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Abstract: The trithorax group (TrxG) complex is an important protein in the regulation of plant
histone methylation. The ABSENT, SMALL, OR HOMEOTIC DISCS 1 (ASH1) gene family, as
important family members of the TrxG complex, has been shown to regulate tolerance to abiotic
stress and growth and development in many plants. In this study, we identified nine GhASH1s in
upland cotton. Bioinformatics analysis revealed that GhASH1s contain a variety of cis-acting elements
related to stress resistance and growth and development. The transcriptome expression profiles
revealed that GhASHH1.A and GhASHH2.A genes expression were upregulated in flower organs
and in response to external temperature stress. The results of virus-induced gene silencing (VIGS)
indicated that GhASHH1.A and GhASHH2.A genes silencing reduced the ability of cotton to adapt
to temperature stress and delayed the development of the flowering phenotype. We also showed
that the silencing of these two target genes did not induce early flowering at high temperature
(32 ◦C), suggesting that GhASHH1.A and GhASHH2.A might regulate cotton flowering in response to
temperature. These findings provide genetic resources for future breeding of early-maturing and
temperature-stress-tolerant cotton varieties.

Keywords: upland cotton; temperature; virus-induced gene silencing (VIGS); temperature stress;
flowering time

1. Introduction

Temperature is an essential factor for plant growth and development and plays a
crucial role in key physiological processes, such as nutrient absorption, photosynthesis,
respiration, plant growth, and reproduction [1,2]. Excessively high and excessively low
temperatures can harm plants; for example, high temperatures can cause plant leaves to
wilt, dry out, and even fall off, whereas low temperatures can slow plant metabolism,
consequently impacting plant growth and development [3,4]. Since plants are immobile
organisms, they cannot relocate to more favorable environments when faced with ex-
treme temperatures. Fortunately, plants can adjust their metabolic processes in response
to environmental factors, altering their growth patterns [5]. This adaptive mechanism
allows plants to cope effectively with harsh or stressful environments and to safeguard
their delicate growth stages from unfavorable conditions [6]. Chromatin modification is
involved in the transcriptional regulation of stress-related genes to modulate the stress
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response of plants so that they can quickly adapt to environmental temperature fluctua-
tions. It also regulates temperature-dependent flowering and thermomorphogenesis and
plays an important regulatory role in the process of plant adaptation and evolution [7,8].
In plants, chromatin modifiers are important during development and in response to
environmental change.

The chromatin modifiers Polycomb Group (PcG) and Trithorax Group (TrxG) are two
protein complexes that play crucial roles in regulating transcriptional repression or acti-
vation. The former functions primarily through histone lysine methyltransferase (HKMT)
activity to repress gene expression, whereas the latter mainly activates transcription through
similar enzymatic mechanisms [9]. The PcG protein complex acts on the polycomb repres-
sive complex (PRC), binding to target genes and integrating H3K27me3 to inhibit gene
expression [10]. TrxG, an antagonistic gene of PcG, activates gene expression through the
integration of H3K4me3 and H3K36me3 [11]. In addition, PcG and TrxG play important
roles in plant plasticity by regulating homeotic gene transcription in vivo and participating
in developmental processes in response to environmental signals [12]. TrxG also regulates
stress responses and is involved in intergenerational memory [13]. During low-temperature
exposure, Arabidopsis regulates flowering by increasing PRC2 deposition of H3K27me3 on
FLOWERING LOUCS C (FLC) chromatin to inhibit its expression [14]. After heat stress,
constitutive photomorphogenesis 5A (CSN5A) regulates heat stress memory by increasing
H3K4me3 abundance in the memory genes ASCORBATE PEROXIDASE 2 (APX2) and
HEAT SHOCK PROTEIN 22 (HSP22) [15]. In plants, the functions and mechanisms of
PcG have been well studied. However, few studies regarding those of TrxG have been
reported [16].

The ABSENT, SMALL, OR HOMEOTIC DISCS 1 (ASH1) family is an important class
of genes belonging to the TrxG complex, and it catalyzes the trimethylation of H3K36 and
is also involved in H3K4 methylation [16,17]. ASH1 antagonizes PcG-mediated silencing
via H3K36 dimethylation at homeobox (HOX) genes [18]. In Arabidopsis thaliana, five ASH1s
have been identified, and the ASH1 gene family includes the ASHH1, ASHH2, ASHH3, and
ASHR3 subfamilies. Previous studies on ASHH1 have focused mainly on the regulation
of plant flowering; in addition, ASHH1 is involved in UV-B damage and DNA repair [19].
ASHH2 is a major di- and tri-methyltransferase for H3K36 and is related to dehydration
stress, plant defense against fungal pathogens, reproductive organ development, and
temperature reactions [20–22]. ASHR3 plays a key role in adjusting vernalization, stamen
and root development, and pathogen defense [23–25]. In summary, ASH1 family genes play
important roles in regulating growth and development and enhancing resistance to biotic
and abiotic stresses in plants. Despite these reports, studies regarding the involvement of
ASH1 family genes in tolerance to extreme temperatures and regulating plant development
in response to temperature remain limited.

Cotton (Gossypium spp.) is the world’s most important cash crop; its fibers can be
used as a textile material, and its seeds are a source of oil and vegetable protein [26]. The
basal requirements for seasonal temperature during cotton growth limit the global area
of arable land available for cotton cultivation [27]. In recent years, the global climate has
been gradually warming, and the number of extreme weather events has increased [28].
Additionally, some planting areas are prone to “cold springs,” which severely affect cotton
growth and development at the seedling stage [29]. Mining candidate genes associated
with tolerance to high and low temperatures is critical for molecular improvement efforts
that aim to increase the adaptability of cotton to temperature stress. Although many
ASH1 family members have recently been reported to be associated with plant growth,
development, and tolerance to adverse stress, the identification and functional analysis
of ASH1 genes in upland cotton (Gossypium hirsutum L.) are still limited. In this study,
GhASH1s were identified in upland cotton, and the evolution of the ASH1 gene family was
analyzed in different species. Subsequently, GhASHH1.A and GhASHH2.A, which were
differentially expressed under high- and low-temperature stress, were screened from the
transcriptome data. To investigate their impact on ambient temperature and flowering,
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GhASHH1.A and GhASHH2.A expression were silenced by VIGS to examine their roles
in regulating low- and high-temperature resistance and flowering time. These findings
provide genetic resources for future breeding of early-maturing and temperature-stress-
tolerant cotton varieties.

2. Results
2.1. Identification of ASH1 Family Genes and Phylogenetic Analysis in Plants

To comprehensively study their origin and evolution, we identified ASH1 proteins
across 30 different species. The results revealed a total of 155 ASH1 proteins in 30 species,
and nine GhASH1 proteins were detected in G. hirsutum (Table S1). The number of ASH1
proteins in each species was relatively small (usually less than 10); these proteins first ap-
peared in algae, and the number of ASH1s increased with the evolution of plants (Figure S1).
More ASH1 family genes were identified in monocotyledonous and eudicot plants than
in lower plants; only one ASH1 protein exists in algae (Chlamydomonas reinhardtii and
Ostreococcus lucimarinus), whereas bryophytes exhibit four (Physcomitrium patens) and five
(Marchantia polymorpha) ASH1s. All angiosperms had more than three ASH1s: monocot
species had five to ten ASH1s, and eudicot species had three to ten ASH1s. The tree
topology of ASH1s was well supported in most branches with five main groups (ASHH1,
ASHH2, ASHR3, ASHH3, and ASHH4). ASHH2 represents the ancestral group of ASH1s,
and ASHH1 was absent in algae and bryophytes, presenting only in monocotyledonous and
eudicot plants. ASHH3 was found only in eudicot plants but not in bryophytes or mono-
cotyledonous plants. ASHH4 and ASHR3 were first identified in bryophytes (Figure 1).
Furthermore, specific branches were observed in both monocotyledons and dicotyledons,
which could be attributed to gene duplication events occurring after the differentiation of
monocotyledons or gene loss events following the formation of evolutionary branches.

Phylogenetic analysis revealed that ASH1s in cacao and cotton clustered together and
were more closely related to each other than were those in other plants. Specifically, six
genes in Gossypium clustered within the same branch, consisting of two from the diploid
cotton species G. arboreum and G. raimondii, two homologous ASH1s from G. hirsutum, and
two homologous ASH1s from G. barbadense. However, in one branch of the ASHH2 subclass,
G. hirsutum had only one homologous gene (GhASHH2.C), which may have been caused
by the absence of the ASH1 gene across the evolution of plants. During the morphological
evolution of green plants, as plant morphology becomes more complex, the size of the
genome tends to increase. To investigate this trend, we conducted calculations on the ratio
of the number of ASH1 family genes to that of the entire genome (Figure S2). Our findings
revealed a relatively stable ratio of ASH1s to total genome genes.

2.2. Conserved Domain and Motif Analysis for the ASH1 Family

The conserved domain and motif composition of ASH1 were determined by comparing
the protein sequences of different types of representative plants and three Gossypium species.
These were clearly clustered into five groups, which was consistent with the above results
(Figure 2). Regarding motif analysis, we selected ten motifs for analysis to understand the
structural and functional characteristics of the ASH1 proteins in different species, which
were highly conserved among and within subgroups of the ASH1 protein family. In terms
of the distribution of motifs, most ASH1s belonging to the same branch presented a similar
motif composition, despite the deletion of motifs in individual proteins. The ASHH1 branch
genes had eight motifs, and most ASHH2 branch members contained ten motifs, whereas
CrASHH2 contained eight motifs. Motif 2 and motif 7 began to appear during the process
of bryophyte evolution. The ASHR3 branch genes had six or eight motifs. The ASHH3 and
ASHH4 branch genes had eight motifs, except AtASHH3.A and PpASHH4 with nine and
ten motifs, respectively. Like the Arabidopsis ASH1 protein domain, ASH1 proteins of all
species have only two typically conserved AWS domains and SET domains. In addition, the
ASHH2 branch contains a zf-CW domain, some ASHH3 branches contain a PHD domain,
and the ASHH3 and ASHH4 branches contain a Tudor_SF domain. These results suggest
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that GhASH1 gene family members clustered in the same group may share similar motifs
and structural features.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 4 of 21 
 

 

 
Figure 1. Phylogenetic tree of ASH1 proteins in green plants. The right triangles represent algae, the 
left triangles represent bryophytes, the circles represent dicotyledonous plants, the squares repre-
sent monocotyledonous plants, and the triangles represent cotton. The evolutionary tree is divided 
into five groups, each represented by a different color: turquoise, ASHH1; Purple, ASHH2; Orange, 
ASHR3; Yellow, ASHH4; and Cyan, ASHH3. 

2.2. Conserved Domain and Motif Analysis for the ASH1 Family 
The conserved domain and motif composition of ASH1 were determined by compar-

ing the protein sequences of different types of representative plants and three Gossypium 
species. These were clearly clustered into five groups, which was consistent with the above 
results (Figure 2). Regarding motif analysis, we selected ten motifs for analysis to under-
stand the structural and functional characteristics of the ASH1 proteins in different spe-
cies, which were highly conserved among and within subgroups of the ASH1 protein fam-
ily. In terms of the distribution of motifs, most ASH1s belonging to the same branch pre-
sented a similar motif composition, despite the deletion of motifs in individual proteins. 
The ASHH1 branch genes had eight motifs, and most ASHH2 branch members contained 
ten motifs, whereas CrASHH2 contained eight motifs. Motif 2 and motif 7 began to appear 
during the process of bryophyte evolution. The ASHR3 branch genes had six or eight mo-
tifs. The ASHH3 and ASHH4 branch genes had eight motifs, except AtASHH3.A and 

Figure 1. Phylogenetic tree of ASH1 proteins in green plants. The right triangles represent algae, the
left triangles represent bryophytes, the circles represent dicotyledonous plants, the squares represent
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five groups, each represented by a different color: turquoise, ASHH1; Purple, ASHH2; Orange,
ASHR3; Yellow, ASHH4; and Cyan, ASHH3.
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PHD_SF, and zf-CW domains, respectively.

2.3. Chromosomal Distribution and Collinearity of the GhASH1 Gene Family

The nine GhASH1 members are distributed across seven chromosomes: the A06 and
D06 chromosomes contain the most GhASH1s (two members), and A05, A13, D02, D15, and
D13 each contain one GhASH1 gene (Figure 3). Additionally, to identify gene replication
events among members of the GhASH1 gene family, six homologous duplicated gene
pairs were discovered. To better understand the evolutionary constraints controlling the
functional divergence of the GhASH1 gene family, in the G. hirsutum genome, the Ka/Ks
values of all duplicates were calculated to be lower than 1 (Figure S3). These results
demonstrate the origination of orthologs and paralogs from whole genome duplication
(WGD) before polyploidization during the time course of evolution.

2.4. Cis-Elements and GO Analysis of GhASH1s

The prediction of cis-acting regulatory elements can provide clues to gene expres-
sion patterns in plants subjected to tissue or environmental stress [30]. We predicted
the potential homeopathic regulatory elements of ASH1s in upland cotton through the
2 kb upstream region in the PlantCare database. A total of 19 cis-regulatory elements,
including growth and development promoters and hormones, light, and abiotic stress
response elements, were detected (Figure 4A). The largest was the light-responsive element,
which contained 32.2% predictive cis-elements. The plant hormone response and abiotic
stress response elements ranked second, accounting for 31.2% each (Figure 4B). Among
the hormone response elements, MeJA (CGTCA motif, TGACG motif) accounted for the
largest proportion, followed by gibberellin response elements (GARE motif, P box). In
the category of abiotic stress responses, elements related to oxygen deficiency-induced
AREs were the most common, followed by defense and stress response elements (TC-rich
repeats). The proportion of growth regulatory factors was minimal, and only two cis-acting
factors were predicted. Interestingly, various cis-acting regulatory elements were widely
distributed on the promoter of GhASH1, and GhASH1 may be critical in the regulation of
cotton development and stress resistance.
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GO analysis was performed using Arabidopsis protein sequences as a reference, with
the potential involvement of GhASH1 proteins in numerous biological processes, cellular
components, and molecular processes. Moreover, we found that the molecular function
processes mainly involved the activation of histone methylation transferases (H3K36 and
H3K4), and the biological processes involved the methylation of histone H3K36, negative
regulation of long-day photoperiodism, flowering, and regulation of the response to stimuli.
Among the cell components, the nucleosome, chromosome, and centromeric regions were
the main ones involved (Figure 5). Interestingly, ASHs mainly interact with nucleosomes
and function by regulating histone methylation.
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2.5. Expression Patterns of ASH1s Under Different Abiotic Stresses and in Different Tissues

Plants are susceptible to various environmental stresses during their growth cycle,
and gene expression patterns are usually closely related to the function of genes. There-
fore, we studied the expression of ASH1 under four kinds of stress in the model plants
A. thaliana and rice together with G. hirsutum (Figure 6a). The results revealed that ho-
mologous genes presented the same expression trends in different species; among them,
ASHH1 expression increased after 1 h of osmotic stress and then decreased to different
degrees. Additionally, ASH1 expression differed under different stress conditions. The
expression level of GhASHH1.A gradually decreased with increasing low-temperature
stress duration, whereas the expression level increased with increasing high-temperature
stress duration. Even under similar stress conditions, the expression of different ASH1s
differed. The expression level of GhASHH1.A decreased with increasing low-temperature
stress duration, whereas the expression level of GhASHH2.A increased with increasing
low-temperature stress. Furthermore, GhASH1 has diverse expression levels across mul-
tiple tissues (Figure 6b); GhASHH1.A and GhASHH2.A expression were upregulated in
flowering organs, indicating that these genes may be involved not only in temperature
stress but also in the regulation of plant development.
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To further investigate the role of ASH1S, we selected 8 GhASH1 genes for qRT–PCR
analysis (because the homology of GhASHH3.A and GhASHH3.B sequences was greater
than 99%, we could not design specific primers for differentiation). Overall, the eight
candidate GhASH1 genes were highly responsive to both cold and heat (Figure 7). In
addition to GhASHR3.A and GhASHR3.B, the other 6 GhASH1 genes were highly responsive
to cold stress. Under heat stress, except for GhASHR3.B, the expression level of the other
7 GhASH1s tested after heat stress was greater than that of the control. In addition, the
expression levels of GhASH1.A and GhASH2.A significantly increased under both high-
temperature and low-temperature stress. Taken together, these findings suggest that
GhASH1s may be involved in the resistance of cotton to temperature stress.

2.6. Silencing of GhASHH1.A and GhASHH2.A Compromises the Temperature Tolerance of
Cotton to Stress

To investigate the function of GhASHH1.A and GhASHH2.A under temperature stress,
we used VIGS technology to silence GhASHH1.A and GhASHH2.A expression. After 9 days,
the leaves of the TRV:GhCLA-positive control plants demonstrated a leaf bleaching pheno-
type, and we treated the TRV:00 plants and the TRV:GhASHH1.A- and TRV:GhASHH2.A-
silenced plants at different temperatures (25 ◦C, 42 ◦C, and 12 ◦C) (Figure 8a–c). The
results revealed that the leaves of TRV:GhASHH1.A and TRV:GhASHH2.A plants turned
yellow faster and lost more water than those of the TRV:00 plants under high-temperature
stress. Under low-temperature stress, TRV:GhASHH1.A and TRV:GhASHH2.A plants wilted
significantly compared with TRV:00 plants. These results indicate that GhASHH1.A and
GhASHH2.A expression had a positive effect on plant response to heat and cold conditions.
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Figure 8. Validation of GhASHH1.A and GhASHH2.A silencing via the VIGS technique. (a–c) Effects of
mock (25 ◦C), heat (42 ◦C), and cold (12 ◦C) stress on TRV:00, TRV:GhASHH1.A, and TRV:GhASHH2.A
phenotypes. (d) Relative expression levels of exogenous GhASHH1.A and GhASHH2.A in VIGS-
treated plants grown to the three-leaf stage under LD conditions. (e–h) Physiological and biochemical
indices of TRV:00, TRV:GhASHH1.A and TRV:GhASHH2.A plants subjected to different stress treat-
ments. SOD activity, POD activity, CAT activity, and MDA content of TRV:00, TRV:GhASHH1.A and
TRV:GhASHH2.A plants. The experiment was conducted in triplicate, and the data were analyzed
via the Student’s t test. The different letters (a, b, and c) indicate significant differences according to
Duncan’s honestly significant difference test. The asterisks indicate significant differences according
to Student’s t test. *, p < 0.05.

To investigate the effects of abiotic stress on GhASHH1.A and GhASHH2.A expression,
we evaluated the changes in the activities of SOD, POD, and CAT in TRV:GhASHH1.A- and
TRV:GhASHH2.A-silenced cotton plants (Figure 8e–g). The results showed that the POD,
SOD, and CAT activities in the TRV:GhASHH1.A and TRV:GhASHH2.A plants treated at
25 ◦C were not significantly greater than those in the TRV:00 plants. Under cold and heat
stress, the POD, SOD, and CAT activities of the TRV:GhASHH1.A and TRV:GhASHH2.A
plants were significantly lower than those of the TRV:00 plants. Conversely, a notable
increase in the MDA content was detected (Figure 8h). A decrease in POD activity in
TRV:GhASHH1.A plants was more obvious than that in TRV:GhASHH2.A plants. These
results indicate that the silencing of the GhASHH1.A and GhASHH2.A genes decreased the
stress resistance of cotton plants. We suggest that GhASHH1.A and GhASHH2.A expression
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might positively regulate tolerance to temperature stress by regulating the activity of
antioxidant enzymes and eliminating ROS.

2.7. Silencing of GhASHH1.A and GhASHH2.A Expression Affected
High-Temperature-Induced Flowering

In order to investigate whether GhASHH1.A and GhASHH2.A participate in the Ther-
momorphogenesis of plants, after the albino phenotype of TRV:GhCLA leaves appeared, to
determine the effect of suppressed transcription of the target genes on plant traits, plants
whose transcript levels were reduced by half were selected for target silencing. Plants
whose transcript levels were reduced by half were selected for target silencing. Phenotypic
analysis was performed separately on plants subjected to different temperatures at the
seedling stage. After 10 days of treatment at different temperatures, the growth rates of
the silenced plants were lower than those of the TRV:00 plants. Under the 32 ◦C treatment,
plant growth accelerated, and the stem diameter, fresh weight, and leaf number were
greater than those under the 25 ◦C treatment (Figure S4).

To investigate whether gene silencing affects high-temperature-induced flowering,
time of bud emergence, flowering time, and initial nodes of fruit branches were subse-
quently analyzed under different temperature treatments (Figure 9a,b). The budding and
flowering times of the gene-silenced plants were delayed by 9 and 10 days, respectively, at
25 ◦C, and the number of initial nodes of fruiting branches increased. The budding and
flowering times of the TRV:00 plants at 32 ◦C were 2–3 d earlier than those at 25 ◦C, whereas
the budding and flowering times of the gene-silenced plants did not differ (Figure 9c–f).
In summary, GhASHH1.A and GhASHH2.A might positively regulate flowering and affect
plant responses to ambient temperature changes.
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Figure 9. Budding time statistics of TRV:00 and gene-silenced plants under different treatments. (a)
Budding properties of TRV:00, TRV:GhASHH1.A, and TRV:GhASHH2.A plants after 10 days at 25 ◦C.
(b) Budding properties of TRV:00, TRV:GhASHH1.A, and TRV:GhASHH2.A plants after 10 days at
32 ◦C. (c) Statistics regarding bud emergence times of the empty vector and gene-silenced plants after
different temperature treatments. (d) Height statistics of the empty vector and gene-silenced plants
after different temperature treatments. (e) Statistics regarding the flowering times of the empty vector
and gene-silenced plants after different temperature treatments. (f) First fruit branch node statistics
of the empty carrier and gene-silenced plants after different temperature treatments. The asterisks
indicate significant differences according to Student’s t test. *, p < 0.05.
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To understand the response of GhASHH1.A and GhASHH2.A in the temperature regula-
tion of flowering, the expression patterns of the flower development-related genes GhSOC1
(SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1), GhFT (FLOWERING LOCUS T),
GhSVP (SHORT VEGETATIVE PHASE), and GhPIF7 (PHYTOCHROME Interaction Factor
7) in response to temperature regulation were investigated (Figure 10). The expression of
GhSOC1 and GhFT in the gene-silenced plants decreased after treatment at 25 ◦C and 32 ◦C.
In addition, as a flowering inhibitor, GhSVP expression decreased at 32 ◦C, indicating that
it may also respond to the regulation of plant flowering by high temperature. GhPIF7 is an
important gene in plant development whose expression is induced by high temperature,
and it was highly expressed in TRV:00 plants but expressed at low levels in gene-silenced
plants at 32 ◦C, demonstrating the same trend as that of GhSOC1 and GhFT. Taken together,
these findings suggest that GhASHH1.A and GhASHH2.A might regulate flowering by
influencing the expression levels of key genes in the temperature pathway (Figure S5).
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3. Discussion

Upland cotton, an excellent antistress pioneer crop, shows good adaptability in harsh
environments [31]. However, subjected to an abnormal global climate, the growth of cotton
is also being tested in terms of temperature. Seedling stress has an important effect on the
growth and quality of cotton [32]. The ASH1 gene family, as important family members of
the TrxG complex, participates in the activity of histone H3K36 methyltransferase and has
been shown in many plants to induce plant tolerance to abiotic stress and regulate growth
and development [33].

3.1. Evolution of the ASH1 Gene Family in Plants

With the widespread adoption of whole-genome sequencing, the ASH1 family, which
plays crucial roles in plant development toward flowering, plant disease resistance, and
various abiotic stresses, has been extensively identified and studied [33–37]. We conducted
a comprehensive analysis of ASH1 gene families across different lineages of plants to inves-
tigate their evolutionary origins. A total of 155 ASH1 family genes were identified across
30 plants spanning algae, bryophytes, monocotyledonous plants, and dicotyledonous
plants. The ASH1 gene was initially discovered in algae. The ASHH2 gene cluster is likely
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to represent the ancestral form of the ASH1 gene family, while an increase in the number
of ASH1 genes can be observed in bryophytes. This could be attributed to two rounds of
genome-wide replication events that occurred in bryophytes [38,39]. However, the absence
of both ASHH1 and ASHH3 gene clusters in both bryophytes and gymnosperms suggests
that this branch emerged during angiosperm evolution. Interestingly, both monocotyle-
donous and dicotyledonous plant members among basal angiosperms presented distinct
clustering patterns. Monocotyledonous plant members clustered within the ASHH4 branch
whereas dicotyledonous plant members clustered within the ASHH3 branch. Notably, this
divergence indicates potential differences between monocotyledonous and dicotyledonous
plant genes. According to the phylogenetic tree and the chromosome localization and
collinear analysis data, many fragments of the ASH1 family in upland cotton may have
been derived from genome-wide duplication events during different stages of plant evolu-
tion. Therefore, the ASH1 family is an ancient gene family, and its members were retained
in the upland cotton genome through WGD, chromosome fragment repetition, and other
amplification methods and then differentiated into different functions.

Over the course of evolution, the ASH1 gene family has undergone significant expan-
sion and has diversified into five major branches in land plants. Specifically, angiosperms
have experienced remarkable amplification of ASH1 family genes, resulting in the forma-
tion of endemic clades in dicotyledonous and monocotyledonous plants. This phenomenon
can be attributed to polyploidization events that occurred in at least 70% of angiosperms
throughout their evolutionary history, serving as a primary driving force for alterations in
plant genome size [40]. Genome duplication plays a pivotal role in facilitating the expansion
of the ASH1 family. Compared with closely related species, species that have undergone
WGD present relatively greater numbers of ASH1s, particularly G. hirsutum, G. barbadense,
and wheat, which display even greater amplification within this gene family. Notably,
almost all instances of copy number increase events observed on the molecular evolutionary
tree correspond to known whole-genome events [38]. The proportion of ASH1s across
the entire genome remains stable across angiosperms, indicating that WGD contributes
significantly more to gene family expansion than other forms of gene duplication [41].

3.2. Evolution and Functional Diversity of the Cotton ASH1 Gene Family

Previous studies have shown that the ASH1 gene contains SET and Associated with
SET (AWS) domains, which are required for the catalytic function of H3K36 and are
involved in the plant response to external environmental influences [42]. We selected
five different types of representative plants and three Gossypium species to analyze their
conserved gene domains and motifs and found different domains in different branches,
indicating that different gene clusters have different functions. ASHR3 members have an
additional PHD domain near the N-terminus, and ASHR3 has catalytic effects on H3K36me1
and possibly H3K36me2, which are involved in regulating cell division competence in the
root meristem [24]. ASHH1 knockout in A. thaliana decreased H3K4me3 and H3K36me3
abundance at the SOC1 locus, and SDG708/OsASHH1 knockout also resulted in a genome-
wide decrease in H3K36me1/2/3 abundance in rice during early growth stages [43]. ASHH2
contains an additional CW (cysteine and tryptophan conserved) domain at the N-terminus
as a member of the histone modification reader module for epigenetic regulation, which can
be found in at least five other protein families in higher plants. Arabidopsis ASHH2/SDG8
acts as the major H3K36me2/3 writer [44,45]. Predictably, cotton harbors a similar function.

Cis-acting elements regulate gene transcription to enable plants to respond to environ-
mental development [46]. Previous studies have shown that gene expression is regulated by
various signals, such as endogenous plant hormones including auxin (IAA), abscisic acid
(ABA), brassinolide (BR), osmotic stress, salt, cold, heat, and drought, which are related to
various response elements in the promoter region [47]. Analysis of ASH1 family cis-acting
elements revealed that the promoter region of GhASH1s contains a variety of hormone
response elements and abiotic stress response elements (AREs, MBSs, and LTRs), indicating
that ASH1 gene expression is influenced by the external environment. In addition, through
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GO analysis of the biological functions of the ASH1 gene family, many biological processes
related to plant growth and development and the environmental response were identified.
GO analysis revealed that the main function of GhASH1s is to regulate histone H3K36
methylation, which plays an irreplaceable role across the entire growth cycle of plants [18].
However, functional studies of GhASH1s in upland cotton are still lacking; therefore, their
possible functions can be predicted by analyzing their functions.

Transcriptome data analysis revealed that the GhASH1 gene family was highly ex-
pressed mainly in leaves and reproductive organs. This finding is similar to those of
previous studies in which ASH1s were found to be involved in the regulation of flower for-
mation in plants [20,43,48]. We also analyzed transcriptome data regarding several abiotic
stresses, including drought, osmotic stress, and high-temperature and low-temperature
treatments, revealing the differential expression of ASH1s under these external signals, and
homologous genes presented the same expression trend in the model plants A. thaliana,
rice, and upland cotton. ASHH2 positively regulates drought resistance in A. thaliana and
rice [21,33], which is consistent with the transcriptome data, suggesting that upland cotton
may have similar functions. These results indicate that the GhASH1 family is widely in-
volved in nonbiological stress responses and growth and development processes in cotton
plants; among them, GhASHH1.A and GhASHH2.A may be key candidate genes. In future
research, we can focus on these gene family members, which are highly important for
exploring their potential biological functions.

3.3. GhASHH1.A- and GhASHH2.A-Silenced Plants in Response to Temperature Stress and
Temperature-Controlled Flowering

Previous studies have shown that ASH1 homologs play a key role in abiotic stress
responses and plant growth and development. To further study the role of GhASH1s
in the temperature stress response and temperature regulation development of cotton,
GhASHH1.A and GhASHH2.A expressions were knocked out via the TRV virus knock
down approach system. The results showed that at 12 ◦C and 42 ◦C, the death and wilt
rates of GhASHH1.A- and GhASHH2.A-silenced plants were greater than those of the
control plants. Elimination of the GhASHH1.A and GhASHH2.A genes decreased the stress
resistance of cotton plants and increased their susceptibility to temperature stress. Under
normal temperature, the redox state in plants is balanced; when seedlings are subjected
to temperature stress, a large amount of ROS is induced, and the activity of antioxidant
enzymes in plants increases to remove excess ROS [31]. However, when the gene-silenced
plants were subjected to temperature stress because gene silencing could not control the
synthesis of antioxidants in the body, the plants died, and the MDA content in the body
also increased.

In A. thaliana, ashh1-mutant plants presented a late-flowering phenotype, and ashh2-
mutant plants presented an early-flowering phenomenon [20]. However, our study revealed
that GhASHH1.A and GhASHH2.A-silenced plants all presented a late-flowering phenotype,
possibly because ASHH2 is involved in regulating FLC chromatin deposition in A. thaliana
to regulate flowering. However, upland cotton is a subtropical crop that enjoys warmth
and light; its photoperiod sensitivity is lost with selection and domestication, and its FLC
gene is missing [49], which is similar to the results of the ashh2-mutant in rice [43]. It has
been previously reported that GhASHH1.A and GhASHH2.A can respond to temperature
stress. In addition, ASHH1 is reportedly involved in the regulation of plant flowering and
the response to Spring [19]. Thermomorphogenesis is the response mechanism of plants to
temperature, and high temperatures below a heat stress temperature cause changes in plant
morphology, such as hypocotyl and petiole elongation and early flowering [50,51]. The
flowering and development of upland cotton are highly dependent on temperature, but
there has been little research on the regulation and development of cotton in response to
temperature changes. The optimal temperature of the cotton seedling stage is 20–30 ◦C, but
the temperature of the environment often fluctuates with climate change and cannot reach
the optimal conditions [52]; therefore, we chose 32 ◦C as the relatively high temperature.



Int. J. Mol. Sci. 2024, 25, 11321 16 of 21

Pajoro et al. reported that reduced deposition of H3K36me3 in Arabidopsis resulted in
temperature-induced changes in alternative splicing genes [53]. ASH1 genes in upland
cotton may also be involved in the regulation of temperature-induced flowering.

An increase in ambient temperature can promote early flowering of plants [54], so
the flowering of TRV:00 plants after high-temperature treatment occurred earlier than
that of the control, whereas early flowering of gene-silenced plants was not induced by
high temperature. We selected and examined the expression levels of genes involved
in the temperature pathway regulation of flowering genes, including GhSOC1, GhFT,
GhSVP, and GhPIF7, in TRV:00 and TRV:GhASHH1.A- and TRV:GhASHH2.A- silenced plants
under different temperature treatments. Our results revealed that the expression levels of
GhSOC1 and GhFT were significantly reduced in the gene-silenced plants, suggesting that
GhASHH1.A and GhASHH2.A may regulate flowering by regulating these key genes. After
high-temperature treatment, the expression levels of GhSOC1, GhFT, and GhPIF7 in the
TRV:00 plants significantly increased, whereas the expression levels of GhSVP significantly
decreased, indicating that high temperature induced the expression of GhPIF7 in the
TRV:00 plants and then regulated the expression of GhSOC1 and GhFT to promote the early
flowering of the TRV:00 plants. However, in the gene-silenced plants, GhASHH1.A- and
GhASHH2.A-silencing prevented the plants from responding to temperature or weakened
their ability to respond to temperature, so they did not participate in the regulation of
flowering time. Studies have shown that heat stress can upregulate the expression of genes
related to chlorophyll biosynthesis and promote the expression of SOC1 to induce early
flowering of A. thaliana [55]. In upland cotton, GhSOC1-1 activates flower transformation
in response to high temperature, which is the dominant factor in the induction and control
of flowering in cotton in response to high temperature and short sunshine in subtropical
regions [56]. In addition, it has been reported that relatively high temperatures can inhibit
the expression of SVP and the binding of SVP and the FT promoter, thus promoting the
early flowering of plants and reducing the expression of GhSVP at high temperatures [57,58].
FT chromatin can be recognized by the H3K4/H3K36 methylation reader MRG1/2 protein,
which regulates the circadian rhythm of the FT gene and plays a role in plant flowering by
integrating flowering signals from different pathways [59]. PIF7, a core transcription factor
in high-temperature signal transduction, is involved in histone methylation to promote
flowering [60]. It has been speculated that GhASHH1.A and GhASHH2.A are involved in
the cotton response to temperature regulation by regulating PIF7 and FT. Overall, these
results suggest that GhASHH1.A and GhASHH2.A positively regulate flowering time and
may be involved in flowering in response to temperature.

4. Materials and Methods
4.1. Identification and Sequence Analysis of ASH1 Family Members

On the basis of the IDs of ASH1 family members reported in the literature, protein
sequences encoded by five ASH1 genes in A. thaliana were downloaded from the TAIR
website as query sequences. In the Phytozome plant database (https://phytozome-next.
jgi.doe.gov/, accessed on 10 March 2024), we BLAST searched for similar sequences in
the protein sequences of 29 species. The SMART database model (http://smart.embl-
heidelberg.de/, accessed on 15 March 2024) was used to verify each ASH1 protein, and
the sequence containing the SET domain (PF00856) and the AWS domain (PF17907) was
assumed to be ASH1 [61].

4.2. Phylogenetic Analysis, Conserved Domain Analysis, and Motif Analysis of ASH1s

Multiple sequence alignment of 155 ASH1 protein sequences was performed using
MEGA 13 software. The phylogenetic tree was subsequently constructed via the 155 ASH1
protein sequence file, and the bootstrap value was set to 1000 by using the adjacency method.
The original tree was visualized via an interactive tree of life (iTOL) (https://itol.embl.de/,
accessed on 19 March 2024) [30,62]. Dicots, monocots, and model plants were selected as
outgroup species; gene conserved domains were downloaded from the NCBI Conserved
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https://phytozome-next.jgi.doe.gov/
http://smart.embl-heidelberg.de/
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Domains Database (CDD) (https://www.ncbi.nlm.nih.gov/cdd/, accessed on 1 April 2024),
and conserved motif analysis was performed via MEME (https://meme-suite.org/meme/
index.html, accessed on 25 March 2024).

4.3. Chromosomal Location and Collinear Analysis of the Cotton ASH1 Gene Family

The genomic locations of members of the ASH1 gene family were obtained from
the genome annotation file of G. hirsutum. The collinearities of ASH1s among upland
cotton plants were evaluated via TBtools MCScanx software v1.116. The chromosomal
locations and collinearities were visualized with Circos software v1.116. The homologous
relationships and nonsynonymous substitution rates (Ka) and synonymous substitution
rates (Ks) of homologous ASH1s of G. hirsutum were determined via TBtools software
v1.116 [63].

4.4. Transcriptomic Expression Analysis

RNA-seq data regarding different tissues and stresses of the G. hirsutum accession were
downloaded from Zhejiang University (http://cotton.zju.edu.cn/, accessed on 4 April
2024). A. thaliana and rice stress RNA-seq data were obtained via the Arabidopsis eFP
Browser (https://www.arabidopsis.org/, accessed on 4 April 2024) and the Transcriptome
ENcyclopedia of Rice (https://tenor.dna.affrc.go.jp/, accessed on 5 April 2024). TBtools
was used to construct a heatmap for visualization. The 2.0 kb upstream region of the
GhASH1 family nucleotide sequence promoter was extracted, and the PlantCARE database
(http://bioinformatics.psb.ugent.be/, accessed on 6 April 2024) was used for screening.
GO (Gene Ontology) enrichment analysis was performed with STRING [30].

4.5. Vector Construction and Procedure for VIGS and Expression Profiling

For the VIGS experiment, approximately 300–500 bp nucleotide sequences of GhASHH1.A
and GhASHH2.A were designed via NCBI Primer-BLAST (https://blast.ncbi.nlm.nih.gov/
Blast.cgi/, accessed on 15 March 2024). The fragments obtained were then inserted into
the pTRV2 vector to create pTRV2: GhASHH1.A and GhASHH2.A constructs. The VIGS
experiment was performed as previously described [64]. The qRT-PCR expression analysis
of selected genes was conducted using the designed primers (Table S2). The housekeeping
gene Ghact was used as an internal control, and relative expression levels were calculated
via the 2−∆∆CT method [65].

4.6. Experimental Materials and Treatments

After bleaching the TRV CLV1 plants, empty TRV:00 carrier plants and silent plants
were grown to 2 weeks of age and then subjected to a high temperature (42 ◦C) or a
low temperature (12 ◦C). After 10 days of temperature stress treatment, the activities of
antioxidant enzymes (CAT, POD, and SOD) and the content of MDA were determined. The
nitroblue tetrazole photoreduction method was employed to measure superoxide dismutase
(SOD) activity; the guaiacol colorimetric method was used to assess peroxidase (POD)
activity; and a colorimetric method was employed to determine the malonic dialdehyde
(MDA) concentration in plant tissues. Throughout the measurement period, three technical
replicates were used for each sample. After the bleaching of the TRV:CLV1 plants, the empty
carrier plants and TRV:00-silenced plants were cultured in incubators at 25 ◦C and 32 ◦C,
respectively, and then were transplanted at room temperature after 10 days of treatment to
observe their properties.

5. Conclusions

In this study, we selected 30 plants for genome-wide identification of their ASH1 genes
and analyzed their evolution, dividing them into 5 different clades on the basis of their
sequence homology and evolutionary trees. The ASH1 gene has a similar gene structure,
motif distribution, and composition in the same group, and there are differences among
different groups. We analyzed the cis-acting elements and GO terms associated with ASH1
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in upland cotton and revealed that GhASH1 not only participates in stress and defense
responses but also plays an important role in growth and development. The function of
GhASHH1.A and GhASHH2.A was further identified by VIGS, suggesting that GhASHH1.A-
and GhASHH2.A-silencing may reduce the ability of cotton to respond to temperature stress
and affect high-temperature-induced flowering.

Supplementary Materials: The supporting information can be downloaded at https://www.mdpi.
com/article/10.3390/ijms252011321/s1.
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