Flower-Shaped PCR Scaffold-Based Lateral Flow Bioassay for Bacillus cereus Endospores Detection
Abstract
:1. Introduction
2. Result and Discussions
2.1. Principle of the Flower-Shaped PCR Scaffold-Based Lateral Flow Biosensor
2.2. Characterization of Flower-Shaped PCR Scaffolds
2.3. Characterization of AuNPs@polyA-cDNA Nanoprobes
2.4. Analytical Performance of FSPCRS-LFB for Endospores Detection
2.5. Analytical Performance for Endospore-Cell Mixtures Detection
3. Materials and Methods
3.1. Reagents, Consumables and Apparatus
3.2. Preparation and Characterization of Flower-Shaped PCR Scaffold
3.3. Preparation and Optimization of AuNPs@polyA-cDNA
3.4. Fabrication of the Flower-Shaped PCR Scaffold-Based Lateral Flow Biosensor
3.5. Sample Assay Procedures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Enosi Tuipulotu, D.; Mathur, A.; Ngo, C.; Man, S.M. Bacillus cereus: Epidemiology, Virulence Factors, and Host–Pathogen Interactions. Trends Microbiol. 2021, 29, 458–471. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Flint, S.H.; Palmer, J.S. Bacillus cereus Spores and Toxins—The Potential Role of Biofilms. Food Microbiol. 2020, 90, 103493. [Google Scholar] [CrossRef] [PubMed]
- Ghazaei, C. Advances in the Study of Bacterial Toxins, Their Roles and Mechanisms in Pathogenesis. Malays. J. Med. Sci. 2022, 29, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Dierick, K.; Coillie, E.V.; Swiecicka, I.; Devlieger, H.; Meulemans, A.; Fourie, L.; Heyndrickx, M. A Fatal Family Outbreak of Bacillus cereus—Associated Food Poisoning. J. Clin. Microbiol. 2005, 43, 4277–4279. [Google Scholar] [CrossRef] [PubMed]
- Ramarao, N.; Tran, S.-L.; Marin, M.; Vidic, J. Advanced Methods for Detection of Bacillus cereus and Its Pathogenic Factors. Sensors 2020, 20, 2667. [Google Scholar] [CrossRef]
- Kotiranta, A.; Lounatmaa, K.; Haapasalo, M. Epidemiology and Pathogenesis of Bacillus cereus Infections. Microbes Infect. 2000, 2, 189–198. [Google Scholar] [CrossRef]
- Ehling-Schulz, M.; Lereclus, D.; Koehler, T.M. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol. Spectr. 2019, 7, 10–1128. [Google Scholar] [CrossRef]
- Soni, A.; Brightwell, G. Genetic Determinants of Thermal Resistance in Foodborne Bacterial Pathogens. Food Saf. Health 2024, 2, 213–220. [Google Scholar] [CrossRef]
- Granum, P.E.; Lund, T. Bacillus cereus and Its Food Poisoning Toxins. FEMS Microbiol. Lett. 2006, 157, 223–228. [Google Scholar] [CrossRef]
- Liang, L.; Wang, P.; Qu, T.; Zhao, X.; Ge, Y.; Chen, Y. Detection and Quantification of Bacillus cereus and Its Spores in Raw Milk by qPCR, and Distinguish Bacillus cereus from Other Bacteria of the Genus Bacillus. Food Qual. Saf. 2022, 6, fyab035. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Lin, Y.; Yang, Y.; Zhang, L.; Zhao, P.; Wang, C.; Fei, J.; Xie, Y. Detection of Catechins in Tea Beverages Using a Novel Electrochemical Sensor Based on Cyclodextrin Nanosponges Composite. eFood 2023, 4, e64. [Google Scholar] [CrossRef]
- Vizzini, P.; Braidot, M.; Vidic, J.; Manzano, M. Electrochemical and Optical Biosensors for the Detection of Campylobacter and Listeria: An Update Look. Micromachines 2019, 10, 500. [Google Scholar] [CrossRef] [PubMed]
- Lahcen, A.A. Label-Free Electrochemical Sensor Based on Spore-Imprinted Polymer for Bacillus cereus Spore Detection. Sens. Actuators B Chem. 2018, 276, 114–120. [Google Scholar] [CrossRef]
- Martínez-Blanch, J.F.; Sánchez, G.; Garay, E.; Aznar, R. Evaluation of a Real-Time PCR Assay for the Detection and Quantification of Bacillus cereus Group Spores in Food. J. Food Prot. 2010, 73, 1480–1485. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.; Hu, T.; Haase, I.; Hahn, U.; Fischer, M. Food Sensing: Aptamer-Based Trapping of Bacillus cereus Spores with Specific Detection via Real Time PCR in Milk. J. Agric. Food Chem. 2015, 63, 8050–8057. [Google Scholar] [CrossRef]
- Beverly, M.B.; Voorhees, K.J.; Hadfield, T.L.; Cody, R.B. Electron Monochromator Mass Spectrometry for the Analysis of Whole Bacteria and Bacterial Spores. Anal. Chem. 2000, 72, 2428–2432. [Google Scholar] [CrossRef]
- Gültekin, A.; Ersöz, A.; Hür, D.; Sarıözlü, N.Y.; Denizli, A.; Say, R. Gold Nanoparticles Having Dipicolinic Acid Imprinted Nanoshell for Bacillus cereus Spores Recognition. Appl. Surf. Sci. 2009, 256, 142–148. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, Y.; Sun, D.; Yan, S.; Wen, Y.; Wang, Y.; Li, G.; Liu, H.; Li, J.; Song, Z. Recent Advances in Molecularly Imprinted Polymers for Antibiotic Analysis. Molecules 2023, 28, 335. [Google Scholar] [CrossRef]
- Wang, D.-B.; Tian, B.; Zhang, Z.-P.; Wang, X.-Y.; Fleming, J.; Bi, L.-J.; Yang, R.-F.; Zhang, X.-E. Detection of Bacillus Anthracis Spores by Super-Paramagnetic Lateral-Flow Immunoassays Based on “Road Closure”. Biosens. Bioelectron. 2015, 67, 608–614. [Google Scholar] [CrossRef]
- Gu, Y.; Li, Y.; Ren, D.; Sun, L.; Zhuang, Y.; Yi, L.; Wang, S. Recent Advances in Nanomaterial-assisted Electrochemical Sensors for Food Safety Analysis. Food Front. 2022, 3, 453–479. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Qu, C.; Ding, Z.; Liu, H. Hydrogel-based Surface-enhanced Raman Spectroscopy for Food Contaminant Detection: A Review on Classification, Strategies, and Applications. Food Saf. Health 2023, 1, 110–125. [Google Scholar] [CrossRef]
- Ling, Z.; Yang, L.; Zhang, W.; Yao, T.; Xu, H. Detection of Food Contaminants: A Review of Established Rapid Analytical Techniques and Their Applications and Limitations. Food Saf. Health 2024, 2, 72–95. [Google Scholar] [CrossRef]
- Wang, T.; Chen, L.; Chikkanna, A.; Chen, S.; Brusius, I.; Sbuh, N.; Veedu, R.N. Development of Nucleic Acid Aptamer-Based Lateral Flow Assays: A Robust Platform for Cost-Effective Point-of-Care Diagnosis. Theranostics 2021, 11, 5174–5196. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yue, T.; Yuan, Y.; Shi, Y. Unlabeled Fluorescence ELISA Using Yellow Emission Carbon Dots for the Detection of Alicyclobacillus acidoterrestris in Apple Juice. eFood 2023, 4, e65. [Google Scholar] [CrossRef]
- Luo, K.; Kim, H.-Y.; Oh, M.-H.; Kim, Y.-R. Paper-Based Lateral Flow Strip Assay for the Detection of Foodborne Pathogens: Principles, Applications, Technological Challenges and Opportunities. Crit. Rev. Food Sci. Nutr. 2020, 60, 157–170. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, K.; Zheng, W.; Cheng, Y.; Li, T.; Cao, B.; Jin, Q.; Cui, D. Sandwich. Analyst 2021, 146, 1514–1528. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Fan, X.; Peng, J.; Pan, L.; Tu, K.; Chen, Y. Sandwich Fluorometric Method for Dual-Role Recognition of Listeria Monocytogenes Based on Antibiotic-Affinity Strategy and Fluorescence Quenching Effect. Anal. Chim. Acta 2022, 1221, 340085. [Google Scholar] [CrossRef]
- Mao, M.; Xie, Z.; Ma, P.; Peng, C.; Wang, Z.; Wei, X.; Liu, G. Design and Optimizing Gold Nanoparticle-cDNA Nanoprobes for Aptamer-Based Lateral Flow Assay: Application to Rapid Detection of Acetamiprid. Biosens. Bioelectron. 2022, 207, 114114. [Google Scholar] [CrossRef]
- Liu, Y.; Zhan, L.; Qin, Z.; Sackrison, J.; Bischof, J.C. Ultrasensitive and Highly Specific Lateral Flow Assays for Point-of-Care Diagnosis. ACS Nano 2021, 15, 3593–3611. [Google Scholar] [CrossRef]
- Ji, Y.; Huang, Y.; Cheng, Z.; Hao, W.; Liu, G.; Liu, Y.; Zhang, X. Lateral Flow Strip Biosensors for Foodborne Pathogenic Bacteria via Direct and Indirect Sensing Strategies: A Review. J. Agric. Food Chem. 2023, 71, 10250–10268. [Google Scholar] [CrossRef]
- Liu, R.; McConnell, E.M.; Li, J.; Li, Y. Advances in Functional Nucleic Acid Based Paper Sensors. J. Mater. Chem. B 2020, 8, 3213–3230. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Chen, H.; Du, G.; Guo, Q.; Yuan, Y.; Yue, T. Recent Trends in Fluorescent Aptasensors for Mycotoxin Detection in Food: Principles, Constituted Elements, Types, and Applications. Food Front. 2022, 3, 428–452. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, B.; Lu, Y.; Li, L.; Deng, K.; Zhang, S.; Zhang, H.; Yang, C.; Zhu, Z. Aptamer-LYTACs for Targeted Degradation of Extracellular and Membrane Proteins. Angew. Chem. Int. Ed. 2023, 62, e202218106. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qian, X.; Ran, C.; Li, L.; Fu, T.; Su, D.; Xie, S.; Tan, W. Aptamer-Based Targeted Protein Degradation. ACS Nano 2023, 17, 6150–6164. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, L.; Zhao, Y.; Zhu, C.; Yang, R.; Fang, M.; Luan, Y. Aptamer-Based Point-of-Care-Testing for Small Molecule Targets: From Aptamers to Aptasensors, Devices and Applications. TrAC Trends Anal. Chem. 2023, 169, 117408. [Google Scholar] [CrossRef]
- Ying, N.; Wang, Y.; Song, X.; Yang, L.; Qin, B.; Wu, Y.; Fang, W. Lateral Flow Colorimetric Biosensor for Detection of Vibrio Parahaemolyticus Based on Hybridization Chain Reaction and Aptamer. Microchim. Acta 2021, 188, 381. [Google Scholar] [CrossRef]
- Song, S.; Wang, X.; Xu, K.; Xia, G.; Yang, X. Visualized Detection of Vibrio Parahaemolyticus in Food Samples Using Dual-Functional Aptamers and Cut-Assisted Rolling Circle Amplification. J. Agric. Food Chem. 2019, 67, 1244–1253. [Google Scholar] [CrossRef]
- Bruno, J. Application of DNA Aptamers and Quantum Dots to Lateral Flow Test Strips for Detection of Foodborne Pathogens with Improved Sensitivity versus Colloidal Gold. Pathogens 2014, 3, 341–355. [Google Scholar] [CrossRef]
- Su, S.; Nutiu, R.; Filipe, C.D.M.; Li, Y.; Pelton, R. Adsorption and Covalent Coupling of ATP-Binding DNA Aptamers onto Cellulose. Langmuir 2007, 23, 1300–1302. [Google Scholar] [CrossRef]
- Garvey, C.J.; Khan, M.S.; Weir, M.P.; Garnier, G. Localisation of Alkaline Phosphatase in the Pore Structure of Paper. Colloid. Polym. Sci. 2017, 295, 1293–1304. [Google Scholar] [CrossRef]
- Glynou, K.; Ioannou, P.C.; Christopoulos, T.K.; Syriopoulou, V. Oligonucleotide-Functionalized Gold Nanoparticles as Probes in a Dry-Reagent Strip Biosensor for DNA Analysis by Hybridization. Anal. Chem. 2003, 75, 4155–4160. [Google Scholar] [CrossRef] [PubMed]
- Bialy, R.M.; Ali, M.M.; Li, Y.; Brennan, J.D. Protein-Mediated Suppression of Rolling Circle Amplification for Biosensing with an Aptamer-Containing DNA Primer. Chem. Eur. J. 2020, 26, 5085–5092. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, Q.; Kannan, B.; Botton, G.A.; Yang, J.; Soleymani, L.; Brennan, J.D.; Li, Y. Self-Assembled Functional DNA Superstructures as High-Density and Versatile Recognition Elements for Printed Paper Sensors. Angew. Chem. 2018, 130, 12620–12623. [Google Scholar] [CrossRef]
- Cheng, N.; Song, Y.; Shi, Q.; Du, D.; Liu, D.; Luo, Y.; Xu, W.; Lin, Y. Au@Pd Nanopopcorn and Aptamer Nanoflower Assisted Lateral Flow Strip for Thermal Detection of Exosomes. Anal. Chem. 2019, 91, 13986–13993. [Google Scholar] [CrossRef] [PubMed]
- Tallent, S.M.; Hait, J.M.; Bennett, R.W. Analysis of Bacillus cereus Toxicity Using PCR, ELISA and a Lateral Flow Device. J. Appl. Microbiol. 2015, 118, 1068–1075. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Goel, S. Advances in Continuous-Flow Based Microfluidic PCR Devices—A Review. Eng. Res. Express 2020, 2, 042001. [Google Scholar] [CrossRef]
- Tian, J.; He, X.; Lan, X.; Liang, X.; Zhong, Z.; Zhu, L.; Chen, K.; Chang, Q.; Xu, W. One-Pot Controllable Assembly of a Baicalin-Condensed Aptamer Nanodrug for Synergistic Anti-Obesity. Small 2023, 19, 2205933. [Google Scholar] [CrossRef]
- Tabatadze, D.; Zamecnik, P.; Yanachkov, I.; Wright, G.; Zhang, S.; Bogdanov, A.; Metelev, V. A Novel Thymidine Phosphoramidite Synthon for Incorporation of Internucleoside Phosphate Linkers during automated oligodeoxynucleotide synthesis. Nucleosides Nucleotides Nucleic Acids 2008, 27, 157–172. [Google Scholar] [CrossRef]
- Kumalasari, M.R.; Alfanaar, R.; Andreani, A.S. Gold Nanoparticles (AuNPs): A Versatile Material for Biosensor Application. Talanta Open 2024, 9, 100327. [Google Scholar] [CrossRef]
- Han, E.; Li, L.; Gao, T.; Pan, Y.; Cai, J. Nitrite Determination in Food Using Electrochemical Sensor Based on Self-Assembled MWCNTs/AuNPs/Poly-Melamine Nanocomposite. Food Chem. 2024, 437, 137773. [Google Scholar] [CrossRef]
- Yang, C.; Zhuang, Z.; Zou, Y.; Sun, D.; Zhang, D.; Liu, X.; Chen, X. A Novel Ratiometric Electrochemical Sensor Based on AuNPs Decorated MIL-101(Fe) for Simultaneously Monitoring Typical EDCs in Milk. Sens. Actuators B Chem. 2024, 417, 136224. [Google Scholar] [CrossRef]
- Dadmehr, M.; Mortezaei, M.; Korouzhdehi, B. Dual Mode Fluorometric and Colorimetric Detection of Matrix Metalloproteinase MMP-9 as a Cancer Biomarker Based on AuNPs@gelatin/AuNCs Nanocomposite. Biosens. Bioelectron. 2023, 220, 114889. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Lan, X.; Zhu, L.; Zhang, Y.; Chen, K.; Zhang, W.; Xu, W. Portable Dual-Aptamer Microfluidic Chip Biosensor for Bacillus cereus Based on Aptamer Tailoring and Dumbbell-Shaped Probes. J. Hazard. Mater. 2023, 445, 130545. [Google Scholar] [CrossRef] [PubMed]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11, 55. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, B.; Dave, N.; Servos, M.R.; Liu, J. Instantaneous Attachment of an Ultrahigh Density of Nonthiolated DNA to Gold Nanoparticles and Its Applications. Langmuir 2012, 28, 17053–17060. [Google Scholar] [CrossRef]
- Wu, R.; Peng, H.; Zhu, J.-J.; Jiang, L.-P.; Liu, J. Attaching DNA to Gold Nanoparticles With a Protein Corona. Front. Chem. 2020, 8, 121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Zhang, Z.; Shi, Y.; Wu, Z.; Shao, Y.; Wang, L.; Xu, X.; Xin, Z. Flower-Shaped PCR Scaffold-Based Lateral Flow Bioassay for Bacillus cereus Endospores Detection. Int. J. Mol. Sci. 2024, 25, 11286. https://doi.org/10.3390/ijms252011286
Tian J, Zhang Z, Shi Y, Wu Z, Shao Y, Wang L, Xu X, Xin Z. Flower-Shaped PCR Scaffold-Based Lateral Flow Bioassay for Bacillus cereus Endospores Detection. International Journal of Molecular Sciences. 2024; 25(20):11286. https://doi.org/10.3390/ijms252011286
Chicago/Turabian StyleTian, Jingjing, Zhuyi Zhang, Yaning Shi, Zichao Wu, Yuting Shao, Limin Wang, Xinglian Xu, and Zhihong Xin. 2024. "Flower-Shaped PCR Scaffold-Based Lateral Flow Bioassay for Bacillus cereus Endospores Detection" International Journal of Molecular Sciences 25, no. 20: 11286. https://doi.org/10.3390/ijms252011286
APA StyleTian, J., Zhang, Z., Shi, Y., Wu, Z., Shao, Y., Wang, L., Xu, X., & Xin, Z. (2024). Flower-Shaped PCR Scaffold-Based Lateral Flow Bioassay for Bacillus cereus Endospores Detection. International Journal of Molecular Sciences, 25(20), 11286. https://doi.org/10.3390/ijms252011286