The Effect of Lower Limb Combined Neuromuscular Electrical Stimulation on Skeletal Muscle Cross-Sectional Area and Inflammatory Signaling
Abstract
:1. Introduction
2. Results
2.1. Participants
2.2. Skeletal Muscle Intracellular Signaling Proteins
2.3. Myofiber Size
3. Discussion
3.1. Skeletal Muscle Intracellular Proteins
3.2. Myofiber Cross-Sectional Area
3.3. Limitations
4. Materials and Methods
4.1. Ethical Approval
4.2. Study Design and Inclusion Criteria
4.3. Exercise Training Protocol
4.4. Skeletal Muscle Biopsy Sampling
4.5. Immunohistochemistry
4.6. Immunoblotting
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahuja, C.S.; Wilson, J.R.; Nori, S.; Kotter, M.; Druschel, C.; Curt, A.; Fehlings, M.G. Traumatic spinal cord injury. Nat. Rev. Dis. Primers 2017, 3, 17018. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, A.; Dyck, S.M.; Karimi-Abdolrezaee, S. Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms. Front. Neurol. 2019, 10, 282. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.J.; Apple, D.F., Jr.; Staron, R.S.; Campos, G.E.; Dudley, G.A. Influence of complete spinal cord injury on skeletal muscle within 6 mo of injury. J. Appl. Physiol. 1999, 86, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Thakore, N.P.; Samantaray, S.; Park, S.; Nozaki, K.; Smith, J.A.; Cox, A.; Krause, J.; Banik, N.L. Molecular Changes in Sub-lesional Muscle Following Acute Phase of Spinal Cord Injury. Neurochem. Res. 2016, 41, 44–52. [Google Scholar] [CrossRef]
- Burnham, R.; Martin, T.; Stein, R.; Bell, G.; MacLean, I.; Steadward, R. Skeletal muscle fibre type transformation following spinal cord injury. Spinal Cord 1997, 35, 86–91. [Google Scholar] [CrossRef]
- Crameri, R.; Weston, A.; Climstein, M.; Davis, G.; Sutton, J. Effects of electrical stimulation-induced leg training on skeletal muscle adaptability in spinal cord injury. Scand. J. Med. Sci. Sports 2002, 12, 316–322. [Google Scholar] [CrossRef]
- Dudley-Javoroski, S.; Shields, R.K. Muscle and bone plasticity after spinal cord injury: Review of adaptations to disuse and to electrical muscle stimulation. J. Rehabil. Res. Dev. 2008, 45, 283. [Google Scholar] [CrossRef]
- Dudley, G.; Castro, M.; Rogers, S.; Apple, D., Jr. A simple means of increasing muscle size after spinal cord injury: A pilot study. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 80, 394–396. [Google Scholar] [CrossRef] [PubMed]
- Gorgey, A.S.; Shepherd, C. Skeletal muscle hypertrophy and decreased intramuscular fat after unilateral resistance training in spinal cord injury: Case report. J. Spinal Cord Med. 2010, 33, 90–95. [Google Scholar] [CrossRef]
- Mahoney, E.T.; Bickel, C.S.; Elder, C.; Black, C.; Slade, J.M.; Apple, D., Jr.; Dudley, G.A. Changes in skeletal muscle size and glucose tolerance with electrically stimulated resistance training in subjects with chronic spinal cord injury. Arch. Phys. Med. Rehabil. 2005, 86, 1502–1504. [Google Scholar] [CrossRef]
- Duffell, L.D.; Donaldson Nde, N.; Perkins, T.A.; Rushton, D.N.; Hunt, K.J.; Kakebeeke, T.H.; Newham, D.J. Long-term intensive electrically stimulated cycling by spinal cord-injured people: Effect on muscle properties and their relation to power output. Muscle Nerve 2008, 38, 1304–1311. [Google Scholar] [CrossRef]
- Erickson, M.L.; Ryan, T.E.; Backus, D.; McCully, K.K. Endurance neuromuscular electrical stimulation training improves skeletal muscle oxidative capacity in individuals with motor-complete spinal cord injury. Muscle Nerve 2017, 55, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Paulson, T.A.; Bishop, N.C.; Smith, B.M.; Goosey-Tolfrey, V.L. Inflammation-mediating cytokine response to acute handcycling exercise with/without functional electrical stimulation-evoked lower-limb cycling. J. Rehabil. Res. Dev. 2014, 51, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Gorgey, A.S.; Mather, K.J.; Cupp, H.R.; Gater, D.R. Effects of resistance training on adiposity and metabolism after spinal cord injury. Med. Sci. Sports Exerc. 2012, 44, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Bochkezanian, V.; Newton, R.U.; Trajano, G.S.; Blazevich, A.J. Effects of neuromuscular electrical stimulation in people with spinal cord injury. Med. Sci. Sports Exerc. 2018, 50, 1733–1739. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, A.; Li, J.; Womack, E.; Farrow, M.; Yarar-Fisher, C. The Effect of Lower Limb Combined Neuromuscular Electrical Stimulation on Skeletal Muscle Signaling for Glucose Utilization, Myofiber Distribution, and Metabolic Function after Spinal Cord Injury. Int. J. Environ. Res. Public Health 2023, 20, 6958. [Google Scholar] [CrossRef]
- Mukund, K.; Subramaniam, S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020, 12, e1462. [Google Scholar] [CrossRef]
- Fielding, R.; Manfredi, T.; Ding, W.; Fiatarone, M.; Evans, W.; Cannon, J.G. Acute phase response in exercise. III. Neutrophil and IL-1 beta accumulation in skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1993, 265, R166–R172. [Google Scholar] [CrossRef]
- Friden, J.; Lieber, R.L. Structural and mechanical basis of exercise-induced muscle injury. Med. Sci. Sports Exerc. 1992, 24, 521–530. [Google Scholar] [CrossRef]
- Lieber, R.L.; Thornell, L.-E.; Fridén, J. Muscle cytoskeletal disruption occurs within the first 15 min of cyclic eccentric contraction. J. Appl. Physiol. 1996, 80, 278–284. [Google Scholar] [CrossRef]
- Malm, C.; Svensson, M.; Sjöberg, B.; Ekblom, B.; Sjödin, B. Supplementation with ubiquinone-10 causes cellular damage during intense exercise. Acta Physiol. Scand. 1996, 157, 511–512. [Google Scholar] [CrossRef]
- McNeil, P.L.; Khakee, R. Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. Am. J. Pathol. 1992, 140, 1097. [Google Scholar]
- Stožer, A.; Vodopivc, P.; Bombek, L.K. Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiol. Res. 2020, 69, 565. [Google Scholar] [CrossRef] [PubMed]
- Panci, G.; Chazaud, B. Inflammation during post-injury skeletal muscle regeneration. Semin. Cell Dev. Biol. 2021, 119, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, T. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 2009, 1, a001651. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef]
- Guadagnin, E.; Mázala, D.; Chen, Y.-W. STAT3 in skeletal muscle function and disorders. Int. J. Mol. Sci. 2018, 19, 2265. [Google Scholar] [CrossRef]
- Schaper, F.; Rose-John, S. Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev. 2015, 26, 475–487. [Google Scholar] [CrossRef]
- Yarar-Fisher, C.; Bickel, C.S.; Kelly, N.A.; Stec, M.J.; Windham, S.T.; McLain, A.B.; Oster, R.A.; Bamman, M.M. Heightened TWEAK-NF-κB signaling and inflammation-associated fibrosis in paralyzed muscles of men with chronic spinal cord injury. Am. J. Physiol. Endocrinol. Metab. 2016, 310, E754–E761. [Google Scholar] [CrossRef]
- Nosaka, K.; Aldayel, A.; Jubeau, M.; Chen, T.C. Muscle damage induced by electrical stimulation. Eur. J. Appl. Physiol. 2011, 111, 2427–2437. [Google Scholar] [CrossRef]
- Pyne, D.B. Exercise-induced muscle damage and inflammation: A review. Aust. J. Sci. Med. Sport 1994, 26, 49. [Google Scholar] [PubMed]
- Paiva-Oliveira, E.L.; Da Silva, R.F.; Bellio, M.; Quirico-Santos, T.; Lagrota-Candido, J. Pattern of cardiotoxin-induced muscle remodeling in distinct TLR-4 deficient mouse strains. Histochem. Cell Biol. 2017, 148, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Moresi, V.; Adamo, S.; Berghella, L. The JAK/STAT Pathway in Skeletal Muscle Pathophysiology. Front. Physiol. 2019, 10, 500. [Google Scholar] [CrossRef]
- Chazaud, B. Inflammation and skeletal muscle regeneration: Leave it to the macrophages! Trends Immunol. 2020, 41, 481–492. [Google Scholar] [CrossRef]
- Kami, K.; Senba, E. In vivo activation of STAT3 signaling in satellite cells and myofibers in regenerating rat skeletal muscles. J. Histochem. Cytochem. 2002, 50, 1579–1589. [Google Scholar] [CrossRef]
- Zhai, Y.; Ao, L.; Cleveland, J.C.; Zeng, Q.; Reece, T.B.; Fullerton, D.A.; Meng, X. Toll-like receptor 4 mediates the inflammatory responses and matrix protein remodeling in remote non-ischemic myocardium in a mouse model of myocardial ischemia and reperfusion. PLoS ONE 2015, 10, e0121853. [Google Scholar] [CrossRef]
- Tao, H.; Tang, X.; Tao, H. TLR4 activation inhibits the proliferation and osteogenic differentiation of skeletal muscle stem cells by downregulating LGI1. J. Physiol. Biochem. 2022, 78, 667–678. [Google Scholar] [CrossRef]
- Perandini, L.A.; Chimin, P.; Lutkemeyer, D.d.S.; Câmara, N.O.S. Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: Can physical exercise restore the satellite cell niche? FEBS J. 2018, 285, 1973–1984. [Google Scholar] [CrossRef] [PubMed]
- Arnold, L.; Henry, A.; Poron, F.; Baba-Amer, Y.; Van Rooijen, N.; Plonquet, A.; Gherardi, R.K.; Chazaud, B. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 2007, 204, 1057–1069. [Google Scholar] [CrossRef]
- Guttridge, D.C.; Albanese, C.; Reuther, J.Y.; Pestell, R.G.; Baldwin, A.S., Jr. NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell. Biol. 1999, 19, 5785–5799. [Google Scholar] [CrossRef]
- Hunter, R.B.; Stevenson, E.J.; Koncarevic, A.; Mitchell-Felton, H.; Essig, D.A.; Kandarian, S.C. Activation of an alternative NF-κB pathway in skeletal muscle during disuse atrophy. FASEB J. 2002, 16, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Judge, A.R.; Koncarevic, A.; Hunter, R.B.; Liou, H.-C.; Jackman, R.W.; Kandarian, S.C. Role for IκBα, but not c-Rel, in skeletal muscle atrophy. Am. J. Physiol. Cell Physiol. 2007, 292, C372–C382. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.K.; Gupta, S.K.; Bhatnagar, S.; Panguluri, S.K.; Darnay, B.G.; Choi, Y.; Kumar, A. Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J. Cell Biol. 2010, 191, 1395–1411. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.; Bruunsgaard, H.; Weis, N.; Hendel, H.W.; Andreassen, B.U.; Eldrup, E.; Dela, F.; Pedersen, B.K. Circulating levels of TNF-alpha and IL-6-relation to truncal fat mass and muscle mass in healthy elderly individuals and in patients with type-2 diabetes. Mech. Ageing Dev. 2003, 124, 495–502. [Google Scholar] [CrossRef]
- Langen, R.C.; Schols, A.M.; Kelders, M.C.; Van Der Velden, J.L.; Wouters, E.F.; Janssen-Heininger, Y.M. Tumor necrosis factor-α inhibits myogenesis through redox-dependent and-independent pathways. Am. J. Physiol. Cell Physiol. 2002, 283, C714–C721. [Google Scholar] [CrossRef]
- Späte, U.; Schulze, P.C. Proinflammatory cytokines and skeletal muscle. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 265–269. [Google Scholar] [CrossRef]
- Takegaki, J.; Sase, K.; Fujita, S. Repeated bouts of resistance exercise attenuate mitogen-activated protein-kinase signal responses in rat skeletal muscle. Biochem. Biophys. Res. Commun. 2019, 520, 73–78. [Google Scholar] [CrossRef]
- Pirola, L.; Bonnafous, S.; Johnston, A.M.; Chaussade, C.; Portis, F.; Van Obberghen, E. Phosphoinositide 3-kinase-mediated reduction of insulin receptor substrate-1/2 protein expression via different mechanisms contributes to the insulin-induced desensitization of its signaling pathways in L6 muscle cells. J. Biol. Chem. 2003, 278, 15641–15651. [Google Scholar] [CrossRef]
- Foletta, V.C.; White, L.J.; Larsen, A.E.; Léger, B.; Russell, A.P. The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflügers Arch. Eur. J. Physiol. 2011, 461, 325–335. [Google Scholar] [CrossRef]
- Scremin, A.E.; Kurta, L.; Gentili, A.; Wiseman, B.; Perell, K.; Kunkel, C.; Scremin, O.U. Increasing muscle mass in spinal cord injured persons with a functional electrical stimulation exercise program. Arch. Phys. Med. Rehabil. 1999, 80, 1531–1536. [Google Scholar] [CrossRef]
- Hillegass, E.; Dudley, G. Surface electrical stimulation of skeletal muscle after spinal cord injury. Spinal Cord 1999, 37, 251–257. [Google Scholar] [CrossRef] [PubMed]
- van Wessel, T.; de Haan, A.; van der Laarse, W.J.; Jaspers, R.T. The muscle fiber type–fiber size paradox: Hypertrophy or oxidative metabolism? Eur. J. Appl. Physiol. 2010, 110, 665–694. [Google Scholar] [CrossRef] [PubMed]
- Gorgey, A.S.; Dolbow, D.R.; Dolbow, J.D.; Khalil, R.K.; Gater, D.R. The effects of electrical stimulation on body composition and metabolic profile after spinal cord injury—Part II. J. Spinal Cord Med. 2015, 38, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Polston, K.F.L.; Eraslan, M.; Bickel, C.S.; Windham, S.T.; McLain, A.B.; Oster, R.A.; Bamman, M.M.; Yarar-Fisher, C. A high-protein diet or combination exercise training to improve metabolic health in individuals with long-standing spinal cord injury: A pilot randomized study. Physiol. Rep. 2018, 6, e13813. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; de Groot, S.; Vink, A.; Harmsen, W.; Smit, C.A.J.; Stolwijk-Swuste, J.M.; Weijs, P.J.M.; Janssen, T.W.J. Optimization of Protocols Using Neuromuscular Electrical Stimulation for Paralyzed Lower-Limb Muscles to Increase Energy Expenditure in People With Spinal Cord Injury. Am. J. Phys. Med. Rehabil. 2023, 102, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Yarar-Fisher, C.; Polston, K.F.; Eraslan, M.; Henley, K.Y.; Kinikli, G.I.; Bickel, C.S.; Windham, S.T.; McLain, A.B.; Oster, R.A.; Bamman, M.M. Paralytic and nonparalytic muscle adaptations to exercise training versus high-protein diet in individuals with long-standing spinal cord injury. J. Appl. Physiol. 2018, 125, 64–72. [Google Scholar] [CrossRef]
- Ryan, T.E.; Brizendine, J.T.; Backus, D.; McCully, K.K. Electrically induced resistance training in individuals with motor complete spinal cord injury. Arch. Phys. Med. Rehabil. 2013, 94, 2166–2173. [Google Scholar] [CrossRef]
- Crameri, R.M.; Cooper, P.; Sinclair, P.J.; Bryant, G.; Weston, A. Effect of load during electrical stimulation training in spinal cord injury. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 2004, 29, 104–111. [Google Scholar] [CrossRef]
- Crameri, R.M.; Weston, A.R.; Rutkowski, S.; Middleton, J.W.; Davis, G.M.; Sutton, J.R. Effects of electrical stimulation leg training during the acute phase of spinal cord injury: A pilot study. Eur. J. Appl. Physiol. 2000, 83, 409–415. [Google Scholar] [CrossRef]
Age | Sex | Race | AIS | LOI | Complete | Injury Type | Length of Intervention (Days) | |
---|---|---|---|---|---|---|---|---|
Control | ||||||||
Participant 3 | 29 | Female | Black | A | T2 | Complete | GSW | 10 |
Participant 4 | 20 | Male | Black | A | T9 | Complete | GSW | 11 |
Participant 16 | 25 | Male | Black | A | L1 | Complete | MVC | 24 |
Participant 19 | 21 | Female | Black | A | T9 | Complete | GSW | 16 |
Participant 20 | 20 | Male | White | A | T11 | Complete | Fall | 9 |
Participant 28 | 28 | Male | Black | A | C6 | Complete | GSW | 36 |
Participant 31 | 26 | Male | White | A | T2 | Complete | GSW | 36 |
Summary statistics * | 25 ± 4 * | 18 (10.5–30) * | ||||||
Comb-NMES | ||||||||
Participant 1 | 22 | Male | Black | A | C7 | Complete | GSW | 17 |
Participant 2 | 25 | Male | White | B | T6 | Incomplete | MVC | 15 |
Participant 6 | 42 | Male | White | B | C4 | Incomplete | FALL | 20 |
Participant 11 | 43 | Female | White | A | C6 | Complete | MVC | 23 |
Participant 12 | 27 | Male | Hispanic | A | T7 | Complete | MVC | 21 |
Participant 17 | 51 | Male | Black | C | C3 | Incomplete | MVC | 39 |
Participant 22 | 41 | Male | Black | A | C4 | Complete | MVC | 21 |
Participant 24 | 45 | Male | White | A | T3 | Complete | MCC | 28 |
Participant 29 | 32 | Male | Black | A | T9 | Complete | GSW | 23 |
Participant 30 | 34 | Male | White | A | C7 | Complete | GSW | 21 |
Participant 33 | 32 | Male | White | B | C4 | Incomplete | MVC | 24 |
Participant 34 | 24 | Male | Black | A | T3 | Complete | GSW | 17 |
Summary statistics * | 35 ± 9 * | 21 (18.5–23.5) * |
Antibody | Cat. No. | Dilution | Source |
---|---|---|---|
JAK1 antibody | 3332S | 1:1000 | Rabbit |
MyoD1 (D8G3) | 13812 | 1:1000 | Rabbit |
NF-κB p65 | 8242S | 1:1000 | Rabbit |
S6 ribosomal protein | 2217 | 1:1000 | Rabbit |
Phospho-S6 ribosomal protein Ser235 | 4858 | 1:1000 | Rabbit |
p70 S6 kinase | 34475 | 1:1000 | Rabbit |
Phospho-NF-κB p65Ser536 | 3031S | 1:1000 | Rabbit |
NF-κB1 p105/p50 | 3035S | 1:1000 | Rabbit |
TNF-alpha antibody | 3707S | 1:1000 | Rabbit |
STAT3 | 4904S | 1:1000 | Rabbit |
Phospho-STAT3 Tyr705 | 9131 | 1:1000 | Rabbit |
IL-1β | 12703S | 1:1000 | Rabbit |
TNF-R1 | 3736S | 1:1000 | Rabbit |
TRAF6 | 8028S | 1:1000 | Rabbit |
IL-6 | 12153S | 1:1000 | Rabbit |
TLR4 | X1812P | 1:500 | Rabbit |
Atrogin-1 | PA5-43915 | 1:500 | Rabbit |
IL-6R | PA5-100836 | 1:1000 | Rabbit |
Phospho-p70 S6 kinase (Thr421/Ser424) antibody | 9204S | 1:1000 | Rabbit |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, A.; Li, J.; Womack, E.; Farrow, M.; Yarar-Fisher, C. The Effect of Lower Limb Combined Neuromuscular Electrical Stimulation on Skeletal Muscle Cross-Sectional Area and Inflammatory Signaling. Int. J. Mol. Sci. 2024, 25, 11095. https://doi.org/10.3390/ijms252011095
Alharbi A, Li J, Womack E, Farrow M, Yarar-Fisher C. The Effect of Lower Limb Combined Neuromuscular Electrical Stimulation on Skeletal Muscle Cross-Sectional Area and Inflammatory Signaling. International Journal of Molecular Sciences. 2024; 25(20):11095. https://doi.org/10.3390/ijms252011095
Chicago/Turabian StyleAlharbi, Amal, Jia Li, Erika Womack, Matthew Farrow, and Ceren Yarar-Fisher. 2024. "The Effect of Lower Limb Combined Neuromuscular Electrical Stimulation on Skeletal Muscle Cross-Sectional Area and Inflammatory Signaling" International Journal of Molecular Sciences 25, no. 20: 11095. https://doi.org/10.3390/ijms252011095
APA StyleAlharbi, A., Li, J., Womack, E., Farrow, M., & Yarar-Fisher, C. (2024). The Effect of Lower Limb Combined Neuromuscular Electrical Stimulation on Skeletal Muscle Cross-Sectional Area and Inflammatory Signaling. International Journal of Molecular Sciences, 25(20), 11095. https://doi.org/10.3390/ijms252011095