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Abstract: Sortase A (SrtA) of Staphylococcus aureus has long been shown to be a relevant molecular
target for antibacterial development. Moreover, the designed SrtA inhibitors act via the antivirulence
mechanism, potentially causing less evolutional pressure and reduced antimicrobial resistance.
However, no marketed drugs or even drug candidates have been reported until recently, despite
numerous efforts in the field. SrtA has been shown to be a tough target for rational structure-based
drug design (SBDD), which hampers the regular development of small-molecule inhibitors using
the available arsenal of drug discovery tools. Recently, several oligopeptides resembling the sorting
sequence LPxTG (Leu-Pro-Any-Thr-Gly) of the native substrates of SrtA were reported to be active
in the micromolar range. Despite the good experimental design of those works, their molecular
modeling parts are still not convincing enough to be used as a basis for a rational modification of
peptidic inhibitors. In this work, we propose to use the ensemble docking approach, in which the
relevant SrtA conformations are extracted from the molecular dynamics simulation of the LPRDA
(Leu-Pro-Arg-Asp-Ala)-SrtA complex, to effectively represent the most significant and diverse target
conformations. The developed protocol is shown to describe the known experimental data well
and then is applied to a series of new peptidomimetic molecules resembling the active oligopeptide
structures reported previously in order to prioritize structures from this work for further synthesis and
activity testing. The proposed approach is compared to existing alternatives, and further directions
for its development are outlined.

Keywords: Sortase A; Staphylococcus aureus; multidrug resistance; antivirulence drugs; ensemble
docking; protein dynamics; peptidomimetic; oligopeptide

1. Introduction

Staphylococcus aureus (S. aureus) is responsible for many medical complications in pa-
tients, ranging from sinusitis to sepsis after joint surgery [1,2]. Despite several antibacterial
agents being active against S. aureus, the latter have managed to develop drug resistance,
resulting in Methicillin-resistant Staphylococcus aureus (MRSA), a significant problem for
possible treatment [3–5]. It is believed that the main cause of such drug resistance is the
evolutionary pressure caused by drugs that target the existence of the bacteria. Hence, to
diminish the drug resistance development mechanism, it has been proposed to target the
virulence of the bacteria, i.e., the routes that bacteria use to impact the host [6–10], instead
of trying to kill it completely. In that respect, Sortase A (SrtA) of Staphylococcus aureus, a
membrane-bound cysteine transpeptidase, which helps to display the bacterial outer shell
proteins by specifically cleaving the “sorting sequence” LPxTG (Leu-Pro-Any-Thr-Gly)
of those proteins, has long been established as a promising target for the discovery of
antibacterial drugs. The structure and dynamics of SrtA have been extensively described
previously [4,11–14]. The main benefits of SrtA as a drug target are:
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1. Its function is related only to bacterial cell adhesion to the host cells and immune
system evasion, not bacterial survival, which diminishes the risks of developing
resistant stem;

2. The close analogs of the SrtA protein are absent in humans, which implies lower risks
of potential off-target toxicity;

3. SrtA is located in the external bacterial cell envelope, thus being much more readily
accessible to potential drugs compared to internal bacterial cell targets;

4. The pharmacological significance of the target was validated [15,16] using several models.

Significant efforts have been made to find proper hit compounds [9,17–22], which
can be generally split into either substrate mimetics, natural compounds, or diverse small-
molecule families [23]. Early attempts were mostly concentrated on covalent inhibitors
(e.g., [24]), whereas the recent focus has mostly been on non-covalent inhibitors, because of
the potentially lower off-target toxicity and, hence, wider the therapeutic window [4].

Despite all the attractiveness of the SrtA drug target [9,16,25], to date, not a sin-
gle marketed drug or even an efficacious and developable drug candidate has been
reported [10,26,27].

Such a striking contrast of this unmet need and the great number and diversity [28] of
the hit molecules reported with the lack of lead compounds forming a series of structures
with explainable structure–activity relationships (SARs) clearly posits a problem that
requires a reasonable explanation. We hypothesized earlier [29] that the SrtA binding site
represents a tough challenge to the simple means of current structure-based computer-
aided drug discovery. Firstly, the site is rather extended and shallow, thus resembling
the typical sites involved in protein–protein interactions (PPIs) [30,31]. Secondly, its two
edges are represented by two highly flexible loops—β6-β7 and β7-β8 [11,12]. In depth,
a molecular dynamics study of SrtA revealed that several distinct binding modes of the
sorting sequence LPATG* (Leu-Pro-Ala-Thr-Gly*) are involved at different stages of the
substrate binding, preceding the T-G (Thr-Gly) cleavage event [12]. On the one hand, the
site flexibility at body temperature means that any putative and energetically achievable
SrtA conformation can be used for successful structure-based drug design (SBDD). On the
other hand, the number of achievable conformations is large, and many of them represent
distinct arrangements of the features responsible for affine interactions of a ligand with the
receptor. Moreover, there is a rational concern that not only structural features but also the
dynamical coherence of the ligand–receptor complex might be necessary to ensure binding
with significant affinity. Several applied studies using certain parts of SBDD have been
reported [4,9,10,26], but the overall picture of binding is still not sufficiently consistent at
the moment. Therefore, we suggest that the lack of a reliable SBDD means for SrtA leads to
a lack of the developed SrtA inhibitors fulfilling the lead compounds’ requirements.

Due to the lack of a reliable means of SBDD-guided design of small-molecule lead
compounds potentially developable into antivirulence drugs, a safer way is to start from a
crucial part of natural substrates of SrtA—the “sorting sequence” LPxTG (Leu-Pro-Any-
Thr-Gly). To date, two works have been published in this direction. The first one is the work
by Wang et al. [2], where a short in silico screening led to a virtual hit-containing LPRDA
(Leu-Pro-Arg-Asp-Ala) sequence, which was claimed to resemble the original LPxTG
sorting sequence. The follow-up experimental check revealed the antivirulence activity of
the PEG2000-LPRDA-NH2 molecule with an IC50 of 10.61 µM. The second recent study
by Abujubara et al. [32] is well designed to develop the direction of small polypeptides
resembling the sorting sequence of StrA substrates. In the work, several inhibitors were
experimentally identified with IC50 values below 200 µM, with the most active molecule
being LPRDSar with an IC50 of 18.9 µM, where Sar is sarcosine (N-methylglycine). Recently,
it was experimentally confirmed that uncapped oligopeptide LPRDA results in reduced
bacterial adhesion and biofilm formation in a dose-dependent manner [33], which suggests
that even such a short sequence as LPRDA can present physiological effects and can be
used either as is or as a starting point for further drug discovery.
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Despite several short oligopeptides having been shown to reveal the experimental
inhibition of SrtA, it is unlikely that oligopeptides will be used as such. Obviously, the sub-
sequent optimization of the oligopeptides is necessary in two directions: the optimization
of ligand efficiency and the optimization of ADMET (Absorption, Distribution, Metabolism,
Elimination, and Toxicity) properties. Both the activity and ligand efficiency (LE) of the hit
oligopeptides are suboptimal for drug purposes, since they have 40 to 50 heavy atoms and
a molecular weight (MW) exceeding 500, yet show 2-digit micromolar activity, thus leading
to an estimation of LE as less than 0.17 kcal/(mol·atom), appreciably lower compared to
the reference value of LE of 0.3 kcal/(mol·atom) [34]. Another reason is that polypeptides
are quickly degraded in living conditions, so that their bioavailability is generally low. Ad-
ditionally, the above specific oligopeptides are heavily charged at physiological conditions,
which contradicts the generally accepted assumption that the major driving force for drug–
receptor interactions is the hydrophobic interaction [35,36]. Thus, these oligopeptides could
be used as hit molecules in order to gradually replace inefficient and prone-to-degradation
groups with more efficient and stable ones. The provided arguments are the rationale for
the development of peptidomimetics [37,38], usually starting from an active but quickly
degradable peptide in order to arrive at a drug with the desirable properties. This process
should rely heavily on the receptor space model to make possible the use of the repertoire
of structure-based drug discovery tools. However, creating a reliable structure source
for SBDD, as it was pointed out earlier, is currently the main challenge for the rational
development of SrtA inhibitors [39]. In particular, in the above-mentioned works of Wang
et al. and Abajubara et al., the modeling part relied on the (as described earlier) problematic
receptor structures, but it was enough to arrive at semi-quantitative conclusions.

To sum up, the intrinsic complexity of the system under study (SrtA-accessible confor-
mational space) is further aggravated by the fact that simple, robust, and rational means of
computer-aided drug discovery have not been established for SrtA to streamline further de-
velopment. This is in striking contrast with SrtA as a target, which has long been validated
as promising. We postulate that the pertinent model for SBDD should possess a partially
contradictory set of requirements:

1. It should reflect the different conformations of SrtA, reachable at physiological conditions;
2. It should reflect conformations that are relevant for binding an inhibitor, assuming some

of the conformations are not relevant despite being feasible at the relevant conditions;
3. It should reflect conformations pertinent to different large-scale motions and rear-

rangements (e.g., transition “order–chaos” of the β6-β7 loop [13]) of the SrtA protein,
not just the local flexibility caused by side-chain motion, regularly taken into account
by simplified “flexible docking” protocols;

4. It should be computationally cost-effective to allow for virtual screening and ideally
lead to further optimization; at least, it should be significantly less demanding than the
state-of-the-art molecular dynamics (MD) studies of microsecond time scales [12–14].

In this work, we aim to create a set of relevant conformations of SrtA for further
use within the ensemble docking approach [40]. In the ensemble docking approach, a
challenging and usually conformationally flexible receptor is represented with several
distinct conformations during docking. Ensemble docking is more complex than docking
to a single conformation of a receptor (the prevalent practice), but it is also several orders
less resource-demanding than the complete MD simulation of the putative complexes.
The intermediate between ensemble docking and the full MD study approach, the relaxed
complex scheme, was reported to show promising results [41] for SrtA, but the scheme is
still rather complex for massive screening and hit-to-lead optimizations of SrtA inhibitors.
The ensemble docking approach was tested recently for modeling SrtA [39], showing mixed
results. One of the useful conclusions of that work was that the geometries from the PDB
structures of SrtA provide inferior power to classify molecules into actives and inactives
compared to several MD-derived conformations. Another important observation is that
none of the best performing conformations was able to properly classify all the true active
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molecules, leading to the suggestion that different conformations might be relevant to bind
different molecules to SrtA.

We believe that the choice of conformations to use in ensemble docking is crucial.
The conformations used in Ref. [39] were uniformly sampled from the MD trajectory and
thus do not necessarily reflect the statistically weighted diversity of the conformations. An
additional concern is the convergence of the trajectory used to produce conformations in
terms of the large-scale motions pertinent to the protein under study.

In this work, we test a hypothesis that an ensemble docking approach with a specifi-
cally chosen set of conformations of SrtA receptors can be used as a pertinent SBDD tool to
streamline in silico StrA inhibitor development, in particular to address the unmet need to
support the rational hit-to-lead optimization of initial hit structures.

In what follows, we describe how we derive the representative set of SrtA conforma-
tions for further use in docking studies. Then, the selected conformations are used for
subsequent ensemble docking. Both the conformation differences to known PDB structures
of SrtA as well as the docking results obtained are analyzed and compared to the known
experimental activities of several oligopeptides. Then, the developed docking approach is
used to predict in silico the binding affinities for several proposed peptidomimetics, pro-
duced by the replacement of the lipophilic side-chain LP part of the LPRDA oligopeptide
with the rather hydrophobic organic small-molecule residues developed in our labora-
tory [42]. Finally, the obtained results are discussed in a broader context, and the directions
of future development are outlined.

2. Results
2.1. Representative Conformations of SrtA

Based on the analysis of the known facts about StrA and the efforts undertaken by
researchers in the field, it was decided to generate conformations of SrtA that are the most
relevant to the “sorting” sequence binding. Since the original sorting sequence LPxTG
was not reported to bind or reveal inhibiting activity outside the long polypeptide chain,
conformation sampling was conducted using the molecular dynamics (MD) study from
our previous work, where LPRDA-SrtA complex geometries were extensively studied.
Briefly, MD runs were started from different LPRDA-SrtA complex geometries obtained
from AutoDock 4.2 and AutoDock Vina 1.1.2 docking. In that work, we showed that the
binding of the LPRDA oligopeptide to SrtA significantly facilitates the conformational
sampling of the receptor, including the loop β7-β8 and even the loop β6-β7, responsible
for the significant change in the shape of the binding site and undergoing transitions
“disorder–order” by accidentally forming a short alpha helix instead of the coiled structure
of the loop [13]. Thus, LPRDA could be effectively considered as a binding site “plasticizer”
upon binding. The effect of enhanced conformational plasticity was also noted earlier in
the context of Hsp90-hAgo2 interactions [43]. We hypothesized that the main reason for
the accelerated conformational sampling is that LPRDA forms numerous nearly equivalent
energy hydrogen bonds with SrtA in quite different complex geometries, thus making
different protein conformations more accessible at body temperature. It should be noted
that the experimental NMR study confirmed that unbound LPRDA is represented with
multiple conformations in water media [44]. Due to the above properties of LPRDA-SrtA
complex MD trajectories, we hypothesized that different MD runs started from docking
geometries after certain equilibration effectively sampled the same conformational space.
For this reason, we decided to use all the available MD trajectories starting from different
LPRDA-SrtA docking complex geometries as a source of the most abundant conformations
in the statistical ensemble.

Eight different LPRDA-SrtA complexes obtained by both AutoDock 4.2 (three com-
plexes) and AutoDock Vina 1.1.2 (five complexes) were described previously in detail [29]
and were used to generate the SrtA conformation sampling in this work. Each docking
complex geometry was used as a starting geometry in the MD studies, but with different
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random seeds, which resulted in quite different MD trajectories, even for the same initial
complex as described elsewhere [29], thus generating additional statistics.

Each MD trajectory (10 ns in total) was represented with 100 equally spaced snapshots
with intervals of 100 ps from each other, with no significant short-range autocorrelation
assumed to be retained between the snapshots. Overall, 8 × 3 × 101 = 2424 snapshots were
used for the cluster analysis.

Cluster analysis was performed via the GROMACS utility ‘cluster’ using the GRO-
MOS clustering scheme, with a central structure having the smallest distances to all other
members of a cluster. In total, 65 distinct clusters were found (with an RMSD cutoff equal to
1.3 Å). For this work, the six most representative (the most populated in the MD trajectories
analyzed) clusters were selected, overall describing 59.5% of all the frames used for the
analysis (Table 1).

Table 1. Number of MD frames assigned to each of the first six selected cluster centers. The total
number of frames used for analysis was 2424.

Cluster # Number of Frames Percent of Frames

1 518 21.4
2 405 16.7
3 161 6.6
4 154 6.4
5 126 5.2
6 77 3.2

Sum 1441 59.45
Cluster #—is the Cluster number.

Firstly, the extracted clusters reveal variability in the β7-β8 and especially in the β6-β7
loops (Figure 1), thus confirming that these elements are the most variable part in the
binding site, which locates the His120-Cys184-Arg197 catalytic triad. Therefore, the clusters
reasonably span the conformational space available for those loops.
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Figure 1. Structures of SrtA: (left)—initial structure from PDB:1T2W, (right)—superposition of the
initial structure and 6 clusters used in this work, with a secondary structure color scheme. The
key catalytic residues His120, Cys(Ala)184, and Arg197 are shown. The regions of the flexible
loops—β6-β7 and β7-β8—are highlighted with ovals.
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Secondly, the geometries of clusters differ substantially from the initial StrA geometry
(PDB:1T2W), which is in accord with a previous study [21]. The latter indicates that the PDB
geometry may reflect just one of the available conformations for SrtA in relevant conditions.

Lastly, if the side-chain positions that form the binding site of SrtA are also taken into
account, then, the differences between the clusters (and the initial structure as well) are
even more pronounced. Figure 2 shows that the bindings sites of the cluster structures,
with a significantly different volume, shape, and even electrostatic/hydrophobic nature,
are formed. This corresponds to the results of previous studies, in which the adaptive
nature of oligopeptide binding to SrtA via different binding modes was highlighted [12].
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Figure 2. Surface representation of the initial (PDB:1T2W) and the obtained cluster structures
reveals remarkable differences, resulting in binding sites with appreciably different shapes and
electrostatic/hydrophobic nature. The surface with electrostatic potential was colored in PyMol 2.5,
with blue being positive potential and red negative potential. The approximate site location and
shape are highlighted with green circles.

Our main hypothesis should be reiterated at this point. If a protein structure adopts
multiple conformations with different binding site characteristics, the search for and the
use of single geometry is not warranted, since multiple but feasible alternative binding
options might be missed. With this perspective in mind and the observations outlined
above, the obtained clustered geometries fit the purpose and the specific requirements put
forward in the Introduction Section well.

2.2. Validation Using Different Oligopeptides

A validation of the extracted clusters and the approach itself using the known experi-
mental data is an important step. The LPRDA oligopeptide was proposed and shown to
possess antivirulence activity against S. aureus in the work by Wang et al. [2]. Despite the
in silico modeling of this work being performed using the uncapped LPRDA sequence,
the experimental check was performed using a capped version of the oligopeptide, which
could affect the binding and hence our structure–activity interpretations. A more recent
work by Abujubara et al. [32] intelligently expands on the initial findings by Wang et al. [2]
by suggesting smart substitutions concerning the LPRDA oligopeptide in order to elucidate
structure–activity relationships to uncover the underlying structural features important
for the affine and hopefully selective binding of ligands to SrtA. The modified oligopep-



Int. J. Mol. Sci. 2024, 25, 11279 7 of 22

tide sequences used in this work were experimentally tested without additional sequence
capping, so the results of this work are a more reliable basis to elucidate structure–activity
relationships in terms of SrtA protein conformation. Therefore, nine structures (Figure 3)
from Abujubara’s work presenting the known experimental activity (Table 2) were selected
to test to what extent the variation in the experimentally observed activities of the selected
structures could be explained using the ensemble docking approach proposed in this work.
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Table 2. Experimental activities of the selected nine structures from the work of Abujubara et al. [32].
Percent of inhibition for the FRET method is for the ligand concentration of 200 µM.

# FRET Inhibition, % IC50, µM −RT ln IC50, kcal/mol

1 29 (3) - -
2 69 (3) 19 −6.52
3 76 (8) 136 −5.34
4 37 (3) - -
5 108 (7) 57 −5.86
6 15 (4) - -
7 32 (9) - -
8 31 (8) - -
9 70 (6) 185 −5.16

By comparing the experimental activity and the obtained numerical results, it is
possible to study the following hypotheses. Firstly, is there any difference in substituting
positively charged Arg (R) in the middle of the sorting sequence with negatively charged
Glu (E)? Secondly, to what extent is the addition of the more hydrophobic fragments at
both ends of the sequence beneficial, as revealed by Abujubara et al. experimentally?

The protonation states of all the oligopeptides studied were obtained via OpenBabel
v.3.0.0, where the pH = 7.

The analysis of the results (Table 3, Figure 4) of molecular docking to the set of SrtA
conformations leads to the following observations. Firstly, it is seen that the representative
clustered geometries studied result in lower (more beneficial) values of the predicted
energy for oligopeptides 1–9 compared to the docking of the same oligopeptides to the
most relevant SrtA models from PDB: 1T2W and 2KID. It shows that, at physiological
conditions, there exist conformations of SrtA that are more amenable to the binding of
ligands. Secondly, despite a certain variation, it is clearly seen that the model of Cluster #3
basically leads to the lowest attainable energies in our experiment, thus showing the most
beneficial interactions with ligands. We argue that such preference is caused by the presence
of the most compact and deep binding site among the other protein structures studied due
to the fact that loop β6/β7 has a partially ordered form with one turn of α-helix compared
to the more disordered (coiled) conformations present in the other protein structure studied
(Figure 5). The described arrangement leads to the presence of the more pronounced
hydrophobic regions, the latter being the major driver of ligand–receptor affinities.

Table 3. Computed AutoDock 4.2 scores (E, kcal/mol) for the best docking positions of the oligopep-
tides studied in this work.

1T2W 2KID Cluster_01 Cluster_02 Cluster_03 Cluster_04 Cluster_05 Cluster_06
num E LE E LE E LE E LE E LE E LE E LE E LE NH

1 −6.86 0.17 −5.07 0.13 −5.27 0.13 −6.30 0.16 −11.94 0.30 −6.07 0.15 −7.38 0.18 −3.71 0.09 40
2 −8.41 0.21 −5.60 0.14 −4.66 0.12 −9.31 0.23 −11.92 0.30 −6.07 0.15 −8.89 0.22 −5.49 0.14 40
3 −6.40 0.16 −8.18 0.21 −6.49 0.17 −6.51 0.17 −7.99 0.20 −6.06 0.16 −6.60 0.17 −5.55 0.14 39
4 −7.76 0.16 −7.39 0.15 −6.59 0.14 −9.20 0.19 −11.89 0.25 −6.71 0.14 −5.65 0.12 −5.38 0.11 48
5 −8.25 0.17 −7.44 0.15 −6.60 0.14 −8.41 0.18 −12.28 0.26 −9.76 0.20 −6.42 0.13 −6.11 0.13 48
6 −10.50 0.22 −8.21 0.17 −9.13 0.19 −10.34 0.22 −9.68 0.21 −8.19 0.17 −7.10 0.15 −7.00 0.15 47
7 −8.44 0.20 −5.66 0.13 −5.43 0.13 −5.19 0.12 −9.86 0.23 −8.83 0.21 −7.56 0.18 −5.60 0.13 42
8 −10.48 0.21 −8.58 0.17 −8.02 0.16 −8.21 0.16 −12.67 0.25 −10.69 0.21 −8.30 0.17 −7.01 0.14 50
9 −7.70 0.15 −7.34 0.14 −6.84 0.13 −5.19 0.10 −9.90 0.19 −7.72 0.15 −9.15 0.18 −4.89 0.10 51

NH—the number of heavy (non-hydrogen) atoms of each ligand of 1–9 used to calculate LE using
LE = −E(∆G)/NH. The green color intensity in LE values corresponds to the closeness of the values to the
standard threshold value of LE being 0.3 kcal/(mol·atom).
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Figure 5. The structure of Cluster #3, revealing the most beneficial interactions with the ligands stud-
ied. (Left)—comparison of the secondary structure (backbone) of PDB:1T2W (gray) and Cluster #3
(colored according to the secondary structure) from our study. (Right)—the surface of Cluster #3
colored according to the electrostatic potential (using PyMol, with blue being positive and red
negative values).

Thirdly, it is clearly seen that the values of the ligand efficiency (LE, for short, the
measure of efficiency of using heavy atoms in ligands) for the docked and scored complexes
are basically lower than the threshold value of 0.3 kcal/(mol·atom) commonly adopted for
estimating the binding efficiency of drug-like small molecules. The obtained LE values just
reaches this threshold for ligands 1 and 2 bound to the Cluster #3 structure according to
docking. On the one hand, the rather moderate values of LE neatly agree with the typical
values related to the early stages of drug discovery, such as hit finding and hit-to-lead
optimization. On the other hand, such values reflect the fundamental property of the
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relativity flat binding site (only part of the surface can take part in the interaction with
a ligand), as well as the inherently lower efficiency of using heavy atoms pertinent to
biopolymers compared to well-optimized small-molecule drugs and drug candidates.

One of the major advantages of ensemble docking is the possibility to reveal molecules
more prone to binding to different conformations of the receptor. For that purpose, in
this study, we calculated Boltzmann weights (e−∆G/RT) for each of the combinations of
ligands 1–9 and receptor geometry, using AutoDock4.2 scores as ∆G estimates, which were
used in turn to calculate (Table 4) the probabilities of binding of each ligand to each of the
SrtA geometries—ρi from (1)—assuming they form a complete ensemble (that is, neglecting
other accessible conformations, not explicitly studied in this paper). It is well seen that,
in accord with the previous analysis, the studied oligopeptides 1–9 generally prefer to
bind to Cluster #3. However, for structures 3, 6, 7, and 9, appreciable contributions of
binding to other (not Cluster #3) SrtA geometries are observed. It is interesting to note that,
for structures 3 and 6, the more preferable binding is revealed for structures taken from
PDB (with PDB:1T2W being the geometry used for docking and subsequent MD used for
clustering). Note that precisely those structures contain Glu(E) instead of Arg(R) in the
middle of the five membered amino acid oligopeptides studied. The experimental activities
provided by Abujubara differ for Glu-containing structures 3 and 6: whereas structure 3
shows moderate activity, structure 6 does not show it at the experimental conditions used.
Additionally, it should be noted that the structures that are more prone to binding to
different SrtA conformations studied are 3, 6, and to some extent 9.

Table 4. Estimated probabilities of binding the oligopeptides of the studied set to each of the SrtA
structures used in the study (including two reference PDB structures), calculated using Boltzmann
weights separately for each ligand.

# 1T2W 2KID Cl_01 Cl_02 Cl_03 Cl_04 Cl_05 Cl_06 Ene(BW) *
1 0.000 0.000 0.000 0.000 0.999 0.000 0.001 0.000 −11.94
2 0.003 0.000 0.000 0.013 0.978 0.000 0.006 0.000 −11.86
3 0.026 0.496 0.030 0.031 0.361 0.014 0.036 0.006 −7.86
4 0.001 0.001 0.000 0.011 0.987 0.000 0.000 0.000 −11.85
5 0.001 0.000 0.000 0.002 0.982 0.015 0.000 0.000 −12.23
6 0.460 0.010 0.047 0.352 0.117 0.010 0.002 0.001 −10.23
7 0.073 0.001 0.000 0.000 0.769 0.140 0.017 0.001 −9.56
8 0.024 0.001 0.000 0.001 0.938 0.035 0.001 0.000 −12.54
9 0.019 0.010 0.004 0.000 0.737 0.019 0.210 0.000 −9.62

* Ene(BW)—the Bolzmann-weighted mean energy of each compound interaction with the ensemble of geometries
of SrtA used, with the green highlights corresponding to the most favorable energies and the red ones to the least
favorable. The intensity of the probability values (columns except Ene(BW)) color corresponds to the probability
values to enhance visual inspection.

ρi =
e−∆Gi/RT

∑j e−∆Gj/RT , (1)

where ρi is the weighted ensemble probability to encounter a complex of the probe ligand
with the i-th SrtA geometry; ∆Gi is the interaction energy (estimated by AutoDock4.2) of
the probe ligand with the i-th SrtA geometry.

ENE(BW) = ∑i ∆Gi · ρi = ∑i ∆Gi ·
e−∆Gi/RT

∑j e−∆Gj/RT , (2)

where ENE(BW) is the Boltzmann-weighted interaction free energy of the probe ligand
among the ensemble of the SrtA geometries used.

Since an appreciable distribution of Boltzmann probabilities of binding between SrtA
structures is observed, despite the clear dominance of binding to the Cluster #3 struc-
ture, the correspondence of the experimental activities and the predicted values should
be determined using the weighted ensemble approach. The ensemble weighted (using
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Boltzmann weights) values of the scoring function of AutoDock4.2 (having the dimension
of free energy) for the optimal binding positions, Ene(BW) (2), are presented in Table 4
for each studied ligand. A moderate correspondence to the experimental data activities
is observed. The structures 2 and 5 are correctly predicted as the most active/affine. The
structures 6 and 7 are correctly predicted as the least active. However, there are two signifi-
cant cases of discrepancy in prediction. The reference structure 1 of unmodified LPRDA is
incorrectly predicted to be active in contrast to experimental activity, almost exclusively due
to exceptional binding to Cluster #3. The second case of discrepancy is structure 3 having
its middle Arg(R) substituted with Glu(E) in the reference LPRDA oligopeptide ligand
sequence, which is predicted as the worst overall binder to the SrtA structures studied. We
suppose that the somewhat overrated predicted activity of the reference oligopeptide 1
(LPRDA) can be explained as a combination of two factors: a certain bias is introduced from
taking the SrtA conformations from LPRDA-SrtA molecular dynamics and perhaps the
presence of a conformation close to Cluster #3 in the actual ensemble of SrtA conformations
is statistically somewhat overestimated. As for the Glu-containing structure 3 (LPETP),
its underpredicted activity may be explained by the fact that the pattern of structural
stabilization involved in adopting either Arg(R) or Glu(E) in the middle position of the
reference LPRDA sequence is quite different, which is natural considering their opposite
formal charges. It seems that conformations pertinent to well-binding polypeptide se-
quences with Glu(E) in the middle are not well presented in the six most abundant clusters
chosen. As a solution for further development, the complexes including sequences with
Glu(E) should be included in the MD simulation with the subsequent clusterization of SrtA
geometries as well as, perhaps, using more than six cluster geometries to represent the
SrtA conformation ensemble. It should be noted that the Glu(E)-containing structures 3
and 6 are predicted (Table 4) as not being dominated by the binding energy of the Cluster
#3 SrtA geometry, as for the rest of the oligopeptide sequences. The latter suggest that the
Cluster #3 structure is beneficial for binding sequences containing Arg(R) in the middle.
Taking apart the described discrepancies, one can conclude that, for Arg(R)-containing
oligopeptide sequences, the prediction is satisfactory, which is encouraging considering the
complex nature of the highly flexible binding site target and the compact size of the cluster
conformations used.

A separate notion worth noticing is the fact that the geometry of SrtA from Cluster #1
is represented in more than a fifth part of all snapshots of the analyzed MD trajectories. Still,
the binding to Cluster #1 conformation is among the least favorable according to docking for
most ligands. At a structural level, it is explained by the fact that the binding site in Cluster
#1 is represented by a large and rather shallow cavity, which does not have a strong binding
compared to deep and predominantly hydrophobic pockets. This observation seems to
support the idea that only a fraction of the accessible SrtA conformations is relevant to
affine binding. Even more interesting is that predictions made using only Cluster #1 (as the
most abundant) qualitatively contradict the experimental observations. For instance, the
structures 2 and 5, most active in the experiment, are predicted as the least active (Table 3),
whereas the experimentally least active structures 6 and 8 are predicted as active. Since
the Cluster #1 conformation is the most represented in the MD simulation, it is possible to
explain why the evenly taken snapshots of the MD trajectories, as used in the work in [21],
do not form an optimal basis to build a set of reference conformations for ensemble docking
for such a complex and adaptable structure as SrtA.

Additionally, it should be noted that the use of experimental models from PDB also
does not provide a reliable basis for prediction. For both cases of PDB:1T2W and PDB:2KID
as reference for docking, the discrepancy in the prediction of the active structures 2 and
5 and not active structures 6 and 8 is significant, as in the case of the Cluster #1 structure
above. Moreover, for PDB:2KID, the most experimentally active structure 2 is predicted as
being among the least active.
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An analysis of the predicted geometry of ligand 2 (the best according to Abajubara
research) with the SrtA structure of Cluster #3 reveals reasonable structural interaction
patterns (Figure 6). Firstly, a good filling of the binding site with the ligand, with well-
pronounced intermolecular contacts, is observed. Secondly, the electrostatic complementar-
ity is also very good. On the one hand, the Arg(R) of ligand LPRDSar (2) forms a complete
(two hydrogen bonds) salt bridge with Glu105 and a single hydrogen-bond contact with
the Glu105 of SrtA. Additional hydrogen bonds are formed with the carbonyl oxygens of
the backbone residues of Asn114 and Gln172. Thus, the docked structure suggests that
the Arg (R) coordination of the ligand imitates the Ca2+ binding with the residues of SrtA
specifically dedicated for it [14]. On the other hand, the side-chain of Arg197 of SrtA is well
coordinated with the carboxylic group of Asp (D) and by the backbone carbonyl oxygens of
Pro (P) and Asp (D) of the ligand. The interaction of such type with Arg197 was postulated
by us earlier [22] as important on the basis of the comparison of the experimental data
available and the results of the simulations. Consequently, we put forward a hypothesis
that not only the Cluster #3 geometry forms a pronounced pocket in the binding site of
SrtA, facilitating binding, but also makes it possible to form multiple charged hydrogen
bonds with the catalytic residue Arg197; the importance of the interaction of a ligand with
the latter was shown earlier. Overall, the analysis of the structures of the complexes shows
the validity of the structures of clusters (representative geometries of SrtA) for further use
in predicting the binding affinity (activity) for other test molecules of ligands.
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Figure 6. The predicted structure of complex 2-SrtA with the geometry of SrtA taken from Cluster #3:
(left)—the surface representation of the protein colored in electrostatic potential (red being negative
and blue—positive values, obtained by PyMol), (right)—the cartoon and sticks representation of the
protein colored in colors of the secondary structure (yellow—β-sheets, red—helices and green—coil).

Thus, the initial approbation of the entire approach showed its relevance to the out-
lined tasks of structure-based design modeling. Despite the revealed dominance of the
interactions from Cluster #3, for several ligands, appreciable corrections from interaction
with other SrtA conformations are observed. The approach may thus be considered as
validated to predict the affinity of other ligands.

2.3. Modeling KUD Peptidomimetics
2.3.1. Ligands

In conditions when molecular modeling still does not point to a definitive direction of
design and/or a modification of the existing hits, hit modification is conducted guided by
medicinal chemistry considerations and synthetical accessibility of analogs. Thus, it has
been suggested that replacing the relatively nonpolar part, LP, in the LPRDA ligand with
one of the low-molecular frameworks from the KUD series of compounds is promising.
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This substitution has several goals. Firstly, the KUD family of structures generally has
rather rigid frameworks, which might be useful for both increasing the affinity to SrtA
and to enhance selectivity to off-targets. Secondly, the presence of Pro in an amino acid
sequence is known to lead to a characteristic turn in a secondary structure due to intrinsic
chirality and the relative rigidity of the ring fragment. This is one of the reasons behind
the choice of KUD series structures to replace LP fragments: they are generally able to
form a similar turn and most of them are chiral. Thirdly, one of the main reasons to use
peptido-mimetics instead of the oligopeptide sequences is the enhanced bioavailability of
the former due to the increased times of biodegradation. Native oligopeptide sequences are
prone to quick metabolism in living systems, which is why the appreciable modification of
oligopeptides can lead to diminished biodegradation.

In this work, six KUD structures were investigated to replace the LP part of the refer-
ence LPRDA sequence. Each of the structures is represented with two distinct enantiomers
(Figure 7).
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Figure 7. The studied KUD-RDA molecules with the configuration of each key stereocenter
explicitly indicated.

Since the amino acids Leu (L) and Pro (P) possess chirality, which affects the secondary
and tertiary structures of polypeptides, it is natural to assume that, in a replacement scheme
LP-RDA -> KUD-RDA, certain enantiomers can have a significant preference in binding
to the generally chiral SrtA binding site. One of the goals of the current work was to
assess to which extent the choice of KUD enantiomer in KUD-RDA ligands affects the
predicted affinity. To this end, each investigated structure was explicitly represented with
two enantiomers, and the stereochemical configuration of RDA amino acids was in all cases
fixed to L-isomers, the most abundant in nature.

2.3.2. Results of Docking

The energies of the best docking poses of the studied KUD-RDA ligands with each
of the presented geometries of SrtA are presented in Table 5 and Figure 8. It can be seen
that the key findings revealed in the stage of the validation of the proposed procedure
for ensemble docking using ligands 1–9 from the Abajubara work are quite similar to the
observed results for ligands 10–21 from the KUD-RDA series.
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Table 5. Docking results for KUD-RDA peptidomimetics.

1T2W 2KID Cluster_01 Cluster_02 Cluster_03 Cluster_04 Cluster_05 Cluster_06
num E LE E LE E LE E LE E LE E LE E LE E LE NH

1 −6.86 0.17 −5.07 0.13 −5.27 0.13 −6.30 0.16 −11.94 0.30 −6.07 0.15 −7.38 0.18 −3.71 0.09 40
10 −9.26 0.21 −8.22 0.18 −7.54 0.17 −7.48 0.17 −9.37 0.21 −7.89 0.18 −5.11 0.11 −5.27 0.12 45
11 −6.98 0.16 −6.05 0.13 −5.87 0.13 −5.95 0.13 −8.11 0.18 −5.41 0.12 −6.05 0.13 −6.78 0.15 45
12 −8.18 0.18 −9.05 0.20 −6.83 0.15 −7.14 0.16 −9.31 0.20 −7.07 0.15 −7.57 0.16 −6.40 0.14 46
13 −5.67 0.12 −5.86 0.13 −7.00 0.15 −4.41 0.10 −6.47 0.14 −5.81 0.13 −5.34 0.12 −4.19 0.09 46
14 −10.26 0.24 −7.01 0.16 −5.35 0.12 −6.37 0.15 −12.46 0.29 −6.70 0.16 −7.76 0.18 −7.24 0.17 43
15 −9.02 0.21 −6.41 0.15 −5.56 0.13 −6.60 0.15 −9.79 0.23 −9.12 0.21 −7.27 0.17 −6.73 0.16 43
16 −8.52 0.19 −6.45 0.15 −4.22 0.10 −7.13 0.16 −7.73 0.18 −5.05 0.11 −7.83 0.18 −6.03 0.14 44
17 −7.44 0.17 −7.57 0.17 −5.19 0.12 −10.63 0.24 −9.32 0.21 −6.25 0.14 −6.44 0.15 −5.53 0.13 44
18 −8.06 0.18 −7.86 0.17 −6.63 0.15 −6.93 0.15 −11.23 0.25 −7.21 0.16 −6.81 0.15 −6.03 0.13 45
19 −7.62 0.17 −7.69 0.17 −6.62 0.15 −5.81 0.13 −7.84 0.17 −6.14 0.14 −6.34 0.14 −5.84 0.13 45
20 −9.37 0.22 −9.62 0.22 −5.75 0.13 −8.02 0.19 −11.38 0.26 −7.60 0.18 −6.57 0.15 −6.57 0.15 43
21 −9.67 0.22 −8.37 0.19 −6.58 0.15 −7.96 0.19 −10.71 0.25 −6.21 0.14 −7.01 0.16 −7.51 0.17 43

NH—the number of heavy (non hydrogen) atoms of each ligand of 1, 10–21 used to calculate LE using
LE = −E(∆G)/NH. The green color intensity in LE values corresponds to the closeness of the values to the
standard threshold value of LE being 0.3 kcal/(mol·atom).
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In particular, the distribution of the obtained energies shows a similar pattern. Firstly,
generally, the most efficient interactions are formed with SrtA in the Cluster #3 geometry.
For the same SrtA geometry, the ligand efficiencies (LEs) that are the closest to the commonly
acceptable threshold of 0.3 kcal/(mol·atom) are attained (Table 5, LE columns colored as
proximity to the threshold value). Secondly, generally, the least beneficial interactions are
formed with the Cluster #1 and Cluster #6 structures of SrtA, which are the most and least
represented in the MD trajectory, respectively.

An analysis of the distribution of the probability to bind each particular SrtA structure
suggests that, despite the dominance of Cluster #3 binding, an appreciable binding can
occur also with other SrtA geometries (Table 6). Similar to the results of the validation set
1–9, the contributions from the PDB structures of SrtA (1T2W and 2KID) rarely prevail
(a notable expectation is structure 16); however, they still make appreciable Boltzmann
contributions to the ensemble.
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For structures 14, 17, 18, 20, and 21 (the darkest green highlights in Table 6), the
predicted Boltzmann-weighted binding energy values are comparable to or better than
predicted for the reference structure LPRDSar (2). Therefore, these structures should
be prioritized based on the results of modeling. Moreover, it should be noted that these
structures are represented in each case with a single enantiomer of KUD-RDA. This confirms
that the binding site is susceptible to the stereochemistry of ligands, provided they are not
too small. It additionally validates the idea of the design used to replace LP with KUD
fragments, since in both cases the chiral influence is appreciable.

Table 6. Estimated probabilities of binding the KUD-RDA ligands to each of the SrtA structures used
in the study (including two reference PDB structures), calculated using Boltzmann weights separately
for each ligand.

# 1T2W 2KID Cl_01 Cl_02 Cl_03 Cl_04 Cl_05 Cl_06 Ene(BW) *
2 0.003 0.000 0.000 0.013 0.978 0.000 0.006 0.000 −11.86
10 0.388 0.069 0.022 0.020 0.462 0.040 0.000 0.000 −9.11
11 0.109 0.023 0.017 0.020 0.722 0.008 0.023 0.078 −7.69
12 0.079 0.335 0.008 0.014 0.519 0.012 0.029 0.004 −8.99
13 0.058 0.079 0.527 0.007 0.219 0.073 0.033 0.005 −6.55
14 0.025 0.000 0.000 0.000 0.974 0.000 0.000 0.000 −12.40
15 0.169 0.002 0.001 0.003 0.614 0.199 0.009 0.004 −9.48
16 0.578 0.018 0.000 0.057 0.153 0.002 0.182 0.009 −8.12
17 0.004 0.005 0.000 0.889 0.099 0.001 0.001 0.000 −10.46
18 0.005 0.004 0.000 0.001 0.988 0.001 0.001 0.000 −11.19
19 0.248 0.276 0.047 0.012 0.354 0.021 0.029 0.013 −7.56
20 0.032 0.048 0.000 0.003 0.914 0.002 0.000 0.000 −11.21
21 0.145 0.017 0.001 0.008 0.823 0.000 0.002 0.004 −10.47

* Ene(BW)—the Bolzmann-weighted mean energy of each compound interaction with the ensemble of geometries
of SrtA used, with the green highlights corresponding to the most favorable energies and the red ones to the least
favorable. The intensity of the probability values (columns except Ene(BW)) color corresponds to the probability
values to enhance visual inspection.

The structural analysis of the most favorable predicted complex of 14 with SrtA in
the Cluster #3 geometry shows (Figure 9) that the fragment KUD225-5R of the studied
peptidomimetic fits almost perfectly the hydrophobic pocket formed by the rigid β-strand
of the core β-barrel structure of SrtA and the folded geometry of the generally flexible β6/β7
loop. Other crucial elements described earlier in the analysis of Cluster #3 binding are
basically conserved in the complex, but in somewhat modified forms. Thus, the carboxylic
group of the side-chain of Asp (D) as well as the terminal carboxylate of Ala (A) of RDA
sequence essentially “chelate”, with their interactions, the catalytically important Arg197,
according to predictions. The Arg (R) of the RDA sequence, in turn, coordinates well with
Glu108, Glu105, as well as with Asn114 and Gln172 in a practically identical structural
position compared to the predicted geometry of the experimentally best structure 2 of the
Abujubara set.

Despite the current study revealing a good correspondence of the crucial binding
factors for the peptidomimetics under question, in the predicted complexes, there is still
room for additional rational optimization. In particular, a part of the site surface formed by
the β3-strand, the side-chain of Arg197, leading to the catalytic Cys184, remains unused
for direct interactions. There is potential to improve both the affinity and selectivity of
the studied molecules by forming direct interactions with the described area. Another
optimization possibility is to form covalent rings in places where the predicted ligand
geometry forms intermolecular hydrogen bonds in order to fix the active conformation and
thus reduce the penalty for entropy loss caused by the great number of freely rotatable
bonds characteristic of oligopeptide fragments.
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Thus, a combination of the structural and energetic analyses of the docking results of
the studied KUD-RDA peptidomimetics to the ensemble of SrtA geometries shows that
the peptidomimetics reasonably reproduce the crucial patterns of interactions revealed in
the analysis of the binding of the Abujubara structures 1–9 as well as introduce certain
additional interaction patterns. On the other hand, it was shown that the ensemble docking
approach for modeling SrtA interactions at the structural level (SBDD) with potential
inhibitors has good applicability and has prospects for further rational structure-based
drug discovery in the field.

3. Discussion

The design of our work and the obtained results are in the spirit of the tendency to
tackle traditionally “tough” targets [40,45,46] using the structure-based drug discovery
arsenal of approaches and tools, which is on the rise in contemporary science. In partic-
ular, targets that are hardly representable with a single relevant conformation are being
studied with ensemble approaches. Recently, Stachowski et al. [47] studied the heat-shock
protein 90 (Hsp90α) as a promising anticancer target. It was shown that the experimen-
tally available conformations of the protein (complexed with chemically different ligands)
could be clustered into three main cluster representative structures differing mainly in the
conformation of the part of the flexible binding site—the “lid”. It was also shown that
the resulting conformations possess different “hotspot” patterns and can therefore bind
chemically distinguishable ligands. This corresponds well to SrtA targeting. For other
challenging and important drug targets, such as kinases, the ensemble generation with
subsequent docking has been successfully used. For example, for the c-Met target, the bind-
ing site’s unusual plasticity was explained using the ensemble approach and a potential
c-Met inhibitor exploiting previously unseen binding modes was also proposed [48,49]. We
believe the ensemble approach is crucial to consider when modeling SrtA interactions, since
to date chemically and structurally different ligands have been shown to inhibit SrtA [4,9]
that are unlikely to bind in the same binding site configuration.

At the same time, it was shown in the work of Gao et al. [39] that neither the ex-
perimentally available nor MD-generated single conformation of SrtA are able to discern
actives from decoys in a docking study, with several actives preferring certain SrtA confor-
mations. The authors also found that the more compact SrtA conformations are in terms
of the distance from the catalytic Csy184 to the flexible β6/β7 loop, the more enrichment
is obtained for different ligands. This is in accord with our results, where the Cluster #3
geometry (having the most compact arrangement of the β6/β7 loop relative to other site
elements, in particular, Cys184 position) creates the most favorable interactions according
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to docking, since that geometry better resembles “good” small-molecule binding sites, in
contrast to other conformations, which are more “open” and possess, therefore, a binding
site that is more similar to the large and flat binding sites encountered in protein–protein
interactions (PPIs) [30,31].

In this work, a proof-of-concept study is presented aimed at assessing the ensemble
method, which does not add significant additional computational burden compared to
a single-receptor conformation docking. Evidently, an increase in the number of the
clustered conformations or even a use of non-clustered snapshots from a relatively long
MD simulation, as suggested in the work of Evangelista et al. [50], will result in a better
coverage of SrtA conformation, potentially relevant to describe ligand-SrtA interactions.
However, it is hard to decide beforehand how many conformations suffice when dealing
with a target such as SrtA, since they significantly change the binding surface (hence, the
interaction patterns) and are not as densely covered by reliable experiment inhibitors as was
the case for the targets from the study of Evangelista. An additional point for the further
development of the approach is to include, in the initial snapshot set, the conformations
resulting from the MD simulation of complexes of LPEXX (of which structure 3, LPETP,
was experimentally shown as being active by Abujubara [32]) with SrtA. It seems that StrA
conformations, which could describe apparently different binding patterns (compared to
LPRDA and analogs) well [11], are missing in the currently chosen cluster representatives.
However, it is also possible that certain SrtA conformations (beyond #6) could represent
such interactions well. This constitutes the direction for further development.

An additional point for development is the estimation of the probability of the SrtA
conformation in the ensemble of conformations reachable at body temperature. The current
study assumed for simplicity that each of the two PDB structures and obtained six cluster
geometry had equal a priori probabilities to encounter them, which is evidently not the
case in general.

Overall, the presented approach corresponds well to the known scientific background
and is by design not resource-demanding to enable its direct use in applied drug discovery
projects either in its current state or after certain enhancements, likely along the lines
outlined above.

4. Materials and Methods
4.1. Molecular Dynamics of LPRDA-SrtA Complexes

To sample SrtA conformations for subsequent clustering, a molecular dynamics (MD)
simulation of LPRDA-SrtA complexes was performed. The details of the choice of com-
plexes and MD simulation are described elsewhere [29], where it was revealed that sim-
ulating the LPRDA-SrtA complex effectively leads to an accelerated sampling of SrtA
conformations compared to the simulation of the apo form. The latter was attributed to
the property of LPRDA to act as a “plasticizer” in this system. Eight different LPRDA-SrtA
complex geometries obtained by docking (three with AutoDock 4.2 and five with AutoDock
Vina 1.1.2) were used as initial structures for the MD simulation. Additionally, each initial
geometry was used with 3 different random seeds, which resulted in appreciably different
dynamics, hence creating an additional sampling of the SrtA geometry. The significantly
different MD trajectories agree well with the partially chaotic behavior of the system caused
by the intrinsically disordered regions of the loops β7-β8 and especially β6-β7 [13]. Each
MD simulation lasted 10 ns after equilibration. In the current work, the MD trajectories
obtained in the previous work [29] and described above were used as input for further
clusterization of the conformational space of SrtA.

4.2. SrtA Conformation Clusterization

The snapshots for subsequent clustering were extracted from each MD trajectory as
evenly spaced with 100 ps between them. Overall, 8 (initial complexes) × 3 (repetitions
with different random seeds) × 101 (images in each MD trajectory) = 2424 snapshots were
used for the cluster analysis. Cluster analysis was performed via GROMACS utility ‘cluster’
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using the GROMOS clustering scheme with a central structure having the smallest distances
to all other members of a cluster. For clustering, only the coordinates of the backbone
Cα-atoms were used, which is usual practice. Overall, 65 distinct clusters were found
(with RMSD cutoff equal to 1.3 Å). It is important to note that in the obtained clusters are
represented with an actual structure from a certain MD snapshot with all distances and
angles properly defined, not with mathematically mean coordinates (which may result in
significantly unnatural local structures). Out of the 65 overall clusters obtained, only 6 of
the most represented (covering 59.5% of all frames) were retained (Table 1) as representative
ensemble geometries for subsequent docking and analysis.

4.3. Ligand Preparation

All of the used ligands were sketched with PyMol 2.5 (for regular protein sequences)
and Avogadro 1.93 [51] for small-molecule (KUD) and non-standard amino acids. Space
(3D) geometries of all molecules were generated from scratch using SMILES representation
(with correct stereocenter information) as input and OpenBabel v3.0.0 as the means to pro-
duce spatial geometry (option --gen3D) [52]. The protonation states of all ligands were set to
correspond to pH = 7 using the -p option of OpenBabel. MGLTools v1.5.6 [53] with the stan-
dard settings used to obtain the PDBQT-files necessary for subsequent AutoDock modeling.

4.4. Docking

The AutoDock 4.2 scoring function and docking was used as implemented in the
AutoDock Vina 1.2.3 software [54], which enables parallel runs. The grid box was of size
18.75 × 18.00 × 23.25 (X × Y × Z) Å and centered in −37.0, −18.2, 4.3, which was chosen
visually to include the binding site in all studied conformations of SrtA simultaneously
(Figure S1). The coordinates of all eight SrtA conformations used in the work aligned to
the same reference frame (using cealign utility of PyMol) and compatible with the grid
box described above are provided in the Supplementary Information. The potential grids
were generated using the autogrid4 utility with the grid parameters specified above. The
AutoDock Vina 1.2.3 software with parameter --scoring = ad4 (to use AutoDock4 scoring
function) and increased value of --exhaustiveness = 64 was used to conduct docking.

4.5. Ensemble Analysis

AutoDock 4.2 produces the scores in free energy units enabling the direct use of
statistical mechanics estimation of probabilities of complexes in the ensemble, using (1)
and (2). The best energy docked complexes were used to produce ensemble statistics.
Such a use assumes that only the explicitly considered SrtA geometries form the ensemble,
whereas the other geometries result in significantly less beneficial complexes, leading to
their negligible contribution to the ensemble.

5. Conclusions

In the conducted work, we tested the hypothesis of the relevance of the ensemble
docking approach to obtain a reasonably reliable means of structure-based modeling
(SBDD) of the interactions of SrtA with small molecules—potential inhibitors. It should be
noted that such means have been lacking to date. As a result, we put forward and tested the
algorithm of SrtA conformation selection, which makes it possible to meet the requirements
for the SrtA structure, taking into account the pitfalls revealed previously in our works and
by other researchers in the field.

It was shown that the ensemble docking approach leads to a qualitatively better de-
scription of the experimentally observed relationships in the binding of the series of LPRDA
analogs (taken from Abujubara [32]). Additionally, one of the ensemble conformations
of StrA (Cluster #3), which is present only in 7% of the MD snapshots used for the analy-
sis, possesses a binding site with a partially ordered state of the generally flexible β6/β7
loop, with qualities approaching the characteristics of the “good” binding sites for small
molecules due to the formation of a relatively deep and compact cavity compared to the
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initial experimental structure PDB:1T2W. Unsurprisingly, for many of the studied ligands,
the use of precisely this conformation for docking leads to the most beneficial predicted in-
teraction energy. However, there are cases of ligands where other conformations contribute
significantly or even dominantly. Additionally, the Boltzmann-weighted contributions
of the other ensemble SrtA conformations are appreciable and valuable for many of the
ligands studied.

Using the validated ensemble approach, we obtained predictions for the series of
KUD-RDA peptidomimetics in which the LP part of LPRDA oligopeptide was substituted
with relatively rigid, chiral, and partially lipophilic fragments of KUD series compounds.
The most prospective structures were selected for further experimental evaluation.

It was shown that, despite the proposed approach not being able to completely address
all the difficulties associated with modeling of such a complex target as SrtA, it does form
a more reliable basis for structure-based modeling compared to the approaches used
previously. The latter were obtained by using the available PDB structures or via the
ensemble approach, in which random MD snapshots were taken to build an ensemble
of conformations. This result, in turn, makes it possible to use the proposed ensemble
approach for the modeling of the key interactions of the developed small molecules and/or
peptidomimetics aimed at designing new antivirulence drugs to combat hospital infections,
in particular, Staphylococcus aureus, including MRSA and other resistant strains.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms252011279/s1.
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