Prognostic Impact of Acute and Chronic Inflammatory Interleukin Signatures in the Tumor Microenvironment of Early Breast Cancer
Abstract
:1. Introduction
2. Results
2.1. Acute Inflammatory IL Signature
2.2. Chronic Inflammatory IL Signature
2.3. Validation of IL Signatures in Independent Cohorts
2.4. Correlation with Immune Markers and Immune Checkpoints
3. Discussion
3.1. Acute Inflammatory IL Signature: Protective Role in Basal-like Subtype
3.2. Chronic Inflammatory IL Signature Adversely Affected Prognosis
3.3. Therapeutic Implications and Future Directions
4. Materials and Methods
4.1. Patient Cohort
- N0 cohort: 200 node-negative patients who received no further adjuvant therapy after surgery and radiation;
- Tamoxifen cohort: 165 patients treated with tamoxifen as a single adjuvant therapy;
- Chemotherapy cohort: 96 patients treated with either cyclophosphamide, methotrexate, fluorouracil (CMF; n = 34) or epirubicin, cyclophosphamide (EC; n = 62) in the adjuvant setting.
4.2. mRNA Isolation and Gene Expression Analysis
- IL-4: 207539_s_at, 207538_at;
- IL-5: 207952_at;
- IL-10: 207433_at;
- IL-13: 207844_at;
- IL-17: 208402_at, 220273_at, 220971_at;
- CXCL1: 204470_at.
- IL-12: 207901_at, 207160_at;
- IL-21: 221271_at;
- IFN-γ: 210354_at.
4.3. Molecular Subtypes
- ESR1-positive, HER2-negative, and low proliferation (AURKA low) luminal A-like;
- ESR1-positive, HER2-negative, and high proliferation (AURKA high) luminal B-like;
- HER2-positive;
- ESR1-negative and HER2-negative basal-like.
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- So, J.Y.; Ohm, J.; Lipkowitz, S.; Yang, L. Triple negative breast cancer (TNBC): Non-genetic tumor heterogeneity and immune microenvironment: Emerging treatment options. Pharmacol. Ther. 2022, 237, 108253. [Google Scholar] [CrossRef] [PubMed]
- Sonkin, D.; Thomas, A.; Teicher, B.A. Cancer treatments: Past, present, and future. Cancer Genet. 2024, 286-287, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Denkert, C.; von Minckwitz, G.; Darb-Esfahani, S.; Lederer, B.; Heppner, B.I.; Weber, K.E.; Budczies, J.; Huober, J.; Klauschen, F.; Furlanetto, J.; et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 2018, 19, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Denkert, C.; Loibl, S.; Noske, A.; Roller, M.; Muller, B.M.; Komor, M.; Budczies, J.; Darb-Esfahani, S.; Kronenwett, R.; Hanusch, C.; et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol. 2010, 28, 105–113. [Google Scholar] [CrossRef]
- Habanjar, O.; Bingula, R.; Decombat, C.; Diab-Assaf, M.; Caldefie-Chezet, F.; Delort, L. Crosstalk of Inflammatory Cytokines within the Breast Tumor Microenvironment. Int. J. Mol. Sci. 2023, 24, 4002. [Google Scholar] [CrossRef]
- Jorgovanovic, D.; Song, M.; Wang, L.; Zhang, Y. Roles of IFN-gamma in tumor progression and regression: A review. Biomark. Res. 2020, 8, 49. [Google Scholar] [CrossRef]
- Heimes, A.S.; Hartner, F.; Almstedt, K.; Krajnak, S.; Lebrecht, A.; Battista, M.J.; Edlund, K.; Brenner, W.; Hasenburg, A.; Sahin, U.; et al. Prognostic Significance of Interferon-gamma and Its Signaling Pathway in Early Breast Cancer Depends on the Molecular Subtypes. Int. J. Mol. Sci. 2020, 21, 7178. [Google Scholar] [CrossRef]
- Castro, F.; Cardoso, A.P.; Goncalves, R.M.; Serre, K.; Oliveira, M.J. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front. Immunol. 2018, 9, 847. [Google Scholar] [CrossRef]
- Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 2017, 168, 707–723. [Google Scholar] [CrossRef]
- Tait Wojno, E.D.; Hunter, C.A.; Stumhofer, J.S. The Immunobiology of the Interleukin-12 Family: Room for Discovery. Immunity 2019, 50, 851–870. [Google Scholar] [CrossRef]
- Yang, S.X.; Wei, W.S.; Ouyan, Q.W.; Jiang, Q.H.; Zou, Y.F.; Qu, W.; Tu, J.H.; Zhou, Z.B.; Ding, H.L.; Xie, C.W.; et al. Interleukin-12 activated CD8(+) T cells induces apoptosis in breast cancer cells and reduces tumor growth. Biomed. Pharmacother. 2016, 84, 1466–1471. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.K.; Shin, D.J.; Cho, D.; Kim, S.K.; Lee, J.J.; Shin, M.G.; Ryang, D.W.; Lee, J.S.; Park, M.H.; Yoon, J.H.; et al. Interleukin-21 increases direct cytotoxicity and IFN-gamma production of ex vivo expanded NK cells towards breast cancer cells. Anticancer. Res. 2012, 32, 839–846. [Google Scholar]
- Rodriguez-Tirado, C.; Entenberg, D.; Li, J.; Qian, B.Z.; Condeelis, J.S.; Pollard, J.W. Interleukin 4 Controls the Pro-Tumoral Role of Macrophages in Mammary Cancer Pulmonary Metastasis in Mice. Cancers 2022, 14, 4336. [Google Scholar] [CrossRef] [PubMed]
- Llanes-Fernandez, L.; Arango-Prado Mdel, C.; Alcocer-Gonzalez, J.M.; Guerra-Yi, M.E.; Franco-Odio, S.; Camacho-Rodriguez, R.; Madrid-Marina, V.; Tamez-Guerra, R.; Rodriguez-Padilla, C. Association between the expression of IL-10 and T cell activation proteins loss in early breast cancer patients. J. Cancer Res. Clin. Oncol. 2009, 135, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Mulcahy, L.A.; Mohammed, R.A.; Lee, A.H.; Franks, H.A.; Kilpatrick, L.; Yilmazer, A.; Paish, E.C.; Ellis, I.O.; Patel, P.M.; et al. IL-17 expression by breast-cancer-associated macrophages: IL-17 promotes invasiveness of breast cancer cell lines. Breast Cancer Res. 2008, 10, R95. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yi, T.; Kortylewski, M.; Pardoll, D.M.; Zeng, D.; Yu, H. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J. Exp. Med. 2009, 206, 1457–1464. [Google Scholar] [CrossRef]
- Wang, N.; Liu, W.; Zheng, Y.; Wang, S.; Yang, B.; Li, M.; Song, J.; Zhang, F.; Zhang, X.; Wang, Q.; et al. CXCL1 derived from tumor-associated macrophages promotes breast cancer metastasis via activating NF-kappaB/SOX4 signaling. Cell Death Dis. 2018, 9, 880. [Google Scholar] [CrossRef]
- Gyorffy, B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput. Struct. Biotechnol. J. 2021, 19, 4101–4109. [Google Scholar] [CrossRef]
- Gyorffy, B. Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. Innovation 2024, 5, 100625. [Google Scholar] [CrossRef]
- Schmidt, M.; Heimes, A.S. Immunomodulating Therapies in Breast Cancer-From Prognosis to Clinical Practice. Cancers 2021, 13, 4883. [Google Scholar] [CrossRef]
- Garris, C.S.; Arlauckas, S.P.; Kohler, R.H.; Trefny, M.P.; Garren, S.; Piot, C.; Engblom, C.; Pfirschke, C.; Siwicki, M.; Gungabeesoon, J.; et al. Successful Anti-PD-1 Cancer Immunotherapy Requires T Cell-Dendritic Cell Crosstalk Involving the Cytokines IFN-gamma and IL-12. Immunity 2018, 49, 1148–1161.e7. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Shen, N.; Guo, Q.; Tan, X.; He, S. YAP/STAT3 inhibited CD8(+) T cells activity in the breast cancer immune microenvironment by inducing M2 polarization of tumor-associated macrophages. Cancer Med. 2023, 12, 16295–16309. [Google Scholar] [CrossRef]
- Mansurov, A.; Ishihara, J.; Hosseinchi, P.; Potin, L.; Marchell, T.M.; Ishihara, A.; Williford, J.M.; Alpar, A.T.; Raczy, M.M.; Gray, L.T.; et al. Collagen-binding IL-12 enhances tumour inflammation and drives the complete remission of established immunologically cold mouse tumours. Nat. Biomed. Eng. 2020, 4, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Petersen, C.C.; Diernaes, J.E.; Skovbo, A.; Hvid, M.; Deleuran, B.; Hokland, M. Interleukin-21 restrains tumor growth and induces a substantial increase in the number of circulating tumor-specific T cells in a murine model of malignant melanoma. Cytokine 2010, 49, 80–88. [Google Scholar] [CrossRef]
- Frederiksen, K.S.; Lundsgaard, D.; Freeman, J.A.; Hughes, S.D.; Holm, T.L.; Skrumsager, B.K.; Petri, A.; Hansen, L.T.; McArthur, G.A.; Davis, I.D.; et al. IL-21 induces in vivo immune activation of NK cells and CD8(+) T cells in patients with metastatic melanoma and renal cell carcinoma. Cancer Immunol. Immunother. 2008, 57, 1439–1449. [Google Scholar] [CrossRef]
- Sicking, I.; Edlund, K.; Wesbuer, E.; Weyer, V.; Battista, M.J.; Lebrecht, A.; Solbach, C.; Grinberg, M.; Lotz, J.; Hoffmann, G.; et al. Prognostic influence of pre-operative C-reactive protein in node-negative breast cancer patients. PLoS ONE 2014, 9, e111306. [Google Scholar] [CrossRef]
- Mahmoud, S.M.; Paish, E.C.; Powe, D.G.; Macmillan, R.D.; Grainge, M.J.; Lee, A.H.; Ellis, I.O.; Green, A.R. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J. Clin. Oncol. 2011, 29, 1949–1955. [Google Scholar] [CrossRef]
- Peng, G.L.; Li, L.; Guo, Y.W.; Yu, P.; Yin, X.J.; Wang, S.; Liu, C.P. CD8(+) cytotoxic and FoxP3(+) regulatory T lymphocytes serve as prognostic factors in breast cancer. Am. J. Transl. Res. 2019, 11, 5039–5053. [Google Scholar]
- Rody, A.; Holtrich, U.; Pusztai, L.; Liedtke, C.; Gaetje, R.; Ruckhaeberle, E.; Solbach, C.; Hanker, L.; Ahr, A.; Metzler, D.; et al. T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer Res. 2009, 11, R15. [Google Scholar] [CrossRef]
- Heimes, A.S.; Riedel, N.; Almstedt, K.; Krajnak, S.; Schwab, R.; Stewen, K.; Lebrecht, A.; Battista, M.J.; Brenner, W.; Hasenburg, A.; et al. Prognostic Impact of CD38- and IgkappaC-Positive Tumor-Infiltrating Plasma Cells in Triple-Negative Breast Cancer. Int. J. Mol. Sci. 2023, 24, 15219. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, J.; Wang, Z.; Zhang, J.; Xiao, M.; Wang, C.; Lu, Y.; Qin, Z. Endogenous interleukin-4 promotes tumor development by increasing tumor cell resistance to apoptosis. Cancer Res. 2008, 68, 8687–8694. [Google Scholar] [CrossRef] [PubMed]
- Prokopchuk, O.; Liu, Y.; Henne-Bruns, D.; Kornmann, M. Interleukin-4 enhances proliferation of human pancreatic cancer cells: Evidence for autocrine and paracrine actions. Br. J. Cancer 2005, 92, 921–928. [Google Scholar] [CrossRef]
- König, A.; Vilsmaier, T.; Rack, B.; Friese, K.; Janni, W.; Jeschke, U.; Andergassen, U.; Trapp, E.; Juckstock, J.; Jager, B.; et al. Determination of Interleukin-4, -5, -6, -8 and -13 in Serum of Patients with Breast Cancer Before Treatment and its Correlation to Circulating Tumor Cells. Anticancer. Res. 2016, 36, 3123–3130. [Google Scholar] [PubMed]
- Salgado, R.; Denkert, C.; Demaria, S.; Sirtaine, N.; Klauschen, F.; Pruneri, G.; Wienert, S.; Van den Eynden, G.; Baehner, F.L.; Penault-Llorca, F.; et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: Recommendations by an International TILs Working Group 2014. Ann Oncol 2015, 26, 259–271. [Google Scholar] [CrossRef]
- Llanes-Fernandez, L.; Alvarez-Goyanes, R.I.; Arango-Prado Mdel, C.; Alcocer-Gonzalez, J.M.; Mojarrieta, J.C.; Perez, X.E.; Lopez, M.O.; Odio, S.F.; Camacho-Rodriguez, R.; Guerra-Yi, M.E.; et al. Relationship between IL-10 and tumor markers in breast cancer patients. Breast 2006, 15, 482–489. [Google Scholar] [CrossRef]
- Fabre, J.A.S.; Giustinniani, J.; Garbar, C.; Merrouche, Y.; Antonicelli, F.; Bensussan, A. The Interleukin-17 Family of Cytokines in Breast Cancer. Int. J. Mol. Sci. 2018, 19, 3880. [Google Scholar] [CrossRef]
- Popovic, M.; Dedic Plavetic, N.; Vrbanec, D.; Marusic, Z.; Mijatovic, D.; Kulic, A. Interleukin 17 in early invasive breast cancer. Front. Oncol. 2023, 13, 1171254. [Google Scholar] [CrossRef]
- Zou, A.; Lambert, D.; Yeh, H.; Yasukawa, K.; Behbod, F.; Fan, F.; Cheng, N. Elevated CXCL1 expression in breast cancer stroma predicts poor prognosis and is inversely associated with expression of TGF-beta signaling proteins. BMC Cancer 2014, 14, 781. [Google Scholar] [CrossRef]
- Gonzalez, T.; Nie, Q.; Chaudhary, L.N.; Basel, D.; Reddi, H.V. Methylation signatures as biomarkers for non-invasive early detection of breast cancer: A systematic review of the literature. Cancer Genet. 2024, 282–283, 1–8. [Google Scholar] [CrossRef]
- Chow, A.; Perica, K.; Klebanoff, C.A.; Wolchok, J.D. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat. Rev. Clin. Oncol. 2022, 19, 775–790. [Google Scholar] [CrossRef]
- Wu, S.; Huang, H.; Sun, R.; Gao, D.S.; Ye, F.; Huang, J.; Li, E.; Ni, A.; Lu, K.G.; Chen, K.; et al. Synergism Between IL21 and Anti-PD-1 Combination Therapy is Underpinned by the Coordinated Reprogramming of the Immune Cellular Network in the Tumor Microenvironment. Cancer Res. Commun. 2023, 3, 1460–1472. [Google Scholar] [CrossRef] [PubMed]
- Pavicic, P.G., Jr.; Rayman, P.A.; Swaidani, S.; Rupani, A.; Makarov, V.; Tannenbaum, C.S.; Edwards, R.P.; Vlad, A.M.; Diaz-Montero, C.M.; Mahdi, H. Immunotherapy with IL12 and PD1/CTLA4 inhibition is effective in advanced ovarian cancer and associates with reversal of myeloid cell-induced immunosuppression. Oncoimmunology 2023, 12, 2198185. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Dilger, J.P.; Lin, J. A pan-cancer-bioinformatic-based literature review of TRPM7 in cancers. Pharmacol. Ther. 2022, 240, 108302. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Tang, T. Pan-cancer genetic analysis of cuproptosis and copper metabolism-related gene set. Front. Oncol. 2022, 12, 952290. [Google Scholar] [CrossRef]
- Heimes, A.S.; Almstedt, K.; Krajnak, S.; Runkel, A.; Droste, A.; Schwab, R.; Stewen, K.; Lebrecht, A.; Battista, M.J.; Brenner, W.; et al. Prognostic Impact of LAG-3 mRNA Expression in Early Breast Cancer. Biomedicines 2022, 10, 2656. [Google Scholar] [CrossRef]
HR | 95% CI | p-Value | |||
---|---|---|---|---|---|
Lower | Upper | ||||
Chronic inflammatory IL signature | High vs. Low | 1.446 | 1.025 | 2.041 | 0.036 |
Acute inflammatory IL signature | High vs. Low | 0.802 | 0.569 | 1.129 | 0.206 |
Age | <50 vs. ≥50 | 0.851 | 0.578 | 1.253 | 0.415 |
Tumor size | T2-4 vs. T1 | 2.219 | 1.513 | 3.254 | <0.001 |
Lymph node status | N1,2,3 vs. N0 | 2.288 | 1.598 | 3.276 | <0.001 |
Grade | GIII vs. GI/II | 4.946 | 2.020 | 12.109 | <0.001 |
Ki-67 | >20% vs. <20% | 1.926 | 1.254 | 2.957 | 0.03 |
HR | 95% CI | p-Value | |||
---|---|---|---|---|---|
Lower | Upper | ||||
Acute inflammatory IL signature | High vs. Low | 0.463 | 0.290 | 0.741 | 0.001 |
Age | <50 vs. ≥50 | 1.265 | 0.729 | 2.195 | 0.403 |
Tumor size | T2-4 vs. T1 | 1.604 | 0.995 | 2.585 | 0.052 |
Lymph node status | N1,2,3 vs. N0 | 1.479 | 0.926 | 2.365 | 0.102 |
Grade | GIII vs. GI/II | 2.489 | 1.527 | 4.057 | <0.001 |
Ki-67 | >20% vs. <20% | 1.660 | 1.025 | 2.688 | 0.039 |
HR | 95% CI | p-Value | |||
---|---|---|---|---|---|
Lower | Upper | ||||
Chronic inflammatory IL signature | High vs. low | 1.098 | 0.714 | 1.689 | 0.671 |
Age | <50 vs. ≥50 | 1.242 | 0.716 | 2.156 | 0.440 |
Tumor size | T2-4 vs. T1 | 1.510 | 0.938 | 2.430 | 0.090 |
Lymph node status | N1,2,3 vs. N0 | 1.207 | 0.762 | 1.912 | 0.422 |
Grade | GIII vs. GI/II | 2.218 | 1.369 | 3.595 | 0.001 |
Ki-67 | >20% vs. <20% | 1.516 | 0.944 | 2.436 | 0.085 |
Number of Patients (n = 461) | Percentage (%) | |
Age at diagnosis | ||
≤50 >50 | 104 357 | 22.6 77.4 |
Tumor size | ||
T1 T2 T3 T4 Missing value | 188 214 19 39 1 | 40.8 46.4 4.1 8.5 0.2 |
Tumor grade | ||
GI GII GIII | 63 287 111 | 13.7 62.3 24 |
Lymph node status | ||
N0 N1 N2 Nx | 254 140 49 18 | 55.1 30.4 10.6 3.9 |
Tumor type | ||
Invasive ductal (NST) Invasive lobular Others | 291 79 91 | 63.1 17.1 19.7 |
ER | ||
Positive Negative Missing value | 381 79 1 | 82.6 17.1 0.2 |
PR | ||
Positive Negative Missing value | 346 114 1 | 75.1 24.7 0.2 |
HER2 | ||
Positive Negative Missing value | 46 358 57 | 10 77.7 12.3 |
Ki-67 | ||
>20% ≤20% Missing value | 138 250 73 | 29.9 54.2 15.8 |
Molecular subtypes | ||
Luminal A-like Luminal B-like Basal-like HER2-positive | 189 182 51 39 | 41 39.5 11.1 8.5 |
Distant metastasis | ||
Yes No | 133 328 | 28.9 71.1 |
Treatment collective | ||
N0, untreated Endocrine treatment (tamoxifen) Chemotherapy: • CMF • EC | 200 165 96: • 34 • 62 | 43.4 35.8 20.8: • 7.4 • 13.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heimes, A.-S.; Shehaj, I.; Almstedt, K.; Krajnak, S.; Schwab, R.; Stewen, K.; Lebrecht, A.; Brenner, W.; Hasenburg, A.; Schmidt, M. Prognostic Impact of Acute and Chronic Inflammatory Interleukin Signatures in the Tumor Microenvironment of Early Breast Cancer. Int. J. Mol. Sci. 2024, 25, 11114. https://doi.org/10.3390/ijms252011114
Heimes A-S, Shehaj I, Almstedt K, Krajnak S, Schwab R, Stewen K, Lebrecht A, Brenner W, Hasenburg A, Schmidt M. Prognostic Impact of Acute and Chronic Inflammatory Interleukin Signatures in the Tumor Microenvironment of Early Breast Cancer. International Journal of Molecular Sciences. 2024; 25(20):11114. https://doi.org/10.3390/ijms252011114
Chicago/Turabian StyleHeimes, Anne-Sophie, Ina Shehaj, Katrin Almstedt, Slavomir Krajnak, Roxana Schwab, Kathrin Stewen, Antje Lebrecht, Walburgis Brenner, Annette Hasenburg, and Marcus Schmidt. 2024. "Prognostic Impact of Acute and Chronic Inflammatory Interleukin Signatures in the Tumor Microenvironment of Early Breast Cancer" International Journal of Molecular Sciences 25, no. 20: 11114. https://doi.org/10.3390/ijms252011114
APA StyleHeimes, A. -S., Shehaj, I., Almstedt, K., Krajnak, S., Schwab, R., Stewen, K., Lebrecht, A., Brenner, W., Hasenburg, A., & Schmidt, M. (2024). Prognostic Impact of Acute and Chronic Inflammatory Interleukin Signatures in the Tumor Microenvironment of Early Breast Cancer. International Journal of Molecular Sciences, 25(20), 11114. https://doi.org/10.3390/ijms252011114