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Abstract: Obesity confers risk for cardiovascular disease and vascular dementia. However, genomic
alterations modulated by obesity in endothelial cells in the brain and their relationship to other neu-
rovascular unit (NVU) cells are unknown. We performed single nuclei RNA sequencing (snRNAseq)
of the NVU (endothelial cells, astrocytes, microglia, and neurons) from the hippocampus of obese
(ob/ob) and wild-type (WT) male mice to characterize obesity-induced transcriptomic changes in a key
brain memory center and assessed blood–brain barrier permeability (BBB) by gadolinium-enhanced
magnetic resonance imaging (MRI). Ob/ob mice displayed obesity, hyperinsulinemia, and impaired
glucose tolerance. snRNAseq profiled 14 distinct cell types and 32 clusters within the hippocampus
of ob/ob and WT mice and uncovered differentially expressed genes (DEGs) in all NVU cell types,
namely, 4462 in neurons, 1386 in astrocytes, 125 in endothelial cells, and 154 in microglia. Gene
ontology analysis identified important biological processes such as angiogenesis in endothelial cells
and synaptic trafficking in neurons. Cellular pathway analysis included focal adhesion and insulin
signaling, which were common to all NVU cell types. Correlation analysis revealed significant
positive correlations between endothelial cells and other NVU cell types. Differentially expressed
long non-coding RNAs (lncRNAs) were observed in cells of the NVU-affecting pathways such as TNF
and mTOR. BBB permeability showed a trend toward increased signal intensity in ob/ob mice. Taken
together, our study provides in-depth insight into the molecular mechanisms underlying cognitive
dysfunction in obesity and may have implications for therapeutic gene targeting.

Keywords: single nuclei transcriptomics; obesity; hippocampus; neurovascular unit

1. Introduction

Obesity is a global pandemic [1] and the fifth leading cause of death worldwide [2].
The World Health Organization estimates nearly 2.8 million people with obesity die annu-
ally [1]. By 2030, the number of individuals with obesity is estimated to be 573 million [3].
Obesity is associated with various comorbidities, including cardiovascular disease, diabetes
mellitus, hypertension, and stroke [4], and is also a key risk factor for several neurodegen-
erative diseases, including Alzheimer’s disease (AD) [5]. Individuals with obesity are also
predisposed to dementia and impaired cognitive function, including short-term memory
and learning [6].

The cerebral microcirculation plays an important role in neuronal function [7], and
damage to cerebral blood vessels contributes to cognitive decline and dementia [8]. It has
been shown that obesity can trigger changes in the cerebral vasculature [7] and promote
neurovascular inflammation and oxidative stress, which cause cerebral hypoperfusion
resulting in a disrupted blood–brain barrier (BBB) [9]. Accordingly, the National Institute
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on Aging’s AD + Alzheimer’s Disease-Related Dementias (ADRD) Research Implemen-
tation Milestone 2.B prioritizes research to “determine interrelationships among aging,
cerebrovascular disease and risk factors, resilience factors, genetic variants, amyloid, tau,
and neurodegeneration” [10].

The molecular pathways by which obesity affects the brain are being elucidated. Re-
cent studies have shown modulated expression of a vast number of obesity-associated
genes in the brain [11], including elevated expression of genes associated with inflam-
mation and immunosenescence [12]. A microarray study of human brains identified a
decrease in the expression of zinc transporter proteins, increasingly connected with the
formation of senile plaques, in both AD and obesity [13]. In rodent models of obesity and
AD, an increase in hippocampal expression of the inflammatory mediator inducible nitric
oxide synthase (iNOS) [14,15] was observed. Furthermore, RNA sequencing analysis on
the postmortem hypothalamus of individuals with obesity revealed differential expres-
sion of genes involved in metabolism, immunity, and inflammation [16]. However, this
study only focused on whole brain tissue, making it challenging to gain insight for cell
type-specific gene expression changes. Therefore, the molecular mechanisms of obesity-
mediated cerebrovascular dysfunction and its association with neurodegeneration are not
yet fully defined.

There is increasing data supporting the importance of the vascular effects of obesity as
contributors to vascular dementia. The mechanisms may be partly driven by a reduction
in hippocampal microvascular density and alterations in neurovascular coupling [17–20].
The neurovascular unit (NVU) is essential for BBB integrity and is composed of endothelial
cells, glial cells (microglia and astrocytes), and neurons [21]. The NVU plays an important
role in the pathogenesis of vascular dementia involving reduced cerebral blood flow, which
leads to neuronal and glial cell damage, dysregulation of endothelial cells, and breakdown
of the BBB [22]. Recently, single-cell RNA sequencing (scRNAseq) of high-fat diet-induced
obesity in mice identified dysregulation of hippocampal microglial cells [23]. However,
to date, no studies have utilized single nuclei RNA sequencing (snRNAseq) to explore
the effects of obesity on coordinated gene expression in endothelial cells themselves or
in the context of other hippocampal NVU cell types and their contributions to vascular
dementia. In contrast to traditional bulk RNA sequencing methods, single-cell/nuclei RNA
sequencing technology has the advantage of revealing cell-specific changes in expression
of genes, relationships between different cell types, cellular function, and pathology of
individual cells [24]. In scRNAseq, whole cells are isolated, and RNA is captured from the
entire cell, whereas snRNAseq involves isolating only the nuclei and focusing on RNA
within the nucleus [25]. snRNAseq has the additional advantage of working with complex
and fragile brain tissue, potentially yielding more reliable and less biased results. Although
scRNAseq and snRNAseq should theoretically yield comparable results when studying
obesity-induced neurovascular dysregulation, the snRNAseq approach may provide more
accurate insights into the nuclear gene expression alterations associated with this condition,
primarily due to the sampling procedure.

Hence, in accordance with national research priorities, our study aims to better under-
stand the mechanisms by which obesity induces genomic changes in the cells of the NVU
and its relevance to the vascular effects of obesity as contributors to vascular dementia.
We performed an integrative multiomics study using state-of-the-art single nuclei RNA
sequencing of the NVU (endothelial cells, neurons, microglial cells, and astrocytes) from
the hippocampus, an important brain memory center, of ob/ob mice [26,27]. We sought to
identify the effect of obesity on transcriptomic changes in the hippocampal NVU character-
ized by differentially expressed protein-coding and non-coding genes and the pathways
involved. We also performed functional assessments of BBB permeability by utilizing struc-
tural brain MRI imaging. Based on our previous studies [28–33], we hypothesized that ob/ob
mice would exhibit cell-specific and common expression alterations in the gene expression
profiles of the cells of the NVU and that the changes could be characterized by pathways
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and networks enriched for endothelial cell function, neuroinflammation/degeneration, and
BBB breakdown.

2. Results
2.1. Single-Nuclei RNA Sequencing Identifies 14 Cell Types in the Hippocampus

Compared to WT mice, the ob/ob phenotype at 17–18 wks of age was characterized as
obese, hypercholesterolemic, and hyperinsulinemic and had impaired glucose tolerance,
though it was not hyperglycemic (Table S1). To assess the impact of obesity on the NVU
transcriptome, we performed single nuclei RNA sequencing (snRNAseq) of the hippocam-
pus from ob/ob and WT mice (Figure 1A). UMAP (Uniform Manifold Approximation and
Projection) analysis revealed 14 cell types, which formed 32 clusters (Figure 1B). Table S2
lists the mean number of hippocampal cell types, including those that comprised the NVU.
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Figure 1. Single nuclei RNA-sequencing identifies global genomic cell-specific changes in the
hippocampus of obese mice. (A) Overview of this study. Hippocampi were isolated from normal
weight (wild type) and from obese (ob/ob) male mice (n = 4/genotype) at 18 weeks of age. Single
nucleotide RNA sequencing was performed on isolated hippocampi, followed by in-depth bioin-
formatics analyses. (B) Uniform manifold approximation and projection (UMAP) showing the cell
clusters in hippocampal cells in obese and normal-weight mice. (C) Schematic presentation of the
major cells of the neurovascular unit (NVU) created in biorender.com (accessed on 27 February 2024).
(D) Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) performed using normalized
global gene expression datasets from NVU cell types. (E) Heatmap of normalized gene expression,
where the rows are expressed genes and the columns are the individual samples, grouped by cell
types of NVU. Red denotes higher levels of gene expression, and blue denotes lower levels of gene
expression, as indicated in the color bar.
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2.2. Cell-Specific Gene Expression Alterations with Obesity in the NVU

First, we compared global gene expression profiles between the two genotypes in each
of the four cell types of the NVU (Figure 1C). Sparse Partial Least Squares Discriminant
Analysis (sPLS-DA) identified different global gene expression profiles between ob/ob and
WT for each of the cell types of the NVU (Figure 1D). The top 10 genes for each NVU
cell type driving the separation (as determined by variable importance projection scores)
between ob/ob and WT mice can be found in Figure S1. Genes that were important in the
separation for the NVU included Nr1d1 and Slc39a13 (endothelial cells), Ddc and Tppp
(microglia), Stat5b and Fam214a (astrocytes), and Tnrc6b and Muc6 (neurons) (Figure S1).
A heat map of expression profiles of genes showed that endothelial cells in ob/ob and WT
mice present overall higher levels of gene expression when compared to other cell types of
the NVU (Figure 1E).

Next, we aimed to identify differentially expressed genes (DEGs) altered by obesity
in the four cell types in the NVU. We identified that compared to WT, the ob/ob genotype
significantly modulated the expression of 4462 DEGs in neurons, 1386 DEGs in astrocytes,
125 DEGs in endothelial cells, and 154 DEGs in microglial cells (Figure 2A,B and Supple-
mentary Data S1). The observed fold changes in gene expressions varied from −10 to
5 (Figure 2C). Comparison of DEGs of NVU cells revealed only five DEGs in common
(Figure 2D) and included Zbtb16, Fkbp5, Ccnd3, Rn7sk, and Catspere2; their expression
levels are presented in Figure 2E. This observation is consistent with a cell-specific impact
of obesity in the expression profiles of hippocampal NVU cells.

2.3. Functional Enrichment Analyses of DEGs of NVU Cells in Obesity

We then performed functional enrichment analyses of DEGs modulated by obesity
in the NVU cell types. First, we performed a gene ontology (GO) analysis of DEGs to
functionally classify the biological processes (BP) impacted by obesity. Among the most
significantly over-represented GO BP terms are regulation of angiogenesis, cell adhesion,
proliferation, migration, and actin cytoskeleton organization associated with endothelial
DEGs (Figure S2A), while astrocyte DEGs were involved in cell substrate adhesion and Rho
protein signal transduction (Figure S2B). Microglial DEGs were involved in actomyosin
structure organization and cognition (Figure S2C), and neuronal DEGs were associated with
vesicle-mediated transport in synapse and peptidyl-serine phosphorylation (Figure S2D).
Cell junction assembly and small GTPase-mediated signal transduction were common
to most cells of the NVU (endothelial cells, astrocytes, and neurons), as were dendrite
development and synapse and cell projection organization (astrocytes, microglia, and
neurons). Thus, most of the DEGs modulated by obesity impacted the cells of the NVU in
functionally distinct patterns.

Subsequently, we identified enriched cellular pathways involving the DEGs of NVU
cell types. Among the top 50 cellular pathways (FDR p < 0.05), NVU cell type-specific path-
ways included alpha6-beta4 integrin signaling (endothelial cells), glucagon signaling (mi-
croglia), fatty acid metabolism (astrocytes), and IL-6 signaling (neurons) (Figures 3A and S3).
However, 20 pathways were in common between the four NVU cell types. They included
focal adhesion, axon guidance, Rap1, insulin, MAPK, and EGFR1 signaling.

We then classified cellular pathways into five functional categories as follows: cell–cell
interaction (Figure 3B), immune system (Figure 3C), metabolic (Figure 3D), cell signaling
(Figure 3E), and neurofunction-related (Figure 3F) pathways. Among cell–cell interaction
pathways (Figure 3B), focal adhesion was common to all the NVU cell types. Using
hierarchical clustering, comparison of expression profiles of genes involved in this pathway
showed that Rasgrf1, Tnr, Pak3, Mapk10, Pdgfa, Pip5k1c, Ppp1r12c, Mapk8, and Src genes
were upregulated by obesity in endothelial cells, whereas downregulated in the other cell
types, suggesting that even though DEGs were involved in a similar cellular process, there
was cell specificity leading to distinct expression profiles. Additionally, within the metabolic
functional category, insulin signaling was common to all NVU cell types (Figure 3D). In
contrast to genes involved in focal adhesion, the expression profiles of genes involved in
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insulin signaling were modulated by obesity in the same direction in all four NVU cell
types. Taken together, these snRNAseq data suggest that obesity modulated the genomic
profiles of NVU cells involved in the regulation of cell junctions, cell signaling, metabolic
processes, and inflammation.
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 Figure 2. Obesity significantly changes gene expression in endothelial, microglial, astrocytes,
and neuronal cells of the hippocampus. (A) Volcano plots show differential gene expression
for ob/ob mice compared to control WT mice for the four cell types of NVU. Only significantly
changed gene expressions (p < 0.06) are colored according to the direction of change, that is, blue
for downregulation and red for upregulation of gene expression. (B) Bar plot showing the number
of differentially expressed genes (DEGs) both downregulated (green) and upregulated (red) across
the four cell types of the NVU. (C) Distribution of fold changes for significant DEGs between obese
and normal-weight mice across NVU cell populations. (D) Venn diagram of DEGs in endothelial
cells (EC), microglial cells (MG), astrocytes (AS), and neurons (NEU) showing overlaps between sets
of identified genes. (E) Violin plots of the expression levels presented as the normalized counts of
common DEGs across cell types of the NVU (EC, MG, AS, and NEU).

2.4. Gene Expression Profiles of Endothelial Cells Positively Correlate with Other Cell Types of
the NVU

As endothelial cells play a major role in the regulation of vascular permeability in the
brain, we sought to assess how changes in the endothelial cells’ gene expression relate to
gene expression in other cell types of the NVU. For this analysis, we performed correlations
between the changes in the gene expression of endothelial cells with changes in the other
NVU cells. There was a significant (p < 0.05) positive correlation between endothelial
cells and microglia (r = 0.15), astrocytes (r = 0.19), and neurons (r = 0.16) (Figure 4A). We
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then performed correlation analysis between DEGs altered by obesity in endothelial cells
with all of the detected genes in microglia, astrocytes, and neuronal cells (Figure 4B and
Supplementary Data S2). We found that 25 DEGs in endothelial cells, each correlated with
over 10 genes in astrocytes. Among these endothelial DEGs with the highest number of
correlations with astrocyte genes were Fam117b, Afap1l2, Nr3c2, Gpcpd1, Malat1, Plat,
or Clip1. Similarly, six endothelial DEGs presented correlations with 10 microglial genes,
including Ikzf2, Parvb, Tacc1, Nr1d1, Micall1, and Clip1. Moreover, we observed that seven
endothelial DEGs had significant correlation with 10 or more neuronal genes, including
Rn7sk (correlated with 13 neuronal genes), Baalc, Eva1c, Fam117b, Arhgap18, Klhl2, and
Herc4 (correlated with 10 neuronal genes).

Figure 3. Functional classification of DEGs identifies cell-specific and common major cellular
pathways regulating cell–cell interactions, metabolism, immune system, cell signaling, and neu-
rofunction across cells of the NVU. (A) Venn diagram comparing identified significantly enriched
pathways for the four cell types of the NVU with DEGs altered by obesity compared to normal-
weight mice. (B) Dot plot of cell–cell interaction pathways regulated by DEGs in the NVU cell types.
Significant pathways are presented with large blue circles. A heatmap representing expression levels
of genes involved in focal adhesion across the NVU cells is presented on the right. (C) Dot plot of
immune system pathways modulated by DEGs in the NVU cell types. (D) Dot plot of pathways of
DEGs involved in the regulation of metabolism in the NVU cells. A heatmap representing expression
levels of genes involved in the insulin signaling pathway across the NVU cell types is presented on
the right. (E) Dot plot of pathways of DEGs involved in cell signaling in the NVU cells. (F) Dot plot
of pathways of DEGs involved in the neurofunction regulation in the NVU cell types.

Furthermore, since the focal adhesion pathway was identified as over-represented in
all four NVU cells and is an important regulator of cell–cell interaction and permeability,
we performed correlation analyses between genes altered by obesity in this pathway in
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any of these cell types. This analysis demonstrated that expression of seven endothelial
genes correlated with expression of more than five genes in microglia, including Rock1,
Itgav7, Ppp1r12c, and Lama3 (Figure S4). Expression of genes such as Vegfc, Ink, Mapk10,
and Pdgfb in endothelial cells correlated with expression of six or more astrocyte genes.
Pdpk1, Prkca, and Rhoa genes expressed in endothelial cells correlated with the expression
of five neuronal genes. Finally, endothelial expression of Ppp1cb and Shc33 correlated
with expression of both microglia and astrocyte genes, while endothelial expression of
Itgb1 correlated with expression of both microglia and neuron genes. Taken together, these
results indicate that changes in the expression of genes in endothelial cells induced by
obesity may impact gene expression in other cells of the NVU, suggesting there may be
NVU cellular cross-talk.

Figure 4. Positive correlation of global gene expression changes by obesity in endothelial cells
with other cell types of the hippocampal NVU. (A) Scatter plots of genes showing significant
(p < 0.05) positive correlation between endothelial cells and microglia cells (r = 0.15), endothelial
cells and astrocytes (r = 0.19), and endothelial cells and neuronal cells (r = 0.16). (B) Gene–gene
correlation matrices of genes identified as differentially expressed in endothelial cells and microglia
cells, endothelial cells and astrocytes, and endothelial cells and neuronal cells. For each gene–gene
correlation, positive correlation is presented in blue and negative correlation in red; significant
(p < 0.05) correlations are presented with “*”.

2.5. Cell-Specific Transcriptional and Post-Transcriptional Regulators of Gene Expression

The next step of our analyses was to detect transcriptional factors (TFs) whose activity
could be upstream of the observed obesity-induced genomic alterations. A comparison of
the top 20 TFs involved in the transcriptional regulation of DEGs identified TFs unique
to each of the NVU cell types, including PPARG, POU5F1, GATA2 for endothelial cells;
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BACH2, NEUROG1, STAT1 for microglia; NFKB1, ASCL1, STAT3 in astrocytes; and LIN28,
HIVEP2, and MEF2D in neurons (Figure S5). REST TF was the only common TF to all the
four cell types of the NVU.

Together with transcriptional regulators, the expression of genes can also be mod-
ulated by post-transcriptional regulators. Indeed, our snRNAseq revealed that obesity
can alter the expression of a number of long non-coding RNAs (lncRNAs) in the NVU
(4 in endothelial cells, 7 in microglia, 75 in astrocytes, and 169 in neurons; Figure 5A).
Cell-specific lncRNAs included Morrbid (endothelial cells), C030034L19Rik (microglia),
C030018K13Rik (astrocytes), and Miat (neurons). Gm4258 and Gm47283 were common
to astrocytes, microglia, and neurons, while Gm12339, Gm15564, and Malat1 lncRNAs
were common to endothelial cells and neurons. These results suggest that, as is the case
for protein-coding genes, obesity has a distinct and primarily cell-specific impact on both
transcriptional and post-transcriptional regulation of cells of the NVU.
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Figure 5. Obesity induces cell-specific changes in the expression of long non-coding RNAs.
(A) Table with identified differentially expressed (DE) long non-coding RNAs (lncRNAs) specific to
each cell type and in common among the cells of NVU. (B) Pathway enrichment analysis of target
genes of the 20 most significant DE lncRNAs in the NVU cell types. The colored Venn diagram shows
pathways specific to endothelial cells (EC) and in common to other NVU cell types (NEU: neuronal
cells; AS: astrocytes; MG: microglia).

Next, we identified potential targets of the top 20 most significantly modified lncRNAs.
We identified 341, 392, 700, and 1053 target genes for these top 20 differentially expressed
(DE) lncRNAs in endothelial cells, microglia, astrocytes, and neurons, respectively. Compar-
ison of DEGs and potential target genes of the top 20 DE lncRNAs for each NVU cell type
showed that 0.5% to 5% of the lncRNA target genes were differentially regulated by obesity,
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showing that although not a primary process, lncRNA regulation of gene expression is
partially responsible for the observed transcriptomic changes in obesity (Figure S6).

Furthermore, we then performed pathway analysis to identify potential biological
processes affected by alteration in the expression of the top 20 lncRNAs. Comparison of
cellular pathways regulated by the targets of the top 20 DE lncRNAs of hippocampal NVU
cells revealed pathways unique to endothelial cells such as TNF, NFkB, HIF-1, and IL-5
signaling (Figures 5B and S7). Five pathways were in common to all the NVU cell types,
including Alzheimer’s disease, glutamatergic synapse, mTOR, MAPK, and Wnt signaling.
Focal adhesion, Rap1 signaling, and regulation of the actin cytoskeleton were some of
the pathways in common with endothelial cells, astrocytes, and neuron cells. Therefore,
obesity modulates the expression of lncRNAs that results in the regulation of biologic
processes important in neurovascular function such as cell–cell junctions, endothelial cell
permeability, cell signaling, and neuronal synapses.

2.6. Prediction of Cell-Specific Clinical Diseases Associated with Gene Expression Alterations by
Obesity in the NVU

We identified neurodegenerative diseases associated with DEGs in the NVU cell types
(Figure 6A). Dementia and cerebrovascular diseases were common diseases associated with
DEGs of all the four NVU cell types, while Alzheimer’s disease (AD) was common to all
NVU cell types except astrocytes. Next, we did network analysis of DEGs associated with
AD, dementia, and cerebrovascular diseases for each of the NVU cell types (Figure 6B).
Endothelial cell DEGs Picalm and Cp were associated with dementia, while Plat and Sh2b3
were associated with cerebrovascular disease. Other NVU cell-type DEGs formed connec-
tions with both dementia and AD, including Plcg2 (microglia), Dhcr24 (astrocytes), and
Psen1 (neurons). The DEG Htra1 (microglia, neurons, and astrocytes) formed connections
with both dementia and cerebrovascular diseases. Furthermore, DEGs of NVU cells with
connections to all the diseases in common amongst them were Ptk28 (microglia), ApoE
(astrocytes), Pparg (neurons), and Vegfa and App (neurons and astrocytes). Taken together, it
can be considered that obesity, by modulating cell-specific expression of genes in endothe-
lial cells and other NVU cell types, contributes to gene alterations in a pattern associated
with dementia and cerebrovascular diseases.

2.7. BBB Permeability Changes in the Brain with Obesity

One of the major cellular functions identified by our snRNAseq data was vascular
permeability, a key cellular process underlying development of neurovascular diseases,
including dementia. We, therefore, assessed BBB permeability using gadolinium (Gd)
enhanced MRI of the whole brain and hippocampus. Figure 7A shows the signal intensity
before and after Gd infusion and the percent difference in signal intensity in the brains
of ob/ob and WT mice. DCE plots revealed slightly higher relative signal intensity in the
hippocampus of ob/ob mice (Figure 7B) and a trend (p = 0.096) towards a larger resulting
area under the curve (AUC) when compared to the hippocampus of WT mice (Figure 7C).
Although not reaching statistical significance, these findings suggest that molecular changes
revealed by snRNAseq may be associated with BBB dysfunction characterized by altered
BBB permeability in obese mice. Longer periods of exposure of the murine hippocampus
to obesity may be needed to clarify this finding.
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generative diseases. (A) Venn diagram showing the number of significant associations between
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cerebrovascular diseases, and dementia. DEGs in endothelial cells (e, green circles), astrocytes (a,
blue circles), neuronal cells (n, yellow circles), and microglial cells (m, pink circles).
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ob/ob and WT mice and percent difference in intensity. (B) Dynamic contrast enhanced (DCE) plots
showing relative signal intensity (y-axis) over time (x-axis). (C) Area under the cure (AUC) of the
DCE plot for ob/ob and WT mice (n = 8–9/genotype).

3. Discussion

In this study using snRNAseq, we demonstrated obesity-induced transcriptomic
changes in murine hippocampal NVU endothelial, astrocyte, microglial, and neuronal
cells. Endothelial differential gene expression was cell-specific, though correlated with
gene expression in the other NVU cell types, for both protein-coding and non-coding genes
(lncRNAs). Obesity impacted key cellular pathways, including cell–cell interactions, the
immune system, metabolism, cell signaling, and neurofunction-related pathways. DEGs
were associated with neurodegenerative diseases such as dementia, Alzheimer’s, and
cerebrovascular diseases. Furthermore, neuroimaging revealed a trend for increased BBB
permeability in obesity. We discuss our findings in the context of the impact of obesity
on endothelial cells, the relationship of endothelial cell differential gene expression to the
other cells of the NVU, and key pathways modified in common for all cell types of the
NVU, including cellular cross-talk.

3.1. Impact of Obesity on the Transcriptome of Brain Hippocampal Endothelial Cells

Obesity mostly upregulated DEGs in endothelial cells for pathways regulating en-
dothelial permeability such as focal adhesion (Prkcb and Vegfc), adherens junction (Pard3),
leukocyte transendothelial migration (Prkcb and Vcam1), and Rap1 signaling (Pard3, Prkcb,
and Vegfc). It has been previously observed that protein kinase c beta (Prkcb) levels are
elevated in different organs of ob/ob mice [34,35]. Increased expression of Prkcb disrupts
an in vitro model of BBB in human brain microvascular endothelial cells under ischemia
by regulating cell–cell junctions [36] and leads to microvascular dysfunction in murine
coronary small arteries [37]. In our study, obesity also increased the expression of vascular
cell adhesion molecule-1 (Vcam1), involved in leukocyte adhesion and transendothelial mi-
gration [38]. Vcam1 levels were upregulated in a murine model of vascular dementia, and
inhibition of Vcam1 reduces ischemia-induced neuroinflammation and cognitive dysfunc-
tion [39]. The Par-3 Family Cell Polarity Regulator (Pard3) gene was also upregulated in
endothelial cells and is expressed at the BBB and involved in the formation of adherent [40]
and tight junctions [41]. Pard3 also plays a critical role in recruiting leukocytes during in-
flammation [42]. Vascular endothelial growth factor (Vegfc) was one of the downregulated
genes in endothelial cells in ob/ob mice. Vegfc promotes angiogenesis [43], and its levels
are reduced in persons with coronary heart disease [44]. Taken together, these results show
that obesity modulates the expression of genes with resultant dysfunction of endothelial
cell junctions, increased leukocyte infiltration, and BBB permeability, changes that are
known to be associated with cognitive impairment and vascular dementia. To provide a
comprehensive understanding of the impact of obesity on neurological health, we assessed
behavior (by open field test) and cognition (by Y-maze and Morris water maze) functions
of ob/ob and WT male mice, and recently published these findings [45]. Even though
we did not observe a significant impact of obesity in these parameters, previous studies
using different mouse models of obesity or ages of mice showed that obesity contributes to
cognitive dysfunction [46].

3.2. Relationship of Endothelial Cells to the Other Cells of the NVU

Endothelial cells are not only involved in the regulation of the BBB permeability but
can release mediators that affect other cells of the NVU, including microglia, astrocytes,
and neurons [47]. Microglia are resident brain macrophages that play a role in the immune
functions of the central nervous system. In animal models of obesity, there is a higher
presence of activated microglia that is characterized by an increased production of proin-
flammatory cytokines [48]. Cytokines have a ubiquitous role in neurodegenerative diseases
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that proceed through BBB functional abnormalities [49]. Our snRNAseq data showed that
obesity modulated expression of genes in microglia that are involved in cell–cell adhesion,
cell signaling, and regulation of inflammation and immune response (31 DEGs), including
chemokine signaling and IL-2 signaling. Moreover, changes in the expression of genes
in microglia were correlated with several identified DEGs in endothelial cells, including
Fkbp5, which impacts microglia polarization [50]; Picalm, which has been linked with AD
development and regulation of the immune system [51]; and Mef2a, which has been associ-
ated with AD pathogenesis [52]. These observations suggest an increase in inflammatory
response in microglia with obesity and a cross-talk between endothelial and microglial cell
types in a pattern that could contribute to cognitive dysfunction.

Astrocytes are a major glial cell type in the central nervous system and are essential for
maintaining the neuronal environment, neurotransmitter recycling from the synaptic cleft,
maintenance of the BBB, and regulation of energy homeostasis [53]. We showed that obesity
exerts a significant impact on the astrocyte genomic profile by affecting the expression
of over 1000 genes, both protein-coding genes and lncRNAs, involved in the regulation
of processes such as integrin-mediated cell adhesion, cell–cell adhesions, axon guidance,
inflammatory cell signaling, and glutamatergic or GABAergic synapses. Astrocytes form
endfeet, adhere to endothelial cells, and are important for endothelial cell permeability
and cell–cell junctions that form via actin cytoskeleton reorganization, axon guidance, and
focal adhesion kinase [54]. To the best of our knowledge, no studies have reported genomic
changes in astrocytes with obesity in vivo. Interestingly, we also show that nearly 40 DEGs
in astrocytes correlated with DEGs in endothelial cells, suggesting potential cross-talk
between these two cell types. Among the correlated genes was cadherin, a cell adhesion
molecule that plays a crucial role in the adhesion of astrocytes to endothelial cells via
integrins and therefore maintains BBB integrity [55]. Hence, the genomic analyses suggest
that obesity modulates interactions between astrocyte endfeet and endothelial cells, which
potentially results in increased endothelial cell permeability.

Another important cell type of NVU are neurons. They play a major role in receiv-
ing and transmitting information throughout the body and form a large cellular network
regulating brain functions such as memory, cognition, movement, and behavior [54]. We
demonstrated that obesity exerts a significant impact on the modulation of gene expression
in neurons, consistent with neurons constituting the largest group of cells in the brain.
These genes were involved in processes regulating synapses, long-term potentiation, synap-
tic vesicles, cell signaling, and cell junctions. A few studies have suggested that other
metabolic processes, such as high-fat diets, impact the global transcriptomic profile of
neurons, including genes involved in similar cellular processes, like cell–cell adhesion,
signal transduction, and axon guidance [56], and that these changes can be associated
with Alzheimer’s disease development [57,58]. Moreover, correlation analyses between
DEGs in endothelial cells and neurons in our studies identified 66 genes that correlated
between endothelial and neuronal cell types. Among these genes were Klhl2, which has
been shown to induce neuronal apoptosis [59], and Slc38a2, known to be associated with
Alzheimer’s disease [60] and modulated by nutritional stress, like amino acid depriva-
tion [61]. Furthermore, endothelial cells can impact neurons through the release of VEGF,
which promotes neuronal migration through reorganization of the actin cytoskeleton via
focal adhesion kinase [62], thereby contributing to the maintenance of neuronal function.
Thus, the endothelial–neuronal cell relationship in our study indicated that obesity could
impact normal neuronal signal transduction and therefore also contribute to cognitive
decline in dementia.

3.3. Common Mechanisms of Transcriptomic Disruption by Obesity in All Cells of the NVU

Figure 8 summarizes the impact of obesity in the hippocampus on endothelial cells
and their relationship to other cell types of the NVU; there were two common mecha-
nisms of cellular transcriptomic disruption in response to obesity for all the NVU cell
types, namely, focal adhesion and insulin signaling. Although little is known about the
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role of insulin signaling on the activity of NVU cells, impairment of insulin signaling has
been identified as a mechanism in neurodegenerative diseases [63]. For example, insulin
signaling in astrocytes co-regulates behavioral responses and metabolic processes via the
regulation of glucose uptake across the BBB [64]. The loss of insulin signaling also leads to
a reduction in dopamine release by astrocytes, affecting neuronal activity involved in cog-
nition and mood [65]. A high-fat diet impairs insulin sensitivity in the hippocampus [66].
Furthermore, neuronal insulin signaling and insulin resistance may impact downstream sig-
naling and synaptic plasticity, known to be impaired in neurodegenerative diseases such as
Alzheimer’s disease [67]. Similarly, insulin resistance can induce activation of microglia in
the hippocampus of young rats, alongside increased expression of inflammatory molecules
COX-2 and IL-1β [68]. This suggests a link between neuroinflammation and insulin sig-
naling in the hippocampus as a physiopathological mechanism underlying the connection
between insulin resistance and cognitive decline. Moreover, defects in insulin signaling in
microvascular endothelial cells at the BBB strongly contribute to brain insulin resistance in
Alzheimer’s disease in association with β-amyloid pathology [69]. Lastly, inactivation of
the insulin receptor on brain endothelial cells of the hippocampus alters the structure and
increases permeability of the BBB by regulating tight junctions [70]. Therefore, disruption
of insulin signaling in all cells of the NVU of mice with obesity appears to affect multiple
cellular processes known to be related to mechanistic disturbance underlying dementia.
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3.4. Cellular Cross-Talk by Obesity for Cells in the NVU

In addition to interactions between endothelial cells and other cells of the NVU, cross-
talk between all four cell types needs to be taken into consideration. Astrocyte activation
releases inflammatory markers and chemokines that activate microglia, which in turn
release cytokines that can negatively affect neuronal activity [54]. Similarly, activated
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microglia release inflammatory cytokines that not only impact neuronal function but
also endothelial cell permeability. Moreover, astrocytes can directly influence neuronal
cells by releasing neurotoxins. In our study, we observed that obesity modulated the
expression of genes coding for cytokines, cell–cell adhesion proteins, and inflammatory
mediators. For example, expression of Per2 was decreased in astrocytes and can prevent
neurotoxicity [54,71], therefore suggesting induction of neurotoxicity in neuronal cells in
the condition of obesity. Also, expression of Cx3cl1 in astrocytes was downregulated in
our study. It codes for the protein involved in the inactivation of microglia, regulation of
immune homeostasis, and can counteract neuroinflammation [72]. Suggesting that obesity
could lead to activation of microglia and an increase in neuroinflammation through reduced
Cx3cl1 expression. Obesity also impacted the expression of Vegf in astrocytes that has been
reported to be associated with neurotoxicity and increased endothelial cell permeability,
as well as the expression of cytokines that impact endothelial cell–cell adhesion and BBB
permeability [73].

3.5. Limitations

Although our study presents several strengths, such as simultaneous in-depth genomic
analyses of cell types of the NVU, there are a few limitations. Several mouse models of
obesity exist, and we chose the most commonly used and well characterized, ob/ob mice,
homozygous for a mutation in the leptin gene. These mice present the phenotype of obesity,
including glucose intolerance and insulin resistance; therefore, it is difficult to separate
the effects of obesity from those of a type 2 diabetes mellitus phenotype. It should be
noted, however, that in humans, obesity is generally accompanied with diabetes, and thus,
the metabolic findings obtained using the ob/ob model parallel those of human obesity.
Also, in our bioinformatic analyses, we grouped different types of neuronal cells together.
As different neuronal cell types present slightly different biological functions, it could
be possible that they also respond differentially to obesity. Subtyping and bioinformatic
analyses of neuronal subtypes were beyond the scope of our studies. The association
between differentially expressed genes and neurodegeneration needs to be taken with
caution, as has previously been discussed in the context of cancer research [74]. However,
to mitigate against this risk in identifying potential neurodegenerative diseases associated
with the observed genomic changes, we used a toxicogenomics database that utilized
manually curated literature-based interactions that minimize the risk of false positive
interactions. Moreover, our MRI analyses suggested a tendency towards an increase in
BBB permeability in ob/ob mice. The lack of statistical significance of the MRI data was
probably due to the small number of mice used in the analyses, possibly the relatively
short exposure (compared to lifetime) of mice to obesity, and the sensitivity of the imaging
findings that may require a larger number of mice per group to be able to detect small
changes in permeability.

4. Materials and Methods

Research was conducted in conformity with the Public Health Service Policy on
Humane Care and Use of Laboratory Animals and reported in compliance with ARRIVE
guidelines. The institutional review board of the University of California, Davis, the
Institutional Animal Care and Use Committee (IACUC) approved this project protocol
number 22,598 on 14 December 2021.

4.1. Experimental Animals

The most common murine model of obesity is the leptin-deficient ob/ob mouse [75,76].
Leptin is a key regulator of body weight, and lack of this gene results in hyperphagia and a
decrease in energy expenditure, with resultant obesity by 4 weeks of age [76]. Some studies
of ob/ob mice found memory deficits between 13 and 23 weeks of age [77–79] Previous
studies using ob/ob mice demonstrate vascular consequences in this model, including re-
duced endothelial vasoregulation [80], blood–brain barrier (BBB) disruption, and impaired
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inflammatory responses following ischemia [81,82]. The NVU plays a significant role in
BBB [21] and vascular dementia pathology [22]. Thus, the ob/ob murine model is ideally
suited for the study of the impact of obesity in the vasculature and the NVU.

Male ob/ob (stock number 000632 and strain B6.Cg-Lep<ob>/J, Jackson Laboratories,
Bar Harbor, ME, USA) and C57BL/6J wild-type control male mice (WT; Jackson Laborato-
ries, stock 000664) (n = 20/genotype) were studied at 17–18 weeks of age. Animals were
housed individually in duplex cages in a temperature- and humidity-controlled environ-
ment with a 12 h light/dark cycle in the University of California, Davis Mouse Biology
Program. All mice were fed the AIN-93M purified diet (catalog number, TD.00102 Envigo
Teklad diets, Madison, WI, USA) ad libitum for the 8-week study period. This standard
purified diet is composed of 4.1% fat, 68.3% carbohydrate, and 12.4% protein (w/w). Food
and water intake, as well as activity, was monitored daily by vivarium staff to ensure the
wellbeing of the animals. At 18 weeks, after euthanasia by exsanguination under ketamine
and xylazine anesthesia, mouse brains (n = 4 per genotype) were quickly removed, and
the hippocampus was dissected from the left hemisphere, immediately frozen in the vapor
phase of liquid nitrogen, and stored at −80 ◦C until use. The remaining mice were sacrificed
and used for other analyses in this study, as detailed below.

4.2. Blood Metabolic Assays

Fasting serum glucose and glucose tolerance (Accu-Chek Aivia plus test strips, Roche,
Basel, Switzerland) following an intraperitoneal injection of 2 g/kg glucose at 15, 30, 60, and
120 min were measured in blood sampled by tail slit (n = 16–20/genotype). Blood for the
analysis of fasting insulin and total cholesterol was obtained by ventricular puncture at the
time of euthanasia (n = 10/genotype). Insulin was measured by electrochemiluminescence
(Meso Scale Discovery, Rockville, MD, USA), and total cholesterol was measured by enzy-
matic assay (Fisher Diagnostics, Middleton, VA, USA) in triplicate in non-pooled samples.

4.3. Hippocampal Single Nuclei RNA Sequencing

Thousands of single nuclei transcriptomes from the hippocampal brains of ob/ob and
control wild-type mice (n = 4 brains/genotype as per above) were profiled using Parse
Evercode single nuclei technology, as previously described [32]. The number of replicates
was chosen to balance the cost and precision [83]. Up to 3,000,000 hippocampal nuclei
were isolated, fixed, and counted using the Parse Biosciences Nuclei Fixation Kit (Catalog #
SB1003, Parse Biosciences, Seattle, WA, USA). The nuclei suspension was preserved as rec-
ommended by the manufacturer’s instructions and kept at −80 ◦C until library preparation.
Barcoded single-cell libraries were prepared from fixed single nuclei suspensions using
the Evercode Whole Transcriptome Mega kit (Catalog # EC-W01050, Parse Biosciences,
Seattle, WA, USA) by the UC Davis DNA Technologies and Expression Analysis Core. For
the barcoding and library preparation, a maximum of 1 million cells can be sequenced
for all samples studied. Given the number of samples and experimental groups used in
this study, tens of thousands of nuclei/samples were barcoded and had a library prepared.
We used an Agilent Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) to check
the cDNA trace to assess the RNA quality of the nuclei samples. The cDNA traces of
our samples had the correct size distribution with minimum small peaks indicative of
RNA degradation. The cDNA and library fragment size distribution were verified on
a Bioanalyzer 2100 (Agilent) and TapeStation (Agilent), respectively. The libraries were
quantified by fluorometry on a Qubit instrument (LifeTechnologies, Carlsbad, CA, USA)
and by qPCR with a Kapa Library Quant kit (Kapa Biosystems-Roche, Wilmington, MA,
USA) prior to sequencing. The libraries were sequenced on a NovaSeq 6000 sequencer
(Illumina, San Diego, CA, USA) with paired-end 100 bp reads. The sequencing generated
approximately 35,000 reads per cell. We used 2 sublibraries for sequencing, which provided
sequences for about 3500 nuclei for each sample. Thus, the expression of each gene for each
of our 4 samples per genotype is the average expression from a very large number, that
is, thousands, of nuclei. We assessed the nuclei and RNA quality in the snRNAseq data
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using the following metrics: We determined the Q30 in the barcodes, which is the most
important metric for read quality, and included the fraction of spot barcode bases with a
Q-score greater than or equal to 30 and excluded very low quality/no-call (Q lesser than or
equal to 2) bases from the denominator. Sequencing characteristics and alignment metrics
can be found in Supplementary Data S3.

Processing of the snRNA seq data was performed with assistance of the UC Davis
Bioinformatics Core. Raw sequencing data for two sublibraries were preprocessed and
combined using Parse Biosciences’ split-pipe pipeline (v0.9.6p). We assessed the quality
of snRNAseq data using the nFeature_RNA plot that showed the number of detected
genes in every cell, the nCount_RNA plot that showed the number of detected Unique
Molecular Identifiers (UMIs) in each cell, and the percent.mito plot that revealed the
percentage of mitochondrial genes in each cell (Figure S8). Expression matrices were
imported into Seurat [84] for downstream analyses. Filters were applied to retain cells
that had 500–10,000 genes expressed with 1000–50,000 UMIs detected, and the fraction
of mitochondrial reads was less than 5%. After filtering, the cells classified as doublets
were removed using DoubletFinder [85]. The remaining data for all samples were merged
in Seurat, normalized using “LogNormalize” mode, and scaled to regress out cell cycle
effect and sequencing depth (using the number of UMI as a proxy). The first 50 principal
components were used to cluster the cells using the “FindClusters” function, using a
shared nearest neighbor modularity optimization-based clustering algorithm, at resolution
level 2 in Seurat and generate UMAP (Uniform Manifold Approximation and Projection)
embeddings. Cell types were identified using R package ScType [86] with brain and
immune system markers (Supplementary Data S4). UMAP in snRNA-seq analysis reduces
high-dimensional gene expression data to 2D or 3D, preserving data structure. This
aids in visualizing cell clusters, identifying distinct cell types, and interpreting complex
relationships, thereby enhancing the understanding of cellular diversity and interactions in
the dataset. From the identified cell types in the entire hippocampus, relative changes in the
differentially expressed genes (DEGs) of the neurovascular unit (NVU)—endothelial cells,
microglial cells, astrocytes, and neurons—were generated by comparing gene expression
levels of ob/ob to WT mice. Moreover, in order to better assess the biological significance
of the DEGs, we did not consider DEGs individually but rather after gene ontology and
functional pathway analysis.

4.4. Brain Magnetic Resonance Imaging (MRI)

MRI scans of n = 8–9 brains per genotype were performed at the UC Davis Center for
Molecular and Genomic Imaging (CMGI) using a Bruker Biospec 70/30 (7T) preclinical
MR scanner (Bruker, Billerica, MA, USA). Images were acquired on anesthetized animals,
reconstructed, and parametric maps generated using Paravision 6. BBB permeability
was investigated using 1 mmol/kg of Gadolinium [87]. Infusion rates were adjusted to
animal weight to generate a Dynamic Contrast Enhanced (DCE) scan [88]. Pre- and post-T1
weighted Gd scans and a post-AT2 weighted anatomical scan were also acquired. Average
enhancement was calculated over the entire hippocampal region. Additional experimental
details for our murine MRI imaging studies have been previously reported [32].

4.5. Data and Statistical Analysis

The ggplot2 R Package tool was used to create visualizations, specifically to display
the log2 fold changes and the number of differentially expressed genes (DEGs) with an
FDR-adjusted p-value less than 0.06 [89]. FDR (False Discovery Rate) is a statistical method
used to correct for multiple comparisons in hypothesis testing. It adjusts p-values to control
the expected proportion of false positives among the significant results. FDR helps reduce
the likelihood of incorrectly identifying results as statistically significant due to chance.

Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) is employed in snRNA-
seq data analysis to pinpoint genes that distinguish between cell types. It builds on
Partial Least Squares (PLS), a statistical technique that models relationships between



Int. J. Mol. Sci. 2024, 25, 11169 17 of 22

predictors and responses by identifying orthogonal components that maximize covariance
between these variables. PLS is particularly effective for high-dimensional or collinear
data, reducing dimensionality while retaining essential information. sPLS-DA combines
PLS with variable selection to focus on the most relevant features, enhancing classification
accuracy and interpretability. This approach identifies key biomarkers, aiding in the
classification of cells and revealing cell type differences in complex single-nucleus RNA
sequencing datasets. A heatmap representing gene expression levels uses color gradients
to depict the abundance of gene expression across samples. Darker or more intense colors
often indicate higher expression levels, while lighter colors represent lower expression.
This visualization helps identify patterns and differences in gene expression across various
conditions or samples. The MetaboAnalyst v6.0 platform was used for statistical analysis
and visualization, including sPLS-DA, Variable Importance in Projection (VIP) scores, and
heat maps [90].

The Galaxy Platform was used to generate volcano plots, which visually represent
the magnitude and significance of DEGs [91]. An interactive Venn tool was employed
to create Venn diagrams, which show the overlap between different sets of DEGs [92].
GeneTrail Online Database was utilized to perform overrepresentation analysis and identify
significant cellular pathways related to DEGs and long non-coding RNAs (LncRNAs). It
adjusted for multiple testing using the Benjamini–Hochberg method with an FDR-adjusted
p-value threshold of less than 0.05 [93,94].

The Srplot tool was used to generate various plots, including Gene Ontology (GO)
plots, pathway dot plots, heat maps, and correlation plots, to visualize the functional and
pathway-related aspects of the data [95]. GO analysis categorizes gene functions into
biological processes, molecular functions, and cellular components. It helps identify gene
functions and relationships in large datasets by using standardized terms and hierarchical
structures, enhancing understanding of gene roles and interactions in various biological
contexts.

Enrichr Webtool was used to identify potential transcription factors that might reg-
ulate the expression of the identified DEGs, with an adjusted p-value cut-off of less than
0.05 [96–98]. LncRRIsearch [99] and Rtools CBRC [100] were used to identify the target
genes of differentially expressed LncRNAs.

Statistics were performed using Graphpad Prism 10. In order to identify outliers, the
ROUT (Q-1%) test was applied to all of the following study data sets: bodyweight, glucose,
GTT AUC, insulin, total cholesterol, and MRI DCE AUC. No outliers were found, and
therefore no datapoints were removed. If the data were normally distributed, as determined
by the Kolmogorov–Smirnov test for normality, an F-test was used to compare variances
and choose the appropriate t-test. Groups were compared by a Student’s t-test if the equal
variance assumption was met or compared by a t-test with Welch’s correction if the equal
variance assumption was not met. If the data were not normally distributed, groups were
compared by the two-sample Kolmogorov–Smirnov test.

5. Conclusions and Future Directions

Our study showed NVU cell type-specific transcriptome changes with obesity in the
murine hippocampus. We demonstrated that obesity impacts brain endothelial cell gene
expression, particularly genes associated with endothelial permeability, that may impact
expression of genes in other cells of the neurovascular unit, a hypothesis that could be
corroborated with an observed tendency towards an increase in BBB permeability. Our
study revealed that the murine NVU cells respond to obesity in a cell-specific manner,
pointing out the importance of simultaneous analyses of all cell types rather than one cell
type analysis. Functional analyses showed that the differentially expressed genes identified
regulate interactions between cell types and inflammation, changes that are associated with
the development of neurodegenerative diseases like Alzheimer’s disease. Identifying the
obesity-associated gene expression changes, both cell-specific and common to NVU cell
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types, and the cellular processes implicated, form the basis for further studies to build
upon and elucidate mechanisms of cognitive dysfunction in obesity.

Future research to strengthen the findings of our study and experiments to validate
the demonstrated differential expression observed in obesity and its relevance to specific
cell types could include techniques such as in situ hybridization, confocal microscopy, and
validation of specific genes identified in the present study (such as Nr1d1, Slc39a13, Ddc,
Tppp, Stat5b, Fam214a, Tnrc6b, and Muc6). Moreover, future research should consider a
broader range of ages to capture the progression of metabolic and neurological changes
over time courses, and we are planning studies in aged ob/ob mice. In addition, future
studies should include female mice to explore potential sex-specific differences, and we
are preparing a separate manuscript for publication that will detail sex differences in the
single nuclei response of the hippocampus to obesity. The influence of environmental
factors and diet composition could also be addressed and could be standardized or varied
in future studies to better isolate the specific effects of obesity. Finally, investigating the
behavioral and cognitive consequences of the observed molecular changes could provide a
more comprehensive understanding of the impact of obesity on neurological health, and
we have indeed performed these studies and reported on this study [45].
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