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Abstract: Despite recent advances in chronic obstructive pulmonary disease (COPD) research, few
studies have identified the potential therapeutic targets systematically by integrating multiple-omics
datasets. This project aimed to develop a systems biology pipeline to identify biologically relevant
genes and potential therapeutic targets that could be exploited to discover novel COPD treatments
via drug repurposing or de novo drug discovery. A computational method was implemented by
integrating multi-omics COPD data from unpaired human samples of more than half a million
subjects. The outcomes from genome, transcriptome, proteome, and metabolome COPD studies were
included, followed by an in silico interactome and drug-target information analysis. The potential
candidate genes were ranked by a distance-based network computational model. Ninety-two genes
were identified as COPD signature genes based on their overall proximity to signature genes on all
omics levels. They are genes encoding proteins involved in extracellular matrix structural constituent,
collagen binding, protease binding, actin-binding proteins, and other functions. Among them,
70 signature genes were determined to be druggable targets. The in silico validation identified that the
knockout or over-expression of SPP1, APOA1, CTSD, TIMP1, RXFP1, and SMAD3 genes may drive
the cell transcriptomics to a status similar to or contrasting with COPD. While some genes identified
in our pipeline have been previously associated with COPD pathology, others represent possible new
targets for COPD therapy development. In conclusion, we have identified promising therapeutic
targets for COPD. This hypothesis-generating pipeline was supported by unbiased information from
available omics datasets and took into consideration disease relevance and development feasibility.

Keywords: chronic obstructive pulmonary disease; bioinformatics; multi-omics data integration;
systems biology; drug repurposing

1. Introduction

Chronic obstructive pulmonary disease (COPD) is currently the third leading cause
of death worldwide and sixth in the United States [1,2]. It is characterized by increased
breathlessness due to obstructed airflow caused by abnormalities of the airways and/or
alveoli [3]. These phenotypes are associated with a long-term dysregulated inflammatory
response in the airways and the lungs [4].

Drug discovery and development are increasingly costly, requiring approximately
$2.6 billion and 6–15 years for a new FDA-approved medication [5,6]. Repurposing ap-
proved therapeutic compounds for new indications can significantly reduce costs and
time. Examples include thalidomide’s transformation from a birth-defect-causing drug to
an FDA-approved multiple myeloma treatment in 2006 [7], and Pfizer’s repurposing of
sildenafil from a cardiovascular drug to Viagra for erectile dysfunction [8].

Multiple strategies have been utilized to identify drug-repurposing opportunities in
COPD. One approach is to generate testable drug-repurposing hypotheses based on previ-
ous knowledge and expert insights. The bisphosphonate alendronate, a drug indicated for
the treatment of osteoporosis, has been reported to induce apoptosis in macrophages [9].
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Based on this premise, alendronate inhalation was studied in a mouse model of emphy-
sema to determine its therapeutic utility in COPD. One mouse study demonstrated that
alendronate induces apoptosis in alveolar macrophages and inhibits the airspace enlarge-
ment, which characterizes COPD [10]. In addition, the high-throughput screening of
compound libraries can identify potential lead compounds for targets already linked to
COPD. WNT/β-catenin signaling, for example, is known to decrease in patients with
COPD. Several compounds that activate WNT/β-catenin signaling in vitro and induce
lung repair in a mouse model of emphysema have been identified by high-throughput
drug screening [11]. Last, genomics-based strategies have also identified novel therapeutic
targets for COPD. In a recent genome-wide association study (GWAS) with 588,452 subjects,
1020 signals were identified to be associated with lung function, implicating 559 puta-
tive genes; 55 of these genes, including ITGA2, have been targeted by drugs in approved
or ongoing clinical trials [12]. These example studies highlight that drug-repurposing
hypotheses may be helpful in the quest for novel COPD therapies.

The strategies mentioned above were based on a single source of omics data. We
propose a multiple-omics integration strategy to help identify novel therapeutic targets
for COPD. This project is the first to integrate genome, transcriptome, proteome, and
metabolome data from COPD patients’ lungs and bronchoalveolar lavage fluid (BALF).
In addition, a distance-based computational model was developed to prioritize potential
candidate genes by incorporating interactome and drug-target data. This systems biology
approach identifies COPD-associated genes through holistic molecular profiling while
evaluating the feasibility of these genes as potential therapeutic targets for COPD. Some of
the results of this study have been previously published as an abstract [13].

2. Results
2.1. Differentially Expressed Genes across COPD Stages

Differential gene expression analyses were performed on the transcriptome data from
healthy control subjects and compared against data from ex-smoker patients with mild
(GOLD 1), moderate (GOLD 2), severe (GOLD 3), and very severe (GOLD 4) COPD to
explore the dysregulated genes across different stages of COPD. The dataset GSE47460
from the Gene Expression Omnibus database was used as the discovery set of 203 COPD
patients. Patient demographic information is recorded in Table 1, which includes 23 GOLD
1, 94 GOLD 2, 32 GOLD 3, and 54 GOLD 4 patients.

Table 1. Basic demographics of the subjects in the discovery set grouped by GOLD criteria.

Healthy
(0)

GOLD 1
(1)

GOLD 2
(2) GOLD 3 (3) GOLD 4 (4) p

Significant
Intergroup

Differences *

Totals 65 23 94 32 54 NA NA

Age, yr, mean ± SD 65.6 ± 10.4 70.9 ± 8.4 67.8 ± 8.9 65.5 ± 8.2 57.2 ± 8.4 <0.0001
(0) > (4)
(1) > (4)
(2) > (4)
(3) > (4)

Sex, M/F 36/29 17/6 57/37 19/13 24/30 0.15 No intergroup
difference

Smoking status,
Current/

Ever/Never
2/63/0 0/21/2 11/79/4 3/28/1 0/53/1 0.0107 No intergroup

difference

* All significant intergroup differences listed achieved a Bonferroni-corrected p of p < 0.005.

A comparison of the transcriptomic data between the control and early-stage COPD
patients identified five differentially expressed genes (DEGs) in the GOLD 1 group and
nine DEGs (three up-regulated and six down-regulated genes) in the GOLD 2 group. In
contrast, 83 DEGs (67 up-regulated and 16 down-regulated genes) were identified between
the control and GOLD 3 group, and 168 DEGs (125 up-regulated and 43 down-regulated
genes) were identified between the control and GOLD 4 group (adjusted p < 0.05 and fold
change > 2 or <0.5, Table S1).
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The overlap between the DEGs identified across the different stages of COPD is shown
in Figure 1A. Several genes were consistently up-regulated or down-regulated across COPD
stages. These include MMP1, FGG, SPP1, SYT13, HAPLN1, and GRM8, each demonstrating
an altered expression starting at the early COPD stages of GOLD 1 and 2. Some genes were
only dysregulated in the later stages of COPD (Figure 1B).
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2.2. Differentially Expressed Genes in GOLD 4 COPD

Due to the heterogeneity of COPD, we focused our subsequent analyses on the most
severe COPD subjects, namely, the GOLD 4 patients. In the discovery set, the transcrip-
tomic analysis identified 168 DEGs between GOLD 4 patients and healthy control subjects,
including 125 up-regulated and 43 down-regulated genes (adjusted p < 0.05, |log2 fold
change| ≥ 1) (Figure 2A). A gene ontology (GO) enrichment analysis on DEGs revealed
161 statistically significant over-represented biological processes, highlighting immune
response events in GOLD 4 patients compared with healthy control patients (adjusted
p < 0.05). These pathways included leukocyte chemotaxis, granulocyte chemotaxis, and
extracellular matrix organization (Figure 2B). Compared with a similar GOLD 4 valida-
tion dataset (GSE76925), the 168 DEGs were supported by both gene- and pathway-level
validation approaches (see the Online Supplement).

2.3. Signature Genes from Genomics, Proteomics, and Metabolomics Analysis

Genomics, proteomics, and metabolomics data from COPD patients were included
in the pipeline to complement the transcriptomic signatures (Table S2). In a recent multi-
ancestry genome-wide association meta-analysis, 1020 independent signals were found
to be associated with lung functions, implicating 135 genes supported by at least two
variant-to-gene mapping evidences (Table S3). Five COPD lung proteomics studies were
analyzed, and 113 proteins were identified as differentially expressed in COPD patients
compared with healthy control subjects (Table S4). The metabolomics data from BALF were
used to identify additional lung proteins potentially associated with COPD through the
Metabolite Annotation and Gene Integration (MAGI) algorithm. One BALF metabolomics
study identifying 25 metabolites associated with COPD was also included in our pipeline
(Table S5). The MAGI algorithm searched its biochemical reaction database and identified
33 unique proteins highly associated with the 25 metabolites (confidence score > 4). The
13 genes corresponding to the 33 proteins were included in the pipeline for integration.



Int. J. Mol. Sci. 2024, 25, 11106 4 of 14

AGER, TPM1, THBS1, DMTR2, TTN, HPGD, CA3, and MZB1 were identified as signature
genes on more than one omics level (Figure 3, Table S6).
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signature genes and their corresponding p and fold change. The names of the overlapping up-
regulated and down-regulated genes are shown in red and blue, respectively. p_min: The p of the
most significant variant implicating the gene is reported in the table based on its association with the
lung function. In the proteomics data, nominal p are provided due to the lack of raw data.

In summary, we identified 429 signature genes from the re-analysis of the multiple-
omics data, including 135 from the genome, 168 from the transcriptome, 113 from the
proteome, and 13 from the metabolome (Figure 3). Eight genes were identified by more
than one omics level.
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2.4. COPD Signature Genes by Interactome Distance Network

To increase the overlap between the signature genes identified on each omics level,
the selection of candidate genes was expanded by including genes directly interacting with
these signature genes using the STRING database. Then, 11,759,455 protein–protein inter-
actions of physical and functional associations were retrieved from the STRING database
for 19,344 genes in the database. High-confidence (STRING score > 0.7) protein–protein in-
teractions of physical and functional associations were retrieved to minimize the likelihood
of computational artifacts and random association. It was found that 841,069 (7.15%) of the
association had a score greater than 0.7. These interactions were included in the analysis.
Subsequently, a distance-based network algorithm was created to rank the candidate genes
based on their closeness to signature genes identified at all omics levels. We aim to priori-
tize candidate genes that are signature genes from one omics level, and also interact with
signature genes/proteins identified from other omics levels.

The distance network evaluated such a relationship by calculating the interaction
distance between the candidate genes and signature genes from transcriptomics, genetic,
and protein level (Equation (1)). For each gene, the sum of its shortest distance to three
sets of signature genes was calculated to represent the overall proximity of a candidate
gene to the signature genes identified at different omics levels (Figure 4A,B). A total of
6917 direct neighbors to the signature genes were identified. Among this expanded list
of genes, 92 were prioritized as the final set of COPD candidate signature genes. The
92 genes are selected based on two types of interaction distances (Figure 4C). A distance
of 0 indicates the specific gene is identified as the signature gene on the corresponding
omics level. A distance of 1 indicates the specific gene directly interacts with signature
genes from the other omics levels. Thus, the 92 genes represent genes in close proximity
to the signature genes identified at different omics levels—all of them were identified on
one omics level and were also direct neighbors to signature genes on other omics levels.
They are composed of genes involved in the extracellular matrix structural constituent
(ACAN, COL12A1, COL6A3, LAMA2, COL10A1, FBN1, FGG, LAMA4, FGA, and COL4A2),
cell chemotaxis (ANO6, CCL11, CXCR1, CXCR5, IL6, ITGA1, MAPK3, PPIB, S100A12, SAA1,
TGFB2, and THBS1), the epithelial cell apoptotic process (ANO6, BCL2L1, BRAF, FGA,
FGG, IGF1R, IL6, and THBS1), the response to transforming growth factor beta (COL4A2,
FBN1, IGF1R, LTBP1, NR3C1, SMAD3, TGFB2, and THBS1), coagulation (ANO6, AP3B1,
FGA, FGG, HBB, IL6, MYH9, SAA1, THBS1, and TLN1), and genes with other functions
(Figure 4D, Table S7).

ACAN is one of the prioritized potential drug targets identified by our pipeline. This
gene was not only genetically associated with COPD but was also directly linked to COPD
signature genes identified on the transcriptomics and proteomics levels.

2.5. Druggable Targets and In Silico Validation

Of the 92 COPD signature genes, 70 were considered druggable targets based on
the definition from the druggable genome study [14] (Figure 5). These druggable genes
are targets of existing drugs, genes with protein structures or sequences similar to these
targets, or genes in well-studied drug target families, such as the kinase family of enzymes.
Among these 70 druggable genes, 32 demonstrated Tier 1 druggability, indicating they
were targets of approved drugs or drug candidates in clinical trials. Therefore, they
could be considered prioritized targets for potential COPD treatment. By extracting drug–
gene target pair information from the DrugBank database, we identified 393 drugs or
biomedical entities targeting the 32 druggable genes in Tier 1 (Table S8), including spermine,
andrographolide, and several drugs currently prescribed for the management of COPD
symptoms. Interestingly, of the 32 drugs reported in DrugBank for the treatment of COPD,
21 were identified by our pipeline.
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Figure 4. (A) Illustration of distances between genes in the network. The grey circle is the candidate
gene, and the white circles are the additional genes in the network. Black lines represent physical or
functional interactions between the genes. Blue lines were added to denote candidate genes’ distances
d from the network’s genes. (B) Shortest distances of a candidate gene from all omics signature
genes in the protein-protein interaction network. Interacting proteins are linked with black lines.
The shortest distances of a candidate gene (gray circle) to signature genes from the transcriptomics
(red circles), genomics (green circles), and proteomics signature genes (blue circles) and proteins
linked to COPD-associated metabolomics (yellow circles) are 1, 1, and 2 respectively. (C) Ninety-two
prioritized candidate genes with close proximity to all omics levels. Numbers represent the shortest
distance of the candidate gene from the omics level on each row. (D) Top 20 significantly enriched
pathways for the 92 COPD signature genes. Color indicates the adjusted p from the GO enrichment
analysis, and x-axis represents the count of the measured genes in the pathway.

In addition, we performed an in silico evaluation of the potential effect of the genetic
modifications of the 92 candidate genes with the Connectivity Map (CMap) database as an
alternative validation step. This database provides transcriptomic profiles of human cell
lines that underwent knockout or over-expression experiments for 3848 unique genes, cover-
ing 41 of the 92 COPD signature candidate genes. Through the CMap analysis, the knockout
or over-expression of six COPD candidate genes were found to result in transcriptomic
profiles positively or negatively associated with COPD (Figure 5B). The over-expression
of SPP1 and APOA1 genes and the knockout of the CTSD, TIMP1, and RXFP1 genes were
positively connected with COPD transcriptomics (connectivity scores > 90%), indicating a
transcriptomic pattern similar to COPD. Conversely, the over-expression of SMAD3 genes
was observed to be negatively connected with the COPD transcriptomics profile (connec-
tivity scores < –90%), indicating a reversed transcriptomic profile compared with COPD.
Therefore, we hypothesize that the inhibitors or antagonists targeting the SMAD3 gene may
be further evaluated as COPD therapies as they might lead to a reversed transcriptomic
change pattern compared with COPD.

In summary, we have used an in silico validation analysis to corroborate the involve-
ment of SPP1, APOA1, CTSD, TIMP1, RXFP1, and SMAD3 as causal or upstream genes
that may drive the cell transcriptomics to a status similar to or contrasting with COPD,
suggesting their potential as therapeutic targets for intervention.
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genes and their druggable gene tiers. The grey section of the pie chart represents genes that are
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connectivity score of 90% or −90%. A549 is a cell line of human adenocarcinoma alveolar basal
epithelial cells. HCC515 is a cell line of human non-small-cell lung adenocarcinoma.

3. Discussion

Our work is the first study that evaluates both the disease association and the target
development feasibility of COPD candidate genes through the systematic integration of
four types of omics data. There have been other COPD omics studies, but they primarily
relied on one or two types of omics data and aimed to explain the pathogenesis or subtypes
of COPD [13,15–17]. Moreover, our study is particular in selecting omics data from lung
tissue and BALF samples to ensure a more direct representation of COPD-involved organs,
as opposed to blood or plasma in previous studies.

We first identified DEGs across different stages of COPD. The number of DEGs in-
creased as COPD progressed to later stages. Considering disease heterogeneity and the
lower detection power of signature genes in the early stages, our current pipeline focused on
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the DEGs in GOLD 4 patients. The transcriptomic analysis revealed 43 down-regulated and
125 up-regulated genes in GOLD 4 COPD patients. The higher count of up-regulated genes
aligns with prior findings that smoking leads to chromosome opening and increased active
transcription [18]. The disrupted immune response and altered extracellular composition
are the hallmarks of COPD [19,20]. Related pathways were observed to be over-represented
in the functional analysis of these DEGs. The 168 DEGs were validated by both the gene
set and pathway approaches in comparison with a similar COPD dataset. Although the
DEGs exhibited limited overlap in the discovery and validation sets, this does not negate
the validity of most identified DEGs, illustrated in a microarray reproducibility study [21].

Genomics, proteomics, and metabolomics data were also included in our pipeline.
Genomics data can provide signatures from the genome-wide level over a vast population.
Proteomics and metabolomics data, although with a lower throughput, can provide signa-
tures related to the downstream functional molecules closely related to the disease status.
However, we observed a minimum overlap between the signatures from these omics levels.
This was also observed in another study of the genomics and transcriptomics integration in
COPD [22]. For example, we identified matrix metalloproteinase 13 as a protein associated
with COPD in proteomics data but not in transcriptomic data. Previous studies indicated
that protein abundance does not always correlate well with mRNA expression [23]. There-
fore, incorporating various omics data is essential for a comprehensive understanding of
the biological processes across multiple molecular levels.

Due to the limited number of overlapping genes identified between different omics
technologies, we integrated them with the interactome data to expand the candidate gene
pool and enable prioritization using distance matrices. Our distance-based network model
prioritized 92 genes as the final set of COPD candidate genes due to their overall proximity
to all omics levels. A pathway analysis of the 92 signature genes highlighted disease-
development-associated pathways that could serve as potential pharmacological targets
for COPD treatment, including epithelial cell apoptosis, cell chemotaxis, the response to
transforming growth factor-beta, and coagulation. We compared our distance model with
a heat diffusion network model and observed minimal overlap due to their distinct under-
lying assumptions. The heat diffusion model prioritizes genes with fewer neighbors [24],
which could introduce bias due to the incomplete interactome data. Conversely, our model
prioritizes genes connected with many neighbors. Although well-studied genes could be
favored in such cases, the supporting protein–protein interactions have a high confidence
score to ensure a robust connection to candidate genes.

We further evaluated the target development feasibility regarding their drug-repurposing
potential and in silico target perturbation evaluation. Interestingly, 70 of 92 candidate
genes were considered druggable, while only 22% of the genes in the human genome are
considered druggable [14]. Since COPD is a complex disease involving multiple pathways
and genes, it is not surprising to find COPD-related genes targeted by drugs that treat other
conditions. Thirty-two candidate genes were Tier 1 druggable genes, which are the targets of
approved drugs or drug candidates in clinical trials. We identified 393 drugs or biomedical
entities targeting these 32 genes. One of the examples is spermine, a potent regulator of
inflammatory responses [25]. In the recent studies, spermine demonstrated a protective
role in the lung and myogenesis in COPD [26,27]. Another example is andrographolide,
a natural anti-inflammatory agent. It has been reported to show antioxidative benefits
against cigarette-smoke-induced lung injury in a mouse in vivo model [28]. Interestingly,
our pipeline also identified 21 current drugs used for the treatment of COPD, including
Tiotropium, Formoterol, Salmeterol, and others. These examples support the theory that a
drug-repurposing strategy may offer new treatment opportunities for a complex disease
like COPD. Other drugs have not been explored for their role in COPD, but several of them
are used for treating immune and nervous system diseases or cardiovascular disorders,
suggesting common pathways are impacted in COPD as well [29].

Conventionally, only a handful of candidate genes will be empirically chosen for
validation by an in vitro or in vivo experiment. In contrast, we performed an in silico
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evaluation and identified six COPD candidate genes that may lead to transcriptomic
profiles positively or negatively associated with COPD. These genes are likely the upstream
genes contributing to COPD patients’ dysregulated gene expression profiles. SPP1, the
gene encoding secreted phosphoprotein 1 or osteopontin, is one of the in silico validated
genes. The over-expression of SPP1 leads to a transcriptomic profile similar to COPD.
Moreover, we identified it as one of the few genes dysregulated across COPD stages. SPP1
was also suggested as a potential biomarker for COPD exacerbation [30]. In the phases I
and II clinical trials for rheumatoid arthritis, the drug ASK8007, a monoclonal antibody
targeting SPP1, was investigated and presented no safety concern [31].

SMAD3 is another in silico validated gene identified by our pipeline as a potential
drug-repurposing target. In our pipeline, SMAD3 showed a genetic association with
COPD and directly interacted with signature genes identified from the transcriptomic and
protein level. In the cMap analysis, the over-expression of SMAD3 genes was observed to
be negatively connected with the COPD transcriptomics profile. Previously, the Smad3
signaling pathway has been shown to be involved in emphysema [32]. One study has found
that microRNA-145 targets SMAD3 and negatively regulates pro-inflammatory cytokine
release in COPD [33]. Another study showed that ligustilide, a novel Smad3 covalent
inhibitor, successfully suppressed airway remodeling in the COPD mice model [34]. The
above findings indicate the high potential of SPP1 and SMAD3 as drug-repurposing targets
for COPD and the success of our pipeline in discovering such a target.

Certain limitations exist within this study. First, the current study solely focused
on the ex-smokers to control for the impact of smoking due to the limited number of
smokers in the dataset. Nonetheless, a considerable percentage of COPD patients persist
in smoking despite their diagnosis [35]. Future research with a sufficient number of lung
samples from smokers with COPD will enable the identification of signatures that are more
pertinent to this population. Second, the omics data used in this project did not include
information on exacerbations. COPD exacerbations have been shown to alter molecular
profiles [36]. While plasma-based omics data with exacerbation information are available,
our study focuses on omics data from lung tissue. Our pipeline could be instrumental
in future studies by incorporating exacerbations as a phenotype for omics data analysis.
Third, protein detection coverage is limited in the published proteomics studies, with
a throughput of up to thousands of proteins. We compensated for this by identifying
additional proteins linked to COPD-associated metabolites. However, the metabolomics
data themselves are subject to low detection coverage, as well as the more significant
challenge of assigning the metabolite structure to the metabolomics feature [37]. Fourth,
the cell type specificity was not taken into consideration in the current pipeline. This can
be a future direction of investigation when there are more publicly available omics data
generated by single-cell RNA-Seq or data from specific cell types in the lung. In addition,
the cell lines selected for the CMap evaluation consist of two lung adenocarcinoma cell lines.
Although we have chosen the two cell lines most representative of the lung tissue from
the database, future in vitro experiments with non-cancer cell lines will be more relevant
to COPD. Lastly, inter-individual variability was not adjusted in our pipeline due to the
lack of omics measurements from paired samples. There is one 2023 paper from Zhang
et al. which measured paired samples for multi-omics integration [38], but such data
are currently still very limited. Therefore, at this stage, we focus first on integrating the
summary level omics data to generate new insights on the COPD population, especially
with the increased availability of the individual omics-level data across studies.

This study represents the first systematic approach integrating four types of omics
data to explore drug-repurposing targets for COPD. Seventy genes were identified by our
pipeline as candidate drug-repurposing targets based on their overall proximity to COPD
signature genes and their druggable properties. The hypothesis-generating pipeline is
supported by rich information from omics data, not limited by our prior knowledge; it
evaluates both the disease relevance and development feasibility of targets and can be
readily applied to other diseases. Future directions will include expanding the pipeline
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to the earlier stage of COPD, capturing network relationships across omics levels with
advanced computation models, and the in vitro and in vivo validation of the prioritized
candidate genes with lung cell lines and tissues.

4. Materials and Methods
4.1. Study Population and Omics Data

Gene expression data were obtained from lung samples of 268 COPD GOLD
1-4 patients and control subjects [39]. Gene expression data from a similar COPD co-
hort (n = 150) were used as the validation set for COPD transcriptomic signatures [22].
Genomic data were curated from a recent GWAS meta-analysis of lung functions in 588,452
subjects from 49 cohorts [12]. Proteomic data of lung tissue samples (n = 155) of COPD
patients and controls were obtained from five previous studies [38,40–43]. Metabolomic
data from BALF samples of 115 COPD patients and healthy control subjects were also
included [44]. Comprehensive information about each omics dataset used for this analysis
is available in the Online Supplementary Data.

4.2. Transcriptomic Analysis

Differential gene expression analyses were performed using the limma package (v3.36.5)
in R [45]. Healthy controls were compared with subjects in each COPD stage as defined
by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria. Functional
enrichment analysis of the DEGs was conducted through the GO enrichment analysis
method with the clusterProfiler package in R [46,47]. The DEGs identified in the discovery
set were confirmed in the validation set using hypergeometric and gene set enrichment
tests [48,49].

4.3. Metabolomics, Proteomics, and Genomics Signatures

Genomic, proteomic, and metabolomic signatures in COPD patients’ lungs and BALF
were identified through a literature search. The MAGI software v1.0 was used to identify
proteins and reactions linked to the metabolites associated with COPD [50]. Proteins work
as enzymes that catalyze the biological reactions to produce metabolites. Our assumption
is that, if a dysregulated metabolite is associated with a certain phenotype or disease, the
protein involved in the reaction to generate the specific metabolite are also dysregulated.
MAGI searches its biochemical reaction database with sources from MetaCyc and RHEA
to identify the proteins involved in the reactions for the metabolites of interest. Protein
signatures were mapped to gene names for pipeline integration. Genetic loci and implicated
genes were obtained from the original GWAS paper, where SNPs were mapped using a
variety of approaches including genetic region annotation, linkage disequilibrium, eQTL,
variant functional consequences, ancestry analysis, or a combination of these approaches.
The common genes between gene signatures from each omics level were identified using a
Venn diagram.

4.4. Omics Integration

We included the interactome data in the STRING database v11 [51] to build the systems
biology pipeline for integrative analysis with our previously identified signatures. STRING
database provides the physical and functional protein–protein interaction data based on
several types of sources, including experimental data, computational prediction, and public
literature text mining. We filtered for interactions with high-confidence-level interactions
(interaction score ≥ 0.7) to be included in the analysis to minimize the likelihood of
computational artifacts and random association. A distance-based network model was
developed to integrate omics and rank candidate genes on their proximity to signature
genes on all omics levels (Equation (1)). The model was implemented in R software (v4.2.2).
See Supplementary Data for detailed R running environment and code availability.

d̂sum
i = min

j
dTranscriptomics

ij + min
j

dGWAS
ij + min

j
dProtein

ij (1)
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Equation (1): For each i, we calculated its distance to each signature gene j from the
transcriptomics level, and then obtained the minimal distance, denoted as min dij, among
all the gene j. Similarly, we obtained the minimal distances to genomic signature genes
and protein signatures from the proteomics and metabolomics levels. Finally, we summed
the three minimal distances to create a total distance, representing the overall proximity of
candidate gene i to all omics signature genes.

4.5. Drug Repurposing and In Silico Validation

The final steps in the pipeline were druggability analysis and in silico validation. The
druggability of a candidate gene was assessed based on the definition from the previous
druggable genome study [14]. These genes were categorized into three tiers based on their
use in approved therapeutics or ongoing clinical trials, protein similarity to the drug targets
of approved therapeutics, and protein classes (e.g., well-studied drug target families). Drugs
targeting the druggable genes were retrieved and filtered from the DrugBank database
(version 5.1.4). The CMap database (L1000) was used for in silico validation to evaluyate
the effect of knockout or over-expressing of candidate genes in human cell lines [52].

5. Conclusions

Through the integration of genomic, lung transcriptomic and proteomic, BALF
metabolomic, and interactome data, we have uncovered 92 genes as COPD signatures, and
70 of them were determined to be druggable targets. Further in silico validation highlighted
the SPP1, APOA1, CTSD, TIMP1, RXFP1, and SMAD3 genes as promising candidates for
therapeutic intervention.

6. Patents

This work has a provisional patent application: Methods for multi-omics analysis
drug repurposing identification for Chronic Obstructive Pulmonary Disease. Invention
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