoietic Cells for Research and Gene Therapy. Viruses 2020, 12, 1016. [Google Scholar] [CrossRef]
- Palomares, K.; Vigant, F.; Van Handel, B.; Pernet, O.; Chikere, K.; Hong, P.; Sherman, S.P.; Patterson, M.; An, D.S.; Lowry, W.E.; et al. Nipah virus envelope-pseudotyped lentiviruses efficiently target ephrinB2-positive stem cell populations in vitro and bypass the liver sink when administered in vivo. J. Virol. 2013, 87, 2094–2108. [Google Scholar] [CrossRef]
- Girard-Gagnepain, A.; Amirache, F.; Costa, C.; Lévy, C.; Frecha, C.; Fusil, F.; Nègre, D.; Lavillette, D.; Cosset, F.-L.; Verhoeyen, E. Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs. Blood 2014, 124, 1221–1231. [Google Scholar] [CrossRef]
- Jargalsaikhan, B.E.; Muto, M.; Been, Y.; Matsumoto, S.; Okamura, E.; Takahashi, T.; Narimichi, Y.; Kurebayashi, Y.; Takeuchi, H.; Shinohara, T.; et al. The Dual-Pseudotyped Lentiviral Vector with VSV-G and Sendai Virus HN Enhances Infection Efficiency through the Synergistic Effect of the Envelope Proteins. Viruses 2024, 16, 827. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, K.; Zhao, S.; Takatoh, J.; Rodriguez, E.; Lu, J.; Leavitt, A.D.; Fu, M.; Han, B.X.; Wang, F. Capturing and Manipulating Activated Neuronal Ensembles with CANE Delineates a Hypothalamic Social-Fear Circuit. Neuron 2016, 92, 739–753. [Google Scholar] [CrossRef]
- Humbel, M.; Ramosaj, M.; Zimmer, V.; Regio, S.; Aeby, L.; Moser, S.; Boizot, A.; Sipion, M.; Rey, M.; Déglon, N. Maximizing lentiviral vector gene transfer in the CNS. Gene Ther. 2021, 28, 75–88. [Google Scholar] [CrossRef] [PubMed]
- McGee, C.; Shi, M.; House, J.; Drude, A.; Gonzalez, G.; Martin, N.; Chen, S.H.; Rogers, H.; Njunge, A.; Hodge, X.; et al. Longitudinal Serological Surveillance for COVID-19 Antibodies after Infection and Vaccination. Microbiol. Spectr. 2022, 10, e0202622. [Google Scholar] [CrossRef]
- Wang, S.; Liu, L.; Wang, C.; Wang, Z.; Duan, X.; Chen, G.; Zhou, H.; Shao, H. Establishment of a pseudovirus neutralization assay based on SARS-CoV-2 S protein incorporated into lentiviral particles. Biosaf. Health 2022, 4, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Huang, W.; Xiang, H.; Nie, J. SARS-CoV-2 Neutralization Assays Used in Clinical Trials: A Narrative Review. Vaccines 2024, 12, 554. [Google Scholar] [CrossRef]
- Cruz-Cardenas, J.A.; Gutierrez, M.; Lopez-Arredondo, A.; Castaneda-Delgado, J.E.; Rojas-Martinez, A.; Nakamura, Y.; Enciso-Moreno, J.A.; Palomares, L.A.; Brunck, M.E.G. A pseudovirus-based platform to measure neutralizing antibodies in Mexico using SARS-CoV-2 as proof-of-concept. Sci. Rep. 2022, 12, 17966. [Google Scholar] [CrossRef] [PubMed]
- Sinn, P.L.; Coffin, J.E.; Ayithan, N.; Holt, K.H.; Maury, W. Lentiviral Vectors Pseudotyped with Filoviral Glycoproteins. Methods Mol. Biol. 2017, 1628, 65–78. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Hu, L.; Zhang, Y.; Zheng, H.; Wu, H.; Wang, J.; Luo, L.; Xiao, H.; Qiao, C.; et al. TIM-1 Augments Cellular Entry of Ebola Virus Species and Mutants, Which Is Blocked by Recombinant TIM-1 Protein. Microbiol. Spectr. 2022, 10, e0221221. [Google Scholar] [CrossRef]
- McKay, T.; Patel, M.; Pickles, R.J.; Johnson, L.G.; Olsen, J.C. Influenza M2 envelope protein augments avian influenza hemagglutinin pseudotyping of lentiviral vectors. Gene Ther. 2006, 13, 715–724. [Google Scholar] [CrossRef]
- Ferrara, F.; Del Rosario, J.M.M.; da Costa, K.A.S.; Kinsley, R.; Scott, S.; Fereidouni, S.; Thompson, C.; Kellam, P.; Gilbert, S.; Carnell, G.; et al. Development of Lentiviral Vectors Pseudotyped With Influenza B Hemagglutinins: Application in Vaccine Immunogenicity, mAb Potency, and Sero-Surveillance Studies. Front. Immunol. 2021, 12, 661379. [Google Scholar] [CrossRef] [PubMed]
- Bulcha, J.T.; Wang, Y.; Ma, H.; Tai, P.W.L.; Gao, G. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther. 2021, 6, 53. [Google Scholar] [CrossRef]
- Strebinger, D.; Frangieh, C.J.; Friedrich, M.J.; Faure, G.; Macrae, R.K.; Zhang, F. Cell type-specific delivery by modular envelope design. Nat. Commun. 2023, 14, 5141. [Google Scholar] [CrossRef] [PubMed]
- Gollan, T.J.; Green, M.R. Redirecting retroviral tropism by insertion of short, nondisruptive peptide ligands into envelope. J. Virol. 2002, 76, 3558–3563. [Google Scholar] [CrossRef]
- Yu, B.; Shi, Q.; Belk, J.A.; Yost, K.E.; Parker, K.R.; Li, R.; Liu, B.B.; Huang, H.; Lingwood, D.; Greenleaf, W.J.; et al. Engineered cell entry links receptor biology with single-cell genomics. Cell 2022, 185, 4904–4920.e4922. [Google Scholar] [CrossRef]
- Takano, K.A.; Wong, A.A.L.; Brown, R.; Situ, K.; Chua, B.A.; Abu, A.E.; Pham, T.T.; Reyes, G.C.; Ramachandran, S.; Kamata, M.; et al. Envelope protein-specific B cell receptors direct lentiviral vector tropism in vivo. Mol. Ther. 2024, 32, 1311–1327. [Google Scholar] [CrossRef]
- Yonezawa, A.; Hori, T.; Takaori-Kondo, A.; Morita, R.; Uchiyama, T. Replacement of the V3 region of gp120 with SDF-1 preserves the infectivity of T-cell line-tropic human immunodeficiency virus type 1. J. Virol. 2001, 75, 4258–4267. [Google Scholar] [CrossRef]
- Stitz, J.; Buchholz, C.J.; Engelstadter, M.; Uckert, W.; Bloemer, U.; Schmitt, I.; Cichutek, K. Lentiviral vectors pseudotyped with envelope glycoproteins derived from gibbon ape leukemia virus and murine leukemia virus 10A1. Virology 2000, 273, 16–20. [Google Scholar] [CrossRef]
- Mirow, M.; Schwarze, L.I.; Fehse, B.; Riecken, K. Efficient Pseudotyping of Different Retroviral Vectors Using a Novel, Codon-Optimized Gene for Chimeric GALV Envelope. Viruses 2021, 13, 1471. [Google Scholar] [CrossRef]
- Salazar-Garcia, M.; Acosta-Contreras, S.; Rodriguez-Martinez, G.; Cruz-Rangel, A.; Flores-Alanis, A.; Patino-Lopez, G.; Luna-Pineda, V.M. Pseudotyped Vesicular Stomatitis Virus-Severe Acute Respiratory Syndrome-Coronavirus-2 Spike for the Study of Variants, Vaccines, and Therapeutics Against Coronavirus Disease 2019. Front. Microbiol. 2021, 12, 817200. [Google Scholar] [CrossRef]
- Wickersham, I.R.; Lyon, D.C.; Barnard, R.J.; Mori, T.; Finke, S.; Conzelmann, K.K.; Young, J.A.; Callaway, E.M. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 2007, 53, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Kamel, M.S.; Munds, R.A.; Verma, M.S. The Quest for Immunity: Exploring Human Herpesviruses as Vaccine Vectors. Int. J. Mol. Sci. 2023, 24, 16112. [Google Scholar] [CrossRef]
- Travieso, T.; Li, J.; Mahesh, S.; Mello, J.; Blasi, M. The use of viral vectors in vaccine development. NPJ Vaccines 2022, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Li, L.; Wu, J.; Tian, M.; Fu, Y. Application of pseudovirus system in the development of vaccine, antiviral-drugs, and neutralizing antibodies. Microbiol. Res. 2022, 258, 126993. [Google Scholar] [CrossRef]
- Bentley, E.M.; Mather, S.T.; Temperton, N.J. The use of pseudotypes to study viruses, virus sero-epidemiology and vaccination. Vaccine 2015, 33, 2955–2962. [Google Scholar] [CrossRef]
- Racine, T.; Kobinger, G.P.; Arts, E.J. Development of an HIV vaccine using a vesicular stomatitis virus vector expressing designer HIV-1 envelope glycoproteins to enhance humoral responses. AIDS Res. Ther. 2017, 14, 55. [Google Scholar] [CrossRef]
- Jain, S.; Lo, M.K.; Kainulainen, M.H.; Welch, S.R.; Spengler, J.R.; Satter, S.M.; Rahman, M.Z.; Hossain, M.E.; Chiang, C.-F.; Klena, J.D.; et al. Development of a neutralization assay using a vesicular stomatitis virus expressing Nipah virus glycoprotein and a fluorescent protein. Virology 2023, 587, 109858. [Google Scholar] [CrossRef] [PubMed]
- Bernacchi, S. Visualization of Retroviral Gag-Genomic RNA Cellular Interactions Leading to Genome Encapsidation and Viral Assembly: An Overview. Viruses 2022, 14, 324. [Google Scholar] [CrossRef]
- Philippe, S.; Sarkis, C.; Barkats, M.; Mammeri, H.; Ladroue, C.; Petit, C.; Mallet, J.; Serguera, C. Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2006, 103, 17684–17689. [Google Scholar] [CrossRef]
- Mitra, A.; Barua, A.; Huang, L.; Ganguly, S.; Feng, Q.; He, B. From bench to bedside: The history and progress of CAR T cell therapy. Front. Immunol. 2023, 14, 1188049. [Google Scholar] [CrossRef]
- Albelda, S.M. CAR T cell therapy for patients with solid tumours: Key lessons to learn and unlearn. Nat. Rev. Clin. Oncol. 2024, 21, 47–66. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, J.; Belot, L.; Raux, H.; Legrand, P.; Gaudin, Y.; Albertini, A.A. Structural basis for the recognition of LDL-receptor family members by VSV glycoprotein. Nat. Commun. 2018, 9, 1029. [Google Scholar] [CrossRef]
- Hwang, B.Y.; Schaffer, D.V. Engineering a serum-resistant and thermostable vesicular stomatitis virus G glycoprotein for pseudotyping retroviral and lentiviral vectors. Gene Ther. 2013, 20, 807–815. [Google Scholar] [CrossRef]
- Hirano, M.; Kato, S.; Kobayashi, K.; Okada, T.; Yaginuma, H.; Kobayashi, K. Highly efficient retrograde gene transfer into motor neurons by a lentiviral vector pseudotyped with fusion glycoprotein. PLoS ONE 2013, 8, e75896. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Kuramochi, M.; Takasumi, K.; Kobayashi, K.; Inoue, K.; Takahara, D.; Hitoshi, S.; Ikenaka, K.; Shimada, T.; Takada, M.; et al. Neuron-specific gene transfer through retrograde transport of lentiviral vector pseudotyped with a novel type of fusion envelope glycoprotein. Hum. Gene Ther. 2011, 22, 1511–1523. [Google Scholar] [CrossRef]
- Cannon, J.R.; Sew, T.; Montero, L.; Burton, E.A.; Greenamyre, J.T. Pseudotype-dependent lentiviral transduction of astrocytes or neurons in the rat substantia nigra. Exp. Neurol. 2011, 228, 41–52. [Google Scholar] [CrossRef]
- Colin, A.; Faideau, M.; Dufour, N.; Auregan, G.; Hassig, R.; Andrieu, T.; Brouillet, E.; Hantraye, P.; Bonvento, G.; Déglon, N. Engineered lentiviral vector targeting astrocytes in vivo. Glia 2009, 57, 667–679. [Google Scholar] [CrossRef]
- Fassler, M.; Weissberg, I.; Levy, N.; Diaz-Griffero, F.; Monsonego, A.; Friedman, A.; Taube, R. Preferential lentiviral targeting of astrocytes in the central nervous system. PLoS ONE 2013, 8, e76092. [Google Scholar] [CrossRef]
- Ayoub, P.G.; Purkayastha, A.; Quintos, J.; Tam, C.; Lathrop, L.; Tam, K.; Ruiz, M.; Hollis, R.P.; Gomperts, B.N.; Kohn, D.B. Improved SARS-CoV-2 Spike Glycoproteins for Pseudotyping Lentiviral Vectors. Front. Virol. 2021, 1, 793320. [Google Scholar] [CrossRef]
- Letko, M.; Marzi, A.; Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 2020, 5, 562–569. [Google Scholar] [CrossRef]
- Dietzgen, R.G.; Kondo, H.; Goodin, M.M.; Kurath, G.; Vasilakis, N. The family Rhabdoviridae: Mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins. Virus Res. 2017, 227, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Majid, A.M.; Barber, G.N. Recombinant Vesicular Stomatitis Virus (VSV) and Other Strategies in HCV Vaccine Designs and Immunotherapy. In Hepatitis C Viruses: Genomes and Molecular Biology; Tan, S.L., Ed.; Horizon Bioscience Copyright © 2006, Horizon Bioscience: Norfolk, UK, 2006. [Google Scholar]
- Jin, L.; Sullivan, H.A.; Zhu, M.; Lavin, T.K.; Matsuyama, M.; Fu, X.; Lea, N.E.; Xu, R.; Hou, Y.; Rutigliani, L.; et al. Long-term labeling and imaging of synaptically connected neuronal networks in vivo using double-deletion-mutant rabies viruses. Nat. Neurosci. 2024, 27, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Neve, R. Generation of High-Titer Defective HSV-1 Amplicon Vectors. In Vectorology for Optogenetics and Chemogenetics; Eldridge, M.A.G., Galvan, A., Eds.; Humana: New York, NY, USA, 2023; pp. 29–49. [Google Scholar]
- Chen, S.H.; He, B.; Singh, S.; Martin, N.P. Vector Tropism. In Vectorology for Optogenetics and Chemogenetics; Eldridge, M.A.G., Galvan, A., Eds.; Humana: New York, NY, USA, 2023; pp. 105–123. [Google Scholar]
- Anderson, D.B.; Laquerre, S.; Ghosh, K.; Ghosh, H.P.; Goins, W.F.; Cohen, J.B.; Glorioso, J.C. Pseudotyping of glycoprotein D-deficient herpes simplex virus type 1 with vesicular stomatitis virus glycoprotein G enables mutant virus attachment and entry. J. Virol. 2000, 74, 2481–2487. [Google Scholar] [CrossRef]
- Rogalin, H.B.; Heldwein, E.E. Characterization of Vesicular Stomatitis Virus Pseudotypes Bearing Essential Entry Glycoproteins gB, gD, gH, and gL of Herpes Simplex Virus 1. J. Virol. 2016, 90, 10321–10328. [Google Scholar] [CrossRef]
- Hilterbrand, A.T.; Daly, R.E.; Heldwein, E.E. Contributions of the Four Essential Entry Glycoproteins to HSV-1 Tropism and the Selection of Entry Routes. mBio 2021, 12, e00143-21. [Google Scholar] [CrossRef]
- Yang, L.; Bailey, L.; Baltimore, D.; Wang, P. Targeting lentiviral vectors to specific cell types in vivo. Proc. Natl. Acad. Sci. USA 2006, 103, 11479–11484. [Google Scholar] [CrossRef] [PubMed]
- Kasaraneni, N.; Chamoun-Emanuelli, A.M.; Wright, G.A.; Chen, Z. A simple strategy for retargeting lentiviral vectors to desired cell types via a disulfide-bond-forming protein-peptide pair. Sci. Rep. 2018, 8, 10990. [Google Scholar] [CrossRef]
- Soukupova, M.; Zucchini, S.; Trempat, P.; Ingusci, S.; Perrier-Biollay, C.; Barbieri, M.; Cattaneo, S.; Bettegazzi, B.; Falzoni, S.; Berthomme, H.; et al. Improvement of HSV-1 based amplicon vectors for a safe and long-lasting gene therapy in non-replicating cells. Mol. Ther. Methods Clin. Dev. 2021, 21, 399–412. [Google Scholar] [CrossRef]
- Schaffer, D.V.; Koerber, J.T.; Lim, K.I. Molecular engineering of viral gene delivery vehicles. Annu. Rev. Biomed. Eng. 2008, 10, 169–194. [Google Scholar] [CrossRef]
- Hordeaux, J.; Wang, Q.; Katz, N.; Buza, E.L.; Bell, P.; Wilson, J.M. The Neurotropic Properties of AAV-PHP.B Are Limited to C57BL/6J Mice. Mol. Ther. 2018, 26, 664–668. [Google Scholar] [CrossRef]
- Qiao, C.; Yuan, Z.; Li, J.; He, B.; Zheng, H.; Mayer, C.; Li, J.; Xiao, X. Liver-specific microRNA-122 target sequences incorporated in AAV vectors efficiently inhibits transgene expression in the liver. Gene Ther. 2011, 18, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Eid, F.E.; Chen, A.T.; Chan, K.Y.; Huang, Q.; Zheng, Q.; Tobey, I.G.; Pacouret, S.; Brauer, P.P.; Keyes, C.; Powell, M.; et al. Systematic multi-trait AAV capsid engineering for efficient gene delivery. Nat. Commun. 2024, 15, 6602. [Google Scholar] [CrossRef] [PubMed]
- New, C.; Lee, Z.-Y.; Tan, K.S.; Wong, A.H.-P.; Wang, D.Y.; Tran, T. Tetraspanins: Host Factors in Viral Infections. Int. J. Mol. Sci. 2021, 22, 11609. [Google Scholar] [CrossRef] [PubMed]
- Robert, J.-M.H.; Amoussou, N.G.; Mai, H.L.; Logé, C.; Brouard, S. Tetraspanins: Useful multifunction proteins for the possible design and development of small-molecule therapeutic tools. Drug Discov. Today 2021, 26, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Schiller, L.T.; Lemus-Diaz, N.; Ferreira, R.R.; Böker, K.O.; Gruber, J. Enhanced Production of Exosome-Associated AAV by Overexpression of the Tetraspanin CD9. Mol. Ther. Methods Clin. Dev. 2018, 9, 278–287. [Google Scholar] [CrossRef]
- Böker, K.O.; Lemus-Diaz, N.; Rinaldi Ferreira, R.; Schiller, L.; Schneider, S.; Gruber, J. The Impact of the CD9 Tetraspanin on Lentivirus Infectivity and Exosome Secretion. Mol. Ther. 2018, 26, 634–647. [Google Scholar] [CrossRef]
Methods | Approach | Applications/Examples | Ref. |
---|---|---|---|
Rational Design | Mutation of surface-exposed tyrosine and threonine | Improved AAV2 and AAV8 transduction in CNS. | [35,36,37] |
Ligand/peptide incorporation into the exposed sites on AAV capsids | The MTS-modified AAV2 redirected AAV particles to the mitochondria. TVSALK on AAV9 improved systemic gene delivery efficiency via BBB. DARPins markers on AAV2 improved the transduction efficiency in CD4/CD32a double-positive cells | [38,39,40] | |
Directed Evolution | Error-prone PCR and DNA shuffling | The evolved AAV2-retro robustly travel retrograde in neuronal projections. AAV2.N54 exhibited an improved tropism for mouse, pig, rabbit, and monkey retinas. | [41,42] |
Peptide display | Novel CNS-targeting capsids, PHP.B, AAV.BI30, andAAV.CAP.B10. | [43,44,45] | |
CREATE | Novel CNS-targeting capsids, PHP.B, PHP.eB, PHP.S. | [43] | |
BRAVE | Novel AAV variant with retrograde transport and infectivity of dopamine neurons in both rodent and human cells. | [46] | |
TRACER | BBB-penetrating AAV variants with high efficiency in mouse brain. | [47] | |
NAVIGATE | Novel AAV3B and AAV.PEPIN variants with superior retina and ocular transduction profiles in multiple animal models. | [48] | |
In silico- or ML-based Design | Ancestral reconstruction algorithms | Novel Anc80L65 variant with improved thermostability and delivery efficiency. | [49,50,51,52,53] |
Machine learning | Improving AAV production and immune evasion. | [49,54,55,56] | |
Genetic Modification | Incorporation of targeting peptide sequences | Engineer CAR-independent entry. | [57] |
Development of artificial vectors | Artificial vectors for intravascular delivery (AVIDs) for gene delivery to human hematopoietic stem and progenitor cells | [58] |
Virus | Pseudotyping | Tropism | Applications | Ref. |
---|---|---|---|---|
Retro/ lentivirus | VSV-G | Broad (LDL-R positive cells) | Gene delivery, creation of stable-cell lines | [71,72] |
(1) BaEV | (1) CD34 positive SC | Gene delivery to cells with less efficient VSV-G-pseudotyped lentiviruses transduction | [73] | |
(2) NiV | (2) Ephrin B2 positive cells | [72] | ||
(3) SeV | (3) Hematopoietic SC | [74] | ||
ASLV (e.g., EnvA/EnvB) | Neurons expressing corresponding receptors. (e.g., TVA/TVB) | Functional analysis or synaptic tracing of neurons | [75] | |
LCMV and MuLV | Brain cells, especially astrocytes | Efficient gene delivery to astrocytes | [76] | |
(1) SARS-CoV2 spike | (1) Host-cells for SARS-CoV2 (ACE2-positive) | Transduce host-cells expressing corresponding viral receptors for vaccine development and antiviral drug discovery | [77,78,79,80] | |
(2) Ebola envelope glycoprotein | (2) TIM-1 positive cells | [81,82] | ||
(3) Influenza hemagglutinin | (3) sialic acid receptors expressing cells | [83,84] | ||
Chimera envelopes: | Notably, (1) and (2) enhance precise gene delivery. Additionally, (3) mediates efficient transduction of B and T cells, improves virus particle stability, and increases virus production | |||
(1) Growth factors (e.g., IGF-I, EGF, EPO, SDF-1α) | (1) Cells expressing corresponding receptors | [85,86] | ||
(2) Single-chain antibody variable fragments (scFvs) | (2) Cells expressing targeted epitopes | [87,88,89,90] | ||
(3) Combined fragments from different viral envelops (e.g., GALV-Env and GALV-C4070A) | (3) B and T cells | [91,92] | ||
VSV-dG | SARS-CoV-2 spike | Host-cells for SARS-CoV-2 (ACE2-positive) | Structural studies of the spike protein and therapeutic drug development | [93] |
Rabies-dG | ASLV (e.g., EnvA/EnvB/EnvE) | Neurons expressing corresponding receptors (e.g., TVA/TVB/TBE) | Neural circuit tracing. | [94] |
HSV | VSV-G | Broad (LDL-R positive cells) | Virus pathogenesis research | [95,96,97] |
HIV, Nipah, Rabies, SARS-CoV-2, Ebola envelope proteins | Antigen presenting cells | Vaccines and antiviral drugs development | Based on evidence from other enveloped viruses [98,99,100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, B.; Wilson, B.; Chen, S.-H.; Sharma, K.; Scappini, E.; Cook, M.; Petrovich, R.; Martin, N.P. Molecular Engineering of Virus Tropism. Int. J. Mol. Sci. 2024, 25, 11094. https://doi.org/10.3390/ijms252011094
He B, Wilson B, Chen S-H, Sharma K, Scappini E, Cook M, Petrovich R, Martin NP. Molecular Engineering of Virus Tropism. International Journal of Molecular Sciences. 2024; 25(20):11094. https://doi.org/10.3390/ijms252011094
Chicago/Turabian StyleHe, Bo, Belinda Wilson, Shih-Heng Chen, Kedar Sharma, Erica Scappini, Molly Cook, Robert Petrovich, and Negin P. Martin. 2024. "Molecular Engineering of Virus Tropism" International Journal of Molecular Sciences 25, no. 20: 11094. https://doi.org/10.3390/ijms252011094
APA StyleHe, B., Wilson, B., Chen, S. -H., Sharma, K., Scappini, E., Cook, M., Petrovich, R., & Martin, N. P. (2024). Molecular Engineering of Virus Tropism. International Journal of Molecular Sciences, 25(20), 11094. https://doi.org/10.3390/ijms252011094