Evaluation of the Effect of an α-Adrenergic Blocker, a PPAR-γ Receptor Agonist, and a Glycemic Regulator on Chronic Kidney Disease in Diabetic Rats
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Renal Index, Water and Food Intake, and eGFR
2.2. Effect of Tamsulosin, Pioglitazone, and Linagliptin on Renal Damage Markers
2.3. Effect of Tamsulosin, Pioglitazone, and Linagliptin on Urine Glucose, BUN, and Urea
2.4. Effect of Tamsulosin, Pioglitazone, and Linagliptin on Renal Histopathology
2.5. Anti-Inflammatory Effect of Tamsulosin, Pioglitazone, and Linagliptin on DN
2.6. Effect of Tamsulosin, Pioglitazone, and Linagliptin on Fibrogenic Markers in DN
2.7. Effect of Tamsulosin, Pioglitazone, and Linagliptin on NRF2 and HO-1 in DN
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Experimental Design
4.3. Biochemical Parameters
4.4. Renal Index (KI)
4.5. Estimated Glomerular Filtration Rate (eGFR)
Plasma creatinine ≥ 52 μmol/L: eGFR = 5862 × W0.695 × C−1.150 × U−0.391
4.6. Histopathology
4.7. Immunofluorescence
4.8. Quantitative Real-Time PCR
4.9. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brunton, L.L.; Knollman, B.C. G & G: Las Bases Farmacológicas de la Terapéutica; Mc Graw Hill: New York, NY, USA, 2018; ISBN 978-1-4562-6356-0. [Google Scholar]
- Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; Zochodne, D.W.; Wright, D.E.; Bennett, D.L.; Bril, V.; Russell, J.W.; Viswanathan, V. Diabetic Neuropathy. Nat. Rev. Dis. Primers 2019, 5, 42. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.H.; Patel, B.; Wilmot, E.G.; Amoaku, W.M. Diabetic Retinopathy for the Non-Ophthalmologist. Clin. Med. 2022, 22, 112–116. [Google Scholar] [CrossRef] [PubMed]
- GBD 2021 Causes of Death Collaborators Global Burden of 288 Causes of Death and Life Expectancy Decomposition in 204 Countries and Territories and 811 Subnational Locations, 1990–2021: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2100–2132. [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2022, 102, S1–S127. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Kovesdy, C.P. Epidemiology of Chronic Kidney Disease: An Update 2022. Kidney Int. 2022, 12, 7–11. [Google Scholar] [CrossRef]
- Luyckx, V.A.; Tonelli, M.; Stanifer, J.W. The Global Burden of Kidney Disease and the Sustainable Development Goals. Bull. World Health Organ. 2018, 96, 414–422D. [Google Scholar] [CrossRef]
- Jia, Q.; Yang, R.; Liu, X.-F.; Ma, S.-F.; Wang, L. Genistein Attenuates Renal Fibrosis in Streptozotocin-Induced Diabetic Rats. Mol. Med. Rep. 2019, 19, 423–431. [Google Scholar] [CrossRef]
- Maezawa, Y.; Takemoto, M.; Yokote, K. Cell Biology of Diabetic Nephropathy: Roles of Endothelial Cells, Tubulointerstitial Cells and Podocytes. J. Diabetes Investig. 2015, 6, 3–15. [Google Scholar] [CrossRef]
- Qi, S.S.; Zheng, H.X.; Jiang, H.; Yuan, L.P.; Dong, L.C. Protective Effects of Chromium Picolinate Against Diabetic-Induced Renal Dysfunction and Renal Fibrosis in Streptozotocin-Induced Diabetic Rats. Biomolecules 2020, 10, 398. [Google Scholar] [CrossRef]
- Samsu, N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BioMed Res. Int. 2021, 2021, 1497449. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.C.; Brownlee, M.; Susztak, K.; Sharma, K.; Jandeleit-Dahm, K.A.M.; Zoungas, S.; Rossing, P.; Groop, P.-H.; Cooper, M.E. Diabetic Kidney Disease. Nat. Rev. Dis. Primers 2015, 1, 15018. [Google Scholar] [CrossRef] [PubMed]
- Typiak, M.; Piwkowska, A. Antiinflammatory Actions of Klotho: Implications for Therapy of Diabetic Nephropathy. Int. J. Mol. Sci. 2021, 22, 956. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.S.; Matsushita, K.; Woodward, M.; Bilo, H.J.; Chalmers, J.; Lambers Heerspink, H.J.; Lee, B.J.; Perkins, R.M.; Rossing, P.; Sairenchi, T.; et al. Associations of Kidney Disease Measures with Mortality and End-Stage Renal Disease in Individuals with and without Diabetes: A Meta-Analysis. Lancet 2012, 380, 1662–1673. [Google Scholar] [CrossRef]
- Piccoli, G.B.; Grassi, G.; Cabiddu, G.; Nazha, M.; Roggero, S.; Capizzi, I.; De Pascale, A.; Priola, A.M.; Di Vico, C.; Maxia, S.; et al. Diabetic Kidney Disease: A Syndrome Rather Than a Single Disease. Rev. Diabet. Stud. 2015, 12, 87–109. [Google Scholar] [CrossRef]
- Roshan, B.; Stanton, R.C. A Story of Microalbuminuria and Diabetic Nephropathy. J. Nephropathol. 2013, 2, 234–240. [Google Scholar] [CrossRef]
- Ammirati, A.L. Chronic Kidney Disease. Rev. Assoc. Med. Bras. 2020, 66 (Suppl. 1), s03–s09. [Google Scholar] [CrossRef]
- Avraham, S.; Korin, B.; Chung, J.-J.; Oxburgh, L.; Shaw, A.S. The Mesangial Cell—The Glomerular Stromal Cell. Nat. Rev. Nephrol. 2021, 17, 855–864. [Google Scholar] [CrossRef]
- Lee, J.Y.; Yang, J.W.; Han, B.G.; Choi, S.O.; Kim, J.S. Adiponectin for the Treatment of Diabetic Nephropathy. Korean J. Intern. Med. 2019, 34, 480–491. [Google Scholar] [CrossRef]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic Kidney Disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef]
- Costigan, M.; Chambers, D.A.; Boot-Handford, R.P. Collagen Turnover in Renal Disease. Exp. Nephrol. 1995, 3, 114–121. [Google Scholar] [PubMed]
- Tervaert, T.W.C.; Mooyaart, A.L.; Amann, K.; Cohen, A.H.; Cook, H.T.; Drachenberg, C.B.; Ferrario, F.; Fogo, A.B.; Haas, M.; de Heer, E.; et al. Pathologic Classification of Diabetic Nephropathy. J. Am. Soc. Nephrol. 2010, 21, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Sanajou, D.; Ghorbani Haghjo, A.; Argani, H.; Aslani, S. AGE-RAGE Axis Blockade in Diabetic Nephropathy: Current Status and Future Directions. Eur. J. Pharmacol. 2018, 833, 158–164. [Google Scholar] [CrossRef]
- Makary, S.; Abdo, M.; Hassan, W.A.; Tawfik, M.K. Angiotensin Blockade Attenuates Diabetic Nephropathy in Hypogonadal Adult Male Rats. Can. J. Physiol. Pharmacol. 2019, 97, 708–720. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Nie, Q.; Feng, J.; Fan, X.; Jin, Y.; Chen, G.; Du, J. Kidney-Targeted Baicalin-Lysozyme Conjugate Ameliorates Renal Fibrosis in Rats with Diabetic Nephropathy Induced by Streptozotocin. BMC Nephrol. 2020, 21, 174. [Google Scholar] [CrossRef] [PubMed]
- Rico-Fontalvo, J.; Aroca, G.; Cabrales, J.; Daza-Arnedo, R.; Yánez-Rodríguez, T.; Martínez-Ávila, M.C.; Uparella-Gulfo, I.; Raad-Sarabia, M. Molecular Mechanisms of Diabetic Kidney Disease. Int. J. Mol. Sci. 2022, 23, 8668. [Google Scholar] [CrossRef] [PubMed]
- Jorge*, R.-F.; Rodrigo, D.-A.; Tomas, R.-Y.; Cristina, M.-A.M.; Jose, C.; Ximena, C.-B.M.; Amilkar, A.-H.; Isabella, U.-G.; Oscar, V.-S. Inflammation and Diabetic Kidney Disease: New Perspectives. J. Biomed. Res. Environ. Sci. 2022, 3, 779–786. [Google Scholar] [CrossRef]
- PubChem Compound Summary for CID 4829, Pioglitazone. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Pioglitazone (accessed on 3 April 2024).
- Pittas, A.G.; Greenberg, A.S. Thiazolidinediones in the Treatment of Type 2 Diabetes. Expert Opin. Pharmacother. 2002, 3, 529–540. [Google Scholar] [CrossRef]
- Karunakaran, U.; Elumalai, S.; Moon, J.S.; Won, K.C. Pioglitazone-Induced AMPK-Glutaminase-1 Prevents High Glucose-Induced Pancreatic β-Cell Dysfunction by Glutathione Antioxidant System. Redox Biol. 2021, 45, 102029. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Inzucchi, S.; Abdul-Ghani, M.; Nissen, S.E. Pioglitazone: The Forgotten, Cost-Effective Cardioprotective Drug for Type 2 Diabetes. Diabetes Vasc. Dis. Res. 2019, 16, 133–143. [Google Scholar] [CrossRef]
- Kökény, G.; Calvier, L.; Hansmann, G. PPARγ and TGFβ-Major Regulators of Metabolism, Inflammation, and Fibrosis in the Lungs and Kidneys. Int. J. Mol. Sci. 2021, 22, 10431. [Google Scholar] [CrossRef] [PubMed]
- Legchenko, E.; Chouvarine, P.; Borchert, P.; Fernandez-Gonzalez, A.; Snay, E.; Meier, M.; Maegel, L.; Mitsialis, S.A.; Rog-Zielinska, E.A.; Kourembanas, S.; et al. PPARγ Agonist Pioglitazone Reverses Pulmonary Hypertension and Prevents Right Heart Failure via Fatty Acid Oxidation. Sci. Transl. Med. 2018, 10, eaao0303. [Google Scholar] [CrossRef] [PubMed]
- PubChem Compound Summary for CID 10096344, Linagliptin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Linagliptin (accessed on 27 January 2024).
- Deacon, C.F. Dipeptidyl Peptidase 4 Inhibitors in the Treatment of Type 2 Diabetes Mellitus. Nat. Rev. Endocrinol. 2020, 16, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Crespo, M.Á.; Lozano, M.G.; Lozano, M.G.; Paz, S.F.; Pérez, M.R.; Gago, E.V.; Ferrer, F.M. Las hormonas gastrointestinales en el control de la ingesta de alimentos. Endocrinol. Nutr. 2009, 56, 317–330. [Google Scholar] [CrossRef]
- Alfonso Figueredo, E.; Reyes Sanamé, F.A.; Pérez Álvarez, M.L.; Batista Acosta, Y.; Peña Garcell, Y. Inhibidores de La Dipeptidil Peptidasa 4 y Una Nueva Estrategia Farmacológica En La Diabetes Mellitus Tipo 2. Rev. Cuba. Med. 2016, 55, 239–256. [Google Scholar]
- Rabizadeh, S.; Tavakoli Ardakani, M.A.; Mouodi, M.; Bitaraf, M.; Shab-Bidar, S.; Esteghamati, A.; Nakhjavani, M. DPP4 Inhibitors in the Management of Hospitalized Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Adv. Ther. 2020, 37, 3660–3675. [Google Scholar] [CrossRef]
- Liu, H.; Guo, L.; Xing, J.; Li, P.; Sang, H.; Hu, X.; Du, Y.; Zhao, L.; Song, R.; Gu, H. The Protective Role of DPP4 Inhibitors in Atherosclerosis. Eur. J. Pharmacol. 2020, 875, 173037. [Google Scholar] [CrossRef]
- Maanvi; Kumari, S.; Deshmukh, R. Dipeptidyl Peptidase 4(DPP4) Inhibitors Stride up the Management of Parkinson’s Disease. Eur. J. Pharmacol. 2023, 939, 175426. [Google Scholar] [CrossRef]
- Hu, X.; Wang, X.; Xue, X. Therapeutic Perspectives of CD26 Inhibitors in Imune-Mediated Diseases. Molecules 2022, 27, 4498. [Google Scholar] [CrossRef]
- Davis, H.; Jones Briscoe, V.; Dumbadze, S.; Davis, S.N. Using DPP-4 Inhibitors to Modulate Beta Cell Function in Type 1 Diabetes and in the Treatment of Diabetic Kidney Disease. Expert Opin. Investig. Drugs 2019, 28, 377–388. [Google Scholar] [CrossRef]
- Nakashima, S.; Matsui, T.; Takeuchi, M.; Yamagishi, S.-I. Linagliptin Blocks Renal Damage in Type 1 Diabetic Rats by Suppressing Advanced Glycation End Products-Receptor Axis. Horm. Metab. Res. 2014, 46, 717–721. [Google Scholar] [CrossRef] [PubMed]
- Spencer, N.Y.; Yang, Z.; Sullivan, J.C.; Klein, T.; Stanton, R.C. Linagliptin Unmasks Specific Antioxidant Pathways Protective against Albuminuria and Kidney Hypertrophy in a Mouse Model of Diabetes. PLoS ONE 2018, 13, e0200249. [Google Scholar] [CrossRef] [PubMed]
- Glorie, L.; D’Haese, P.C.; Verhulst, A. Boning up on DPP4, DPP4 Substrates, and DPP4-Adipokine Interactions: Logical Reasoning and Known Facts about Bone Related Effects of DPP4 Inhibitors. Bone 2016, 92, 37–49. [Google Scholar] [CrossRef] [PubMed]
- PubChem Compound Summary for CID 129211, Tamsulosin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Tamsulosine (accessed on 27 January 2024).
- Dunn, C.J.; Matheson, A.; Faulds, D.M. Tamsulosin: A Review of Its Pharmacology and Therapeutic Efficacy in the Management of Lower Urinary Tract Symptoms. Drugs Aging 2002, 19, 135–161. [Google Scholar] [CrossRef]
- Richardson, C.D.; Donatucci, C.F.; Page, S.O.; Wilson, K.H.; Schwinn, D.A. Pharmacology of Tamsulosin: Saturation-Binding Isotherms and Competition Analysis Using Cloned A1-Adrenergic Receptor Subtypes. Prostate 1997, 33, 55–59. [Google Scholar] [CrossRef]
- Chapple, C.; Andersson, K.-E. Tamsulosin: An Overview. World J. Urol. 2002, 19, 397–404. [Google Scholar] [CrossRef]
- Arrabal-Martin, M.; Valle-Diaz de la Guardia, F.; Arrabal-Polo, M.A.; Palao-Yago, F.; Mijan-Ortiz, J.L.; Zuluaga-Gomez, A. Treatment of Ureteral Lithiasis with Tamsulosin: Literature Review and Meta-Analysis. Urol. Int. 2010, 84, 254–259. [Google Scholar] [CrossRef]
- Montgomery, W.G.; Spinosa, M.D.; Cullen, J.M.; Salmon, M.D.; Su, G.; Hassinger, T.; Sharma, A.K.; Lu, G.; Fashandi, A.; Ailawadi, G.; et al. Tamsulosin Attenuates Abdominal Aortic Aneurysm Growth. Surgery 2018, 164, 1087–1092. [Google Scholar] [CrossRef]
- De Jager, R.L.; Blankestijn, P.J. Pathophysiology I: The Kidney and the Sympathetic Nervous System. EuroIntervention 2013, 9 (Suppl. R), R42–R47. [Google Scholar] [CrossRef]
- Johns, E.J.; Kopp, U.C.; DiBona, G.F. Neural Control of Renal Function. Compr. Physiol. 2011, 1, 731–767. [Google Scholar] [CrossRef]
- DiBona, G.F. Neural Control of Renal Function: Cardiovascular Implications. Hypertension 1989, 13, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Ligtenberg, G.; Blankestijn, P.J.; Oey, P.L.; Klein, I.H.; Dijkhorst-Oei, L.T.; Boomsma, F.; Wieneke, G.H.; van Huffelen, A.C.; Koomans, H.A. Reduction of Sympathetic Hyperactivity by Enalapril in Patients with Chronic Renal Failure. N. Engl. J. Med. 1999, 340, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Ritz, E.; Amann, K.; Fliser, D. The Sympathetic Nervous System and the Kidney: Its Importance in Renal Diseases. Blood Press. 1998, 7, 14–19. [Google Scholar] [CrossRef]
- Kim, J.; Padanilam, B.J. Renal Nerves Drive Interstitial Fibrogenesis in Obstructive Nephropathy. J. Am. Soc. Nephrol. 2013, 24, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Zanchetti, A. Volhard Lecture: Sympatho-Renal Interactions and Blood Pressure Control. J. Hypertens. 1986, 4, S4–S13. [Google Scholar]
- Imig, J.D.; Ryan, M.J. Immune and Inflammatory Role in Renal Disease. Compr. Physiol. 2013, 3, 957–976. [Google Scholar] [CrossRef]
- Pongratz, G.; Straub, R.H. The Sympathetic Nervous Response in Inflammation. Arthritis Res. Ther. 2014, 16, 504. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Qiao, Y.-C.; Xu, Y.; Ling, W.; Pan, Y.-H.; Huang, Y.-C.; Geng, L.-J.; Zhao, H.-L.; Zhang, X.-X. Serum TNF-α Concentrations in Type 2 Diabetes Mellitus Patients and Diabetic Nephropathy Patients: A Systematic Review and Meta-Analysis. Immunol. Lett. 2017, 186, 52–58. [Google Scholar] [CrossRef]
- Furman, B.L. Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr. Protoc. Pharmacol. 2015, 70, 5–47. [Google Scholar] [CrossRef]
- Abdollahi, M.; Hosseini, A. Streptozotocin. In Encyclopedia of Toxicology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 402–404. ISBN 978-0-12-386455-0. [Google Scholar]
- Song, Y.; Liu, W.; Tang, K.; Zang, J.; Li, D.; Gao, H. Mangiferin Alleviates Renal Interstitial Fibrosis in Streptozotocin-Induced Diabetic Mice through Regulating the PTEN/PI3K/Akt Signaling Pathway. J. Diabetes Res. 2020, 2020, e9481720. [Google Scholar] [CrossRef]
- Takada, J.; Fonseca-Alaniz, M.H.; de Campos, T.B.F.; Andreotti, S.; Campana, A.B.; Okamoto, M.; Borges-Silva, C.d.N.; Machado, U.F.; Lima, F.B. Metabolic Recovery of Adipose Tissue Is Associated with Improvement in Insulin Resistance in a Model of Experimental Diabetes. J. Endocrinol. 2008, 198, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Kohno, D.; Furusawa, K.; Kitamura, T. Anagliptin Suppresses Diet-Induced Obesity through Enhancing Leptin Sensitivity and Ameliorating Hyperphagia in High-Fat High-Sucrose Diet Fed Mice. Endocr. J. 2020, 67, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.-H.; Liang, P.-Y.; Ou, S.-J.; Zu, X.-B. Protective Effect of Pioglitazone on Kidney Injury in Diabetic Rats. Asian Pac. J. Trop. Med. 2014, 7, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Scheen, A.J. A Review of Gliptins in 2011. Expert Opin. Pharmacother. 2012, 13, 81–99. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, G.; Chen, X.; Wei, T.; Liu, C.; Chen, C.; Gong, Y.; Wei, Q. Sitagliptin Ameliorates Diabetic Nephropathy by Blocking TGF-Β1/Smad Signaling Pathway. Int. J. Mol. Med. 2018, 41, 2784–2792. [Google Scholar] [CrossRef]
- Mohamed, R.H.; Sedky, A.A.; Hamam, G.G.; Elkhateb, L.; Kamar, S.A.; Adel, S.; Tawfik, S.S. Sitagliptin’s Renoprotective Effect in a Diabetic Nephropathy Model in Rats: The Potential Role of PI3K/AKT Pathway. Fundam. Clin. Pharmacol. 2022, 36, 324–337. [Google Scholar] [CrossRef]
- Levey, A.S.; Coresh, J.; Tighiouart, H.; Greene, T.; Inker, L.A. Measured and Estimated Glomerular Filtration Rate: Current Status and Future Directions. Nat. Rev. Nephrol. 2020, 16, 51–64. [Google Scholar] [CrossRef]
- Breyer, M.D.; Böttinger, E.; Brosius, F.C.; Coffman, T.M.; Harris, R.C.; Heilig, C.W.; Sharma, K. AMDCC Mouse Models of Diabetic Nephropathy. J. Am. Soc. Nephrol. 2005, 16, 27–45. [Google Scholar] [CrossRef]
- Borgohain, M.P.; Chowdhury, L.; Ahmed, S.; Bolshette, N.; Devasani, K.; Das, T.J.; Mohapatra, A.; Lahkar, M. Renoprotective and Antioxidative Effects of Methanolic Paederia Foetida Leaf Extract on Experimental Diabetic Nephropathy in Rats. J. Ethnopharmacol. 2017, 198, 451–459. [Google Scholar] [CrossRef]
- Klahr, S.; Morrissey, J. Obstructive Nephropathy and Renal Fibrosis: The Role of Bone Morphogenic Protein-7 and Hepatocyte Growth Factor. Kidney Int. 2003, 64, S105–S112. [Google Scholar] [CrossRef]
- Kvandova, M.; Barancik, M.; Balis, P.; Puzserova, A.; Majzunova, M.; Dovinova, I. The Peroxisome Proliferator-Activated Receptor Gamma Agonist Pioglitazone Improves Nitric Oxide Availability, Renin-Angiotensin System and Aberrant Redox Regulation in the Kidney of Pre-Hypertensive Rats. J. Physiol. Pharmacol. 2018, 69, 231–243. [Google Scholar] [CrossRef]
- Vellecco, V.; Mitidieri, E.; Gargiulo, A.; Brancaleone, V.; Matassa, D.; Klein, T.; Esposito, F.; Cirino, G.; Bucci, M. Vascular Effects of Linagliptin in Non-Obese Diabetic Mice Are Glucose-Independent and Involve Positive Modulation of the Endothelial Nitric Oxide Synthase (eNOS)/Caveolin-1 (CAV-1) Pathway. Diabetes Obes. Metab. 2016, 18, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- Bloomgarden, Z. The Kidney and Cardiovascular Outcome Trials. J. Diabetes 2018, 10, 88–89. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, A.S. Kaempferol Attenuates Diabetic Nephropathy in Streptozotocin-Induced Diabetic Rats by a Hypoglycaemic Effect and Concomitant Activation of the Nrf-2/Ho-1/Antioxidants Axis. Arch. Physiol. Biochem. 2023, 129, 984–997. [Google Scholar] [CrossRef] [PubMed]
- Corremans, R.; Vervaet, B.A.; Dams, G.; D’Haese, P.C.; Verhulst, A. Metformin and Canagliflozin Are Equally Renoprotective in Diabetic Kidney Disease but Have No Synergistic Effect. Int. J. Mol. Sci. 2023, 24, 9043. [Google Scholar] [CrossRef] [PubMed]
- Ko, G.J.; Kang, Y.S.; Han, S.Y.; Lee, M.H.; Song, H.K.; Han, K.H.; Kim, H.K.; Han, J.Y.; Cha, D.R. Pioglitazone Attenuates Diabetic Nephropathy through an Anti-Inflammatory Mechanism in Type 2 Diabetic Rats. Nephrol. Dial. Transplant. 2008, 23, 2750–2760. [Google Scholar] [CrossRef]
- Asakura, J.; Hasegawa, H.; Takayanagi, K.; Shimazu, T.; Suge, R.; Shimizu, T.; Iwashita, T.; Tayama, Y.; Matsuda, A.; Kanozawa, K.; et al. Renoprotective Effect of Pioglitazone by the Prevention of Glomerular Hyperfiltration through the Possible Restoration of Altered Macula Densa Signaling in Rats with Type 2 Diabetic Nephropathy. Nephron Exp. Nephrol. 2012, 122, 83–94. [Google Scholar] [CrossRef]
- Hidayaturrahmah; Santoso, H.B.; Rahmi, R.A.; Kartikasari, D. Blood Glucose Level of White Rats (Rattus Norvegicus) after Giving Catfish Biscuit (Pangasius Hypothalmus). BIO Web Conf. 2020, 20, 04005. [Google Scholar] [CrossRef]
- Lehrke, M.; Lazar, M.A. The Many Faces of PPARγ. Cell 2005, 123, 993–999. [Google Scholar] [CrossRef]
- Korbut, A.I.; Taskaeva, I.S.; Bgatova, N.P.; Muraleva, N.A.; Orlov, N.B.; Dashkin, M.V.; Khotskina, A.S.; Zavyalov, E.L.; Konenkov, V.I.; Klein, T.; et al. SGLT2 Inhibitor Empagliflozin and DPP4 Inhibitor Linagliptin Reactivate Glomerular Autophagy in Db/Db Mice, a Model of Type 2 Diabetes. Int. J. Mol. Sci. 2020, 21, 2987. [Google Scholar] [CrossRef]
- Cohen, M.P.; Clements, R.S.; Cohen, J.A.; Shearman, C.W. Prevention of Decline in Renal Function in the Diabetic Db/Db Mouse. Diabetologia 1996, 39, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Refaat, R.; Sakr, A.; Salama, M.; El Sarha, A. Combination of Vildagliptin and Pioglitazone in Experimental Type 2 Diabetes in Male Rats. Drug Dev. Res. 2016, 77, 300–309. [Google Scholar] [CrossRef]
- Weiner, I.D.; Mitch, W.E.; Sands, J.M. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion. Clin. J. Am. Soc. Nephrol. 2015, 10, 1444–1458. [Google Scholar] [CrossRef] [PubMed]
- Ormonde, C.; Laranjinha, I.; Gil, C.; Gonçalves, M.; Gaspar, A.A. Glycosuria in Primary Glomerulopathies: Prevalence and Prognostic Significance. J. Bras. Nefrol. 2022, 44, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Kashani, K.; Rosner, M.H.; Ostermann, M. Creatinine: From Physiology to Clinical Application. Eur. J. Intern. Med. 2020, 72, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Traynor, J.; Mactier, R.; Geddes, C.C.; Fox, J.G. How to Measure Renal Function in Clinical Practice. BMJ 2006, 333, 733–737. [Google Scholar] [CrossRef]
- Baum, N.; Dichoso, C.C.; Carlton, C.E. Blood urea nitrogen and serum creatinine. Physiology and Interpretations. Urology 1975, 5, 583–588. [Google Scholar] [CrossRef]
- Liu, Y. Cellular and Molecular Mechanisms of Renal Fibrosis. Nat. Rev. Nephrol. 2011, 7, 684–696. [Google Scholar] [CrossRef]
- Eddy, A.A. Overview of the Cellular and Molecular Basis of Kidney Fibrosis. Kidney Int. 2014, 4, 2–8. [Google Scholar] [CrossRef]
- Ohga, S.; Shikata, K.; Yozai, K.; Okada, S.; Ogawa, D.; Usui, H.; Wada, J.; Shikata, Y.; Makino, H. Thiazolidinedione Ameliorates Renal Injury in Experimental Diabetic Rats through Anti-Inflammatory Effects Mediated by Inhibition of NF-kappaB Activation. Am. J. Physiol. Ren. Physiol. 2007, 292, F1141–F1150. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Q.; Dai, W.; Hua, B.; Li, H.; Li, W. Pioglitazone Downregulates Twist-1 Expression in the Kidney and Protects Renal Function of Zucker Diabetic Fatty Rats. Biomed. Pharmacother. 2019, 118, 109346. [Google Scholar] [CrossRef] [PubMed]
- Oraby, M.A.; El-Yamany, M.F.; Safar, M.M.; Assaf, N.; Ghoneim, H.A. Amelioration of Early Markers of Diabetic Nephropathy by Linagliptin in Fructose-Streptozotocin-Induced Type 2 Diabetic Rats. Nephron 2019, 141, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Zuo, S.; Hou, Y.; Shang, W.; Liu, N.; Yin, Z. Inhibition of A1-Adrenoceptor Reduces TGF-Β1-Induced Epithelial-to-Mesenchymal Transition and Attenuates UUO-Induced Renal Fibrosis in Mice. FASEB J. 2020, 34, 14892–14904. [Google Scholar] [CrossRef] [PubMed]
- Navarro-González, J.F.; Mora-Fernández, C.; Muros de Fuentes, M.; García-Pérez, J. Inflammatory Molecules and Pathways in the Pathogenesis of Diabetic Nephropathy. Nat. Rev. Nephrol. 2011, 7, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef]
- Tang, P.M.-K.; Zhang, Y.-Y.; Hung, J.S.-C.; Chung, J.Y.-F.; Huang, X.-R.; To, K.-F.; Lan, H.-Y. DPP4/CD32b/NF-κB Circuit: A Novel Druggable Target for Inhibiting CRP-Driven Diabetic Nephropathy. Mol. Ther. 2021, 29, 365–375. [Google Scholar] [CrossRef]
- Wada, J.; Makino, H. Innate Immunity in Diabetes and Diabetic Nephropathy. Nat. Rev. Nephrol. 2016, 12, 13–26. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, B.; Wang, L.; Yang, M.; Xia, Z.; Wei, W.; Zhang, F.; Yuan, X. Pioglitazone Ameliorates Glomerular NLRP3 Inflammasome Activation in Apolipoprotein E Knockout Mice with Diabetes Mellitus. PLoS ONE 2017, 12, e0181248. [Google Scholar] [CrossRef]
- Seo, J.B.; Choi, Y.K.; Woo, H.I.; Jung, Y.A.; Lee, S.; Lee, S.; Park, M.; Lee, I.K.; Jung, G.S.; Park, K.G. Gemigliptin Attenuates Renal Fibrosis Through Down-Regulation of the NLRP3 Inflammasome. Diabetes Metab. J. 2019, 43, 830–839. [Google Scholar] [CrossRef]
- Wei, W.; Zhao, Y.; Zhang, Y.; Jin, H.; Shou, S. The Role of IL-10 in Kidney Disease. Int. Immunopharmacol. 2022, 108, 108917. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, X.; Liu, L.C.; Kim, A.Y.; Curley, S.P.; Chen, X.; Dworkin, L.D.; Cooper, C.J.; Gupta, R. Interleukin-10 Attenuates Renal Injury after Myocardial Infarction in Diabetes. J. Investig. Med. 2022, 70, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Naing, C.; Htet, N.H.; Basavaraj, A.K.; Nalliah, S. An Association between IL-10 Promoter Polymorphisms and Diabetic Nephropathy: A Meta-Analysis of Case-Control Studies. J. Diabetes Metab. Disord. 2018, 17, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Satoh-Asahara, N.; Sasaki, Y.; Wada, H.; Tochiya, M.; Iguchi, A.; Nakagawachi, R.; Odori, S.; Kono, S.; Hasegawa, K.; Shimatsu, A. A Dipeptidyl Peptidase-4 Inhibitor, Sitagliptin, Exerts Anti-Inflammatory Effects in Type 2 Diabetic Patients. Metabolism 2013, 62, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.E.; Sisti, F.; Sônego, F.; Wang, S.; Filgueiras, L.R.; Brandt, S.; Serezani, A.P.M.; Du, H.; Cunha, F.Q.; Alves-Filho, J.C.; et al. PPAR-γ/IL-10 Axis Inhibits MyD88 Expression and Ameliorates Murine Polymicrobial Sepsis. J. Immunol. 2014, 192, 2357–2365. [Google Scholar] [CrossRef]
- Morikawa, M.; Derynck, R.; Miyazono, K. TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb. Perspect. Biol. 2016, 8, a021873. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.-L.; Liu, T.-T.; Lan, H.-Y. TGF-Beta as a Master Regulator of Diabetic Nephropathy. Int. J. Mol. Sci. 2021, 22, 7881. [Google Scholar] [CrossRef]
- Wang, J.; Zohar, R.; McCulloch, C.A. Multiple Roles of Alpha-Smooth Muscle Actin in Mechanotransduction. Exp. Cell Res. 2006, 312, 205–214. [Google Scholar] [CrossRef]
- Sifuentes-Franco, S.; Padilla-Tejeda, D.E.; Carrillo-Ibarra, S.; Miranda-Díaz, A.G. Oxidative Stress, Apoptosis, and Mitochondrial Function in Diabetic Nephropathy. Int. J. Endocrinol. 2018, 2018, 1875870. [Google Scholar] [CrossRef]
- Ma, L.; Wu, F.; Shao, Q.; Chen, G.; Xu, L.; Lu, F. Baicalin Alleviates Oxidative Stress and Inflammation in Diabetic Nephropathy via Nrf2 and MAPK Signaling Pathway. Drug Des. Dev. Ther. 2021, 15, 3207–3221. [Google Scholar] [CrossRef]
- Landis, R.C.; Quimby, K.R.; Greenidge, A.R. M1/M2 Macrophages in Diabetic Nephropathy: Nrf2/HO-1 as Therapeutic Targets. Curr. Pharm. Des. 2018, 24, 2241–2249. [Google Scholar] [CrossRef]
- Kong, L.; Deng, J.; Zhou, X.; Cai, B.; Zhang, B.; Chen, X.; Chen, Z.; Wang, W. Sitagliptin Activates the P62-Keap1-Nrf2 Signalling Pathway to Alleviate Oxidative Stress and Excessive Autophagy in Severe Acute Pancreatitis-Related Acute Lung Injury. Cell Death Dis. 2021, 12, 928. [Google Scholar] [CrossRef] [PubMed]
- Kamel, G.A.M.; Elariny, H.A. Pioglitazone Attenuates Tamoxifen-Induced Liver Damage in Rats via Modulating Keap1/Nrf2/HO-1 and SIRT1/Notch1 Signaling Pathways: In-Vivo Investigations, and Molecular Docking Analysis. Mol. Biol. Rep. 2023, 50, 10219–10233. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, L.I.O. Norma Oficial Mexicana NOM-062-ZOO-1999, Especificaciones Técnicas Para la Producción, Cuidado y Uso de los Animales de Laboratorio; Diario Oficial de la Federación. 2001, p. 59. Available online: https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf (accessed on 27 January 2024).
- National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies Collection: Reports funded by National Institutes of Health; National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-15400-0.
- Besseling, P.J.; Pieters, T.T.; Nguyen, I.T.N.; de Bree, P.M.; Willekes, N.; Dijk, A.H.; Bovée, D.M.; Hoorn, E.J.; Rookmaaker, M.B.; Gerritsen, K.G.; et al. A Plasma Creatinine- and Urea-Based Equation to Estimate Glomerular Filtration Rate in Rats. Am. J. Physiol. Ren. Physiol. 2021, 320, F518–F524. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, G.; Okada, K.; Muto, S.; Fujita, N.; Itabashi, N.; Kusano, E.; Ishibashi, S. Spironolactone Prevents Early Renal Injury in Streptozotocin-Induced Diabetic Rats. Kidney Int. 2004, 66, 1493–1502. [Google Scholar] [CrossRef]
Gen | Sequence | pb |
---|---|---|
TGF-β | Fw: 5′-GAC TCT CCA CCT GCA AGA CCA-3′ | 21 |
Rv: 5′-CGG GTG ACT TCT TTG GCG TA-3′ | 20 | |
Col-IV | Fw: 5′-TGC CTT ACA GGG ATT TGC GT-3′ Rv: 5′-GTG TGC CAT TAT GGG AGG CT-3′ | 20 20 |
NF-κB | Rv: 5′-CGG GTG ACT TCT TTG GCG TA-3′ | 20 |
Rv: 5′-CAC ACA GAA TGA GGC TTA TTC C-3′ | 22 | |
IL-10 | Fw: 5′-TGG CTC AGC ACT GCT AGT TT-3′ | 20 |
Rv: 5′-TTG TCC AGC TGG TCC TTC TT-3′ | 20 | |
HO-1 | Fw: 5′-GAA GAG GAG ATA GAG CGA AAC A-3′ | 22 |
Rv: 5′-CAA TCT TCT TCA GGA CCT GAC C-3′ | 22 | |
IL-1β | Fw: 5’-CTG TGA CTC GTG GGA TGA TG-3’ | 20 |
Rv:5’-GGG ATT TTG TCG TTG CTT GT-3 | 20 | |
NRF2 | Fw: 5′-CAG TCT TCA CCA CCC CTG AT-3′ | 20 |
Rv: 5′-CAG TGA GGG GAT CGA TGA GT-3′ | 20 | |
β-Actin | Fw: 5′-GTC GTA CCA CTG GCA TTG TG-3′ | 20 |
Rv: 5′-GCT GTG GTG GTG AAG CTG TA-3′ | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morones, J.; Pérez, M.; Muñoz, M.; Sánchez, E.; Ávila, M.; Topete, J.; Ventura, J.; Martínez, S. Evaluation of the Effect of an α-Adrenergic Blocker, a PPAR-γ Receptor Agonist, and a Glycemic Regulator on Chronic Kidney Disease in Diabetic Rats. Int. J. Mol. Sci. 2024, 25, 11372. https://doi.org/10.3390/ijms252111372
Morones J, Pérez M, Muñoz M, Sánchez E, Ávila M, Topete J, Ventura J, Martínez S. Evaluation of the Effect of an α-Adrenergic Blocker, a PPAR-γ Receptor Agonist, and a Glycemic Regulator on Chronic Kidney Disease in Diabetic Rats. International Journal of Molecular Sciences. 2024; 25(21):11372. https://doi.org/10.3390/ijms252111372
Chicago/Turabian StyleMorones, Jorge, Mariana Pérez, Martín Muñoz, Esperanza Sánchez, Manuel Ávila, Jorge Topete, Javier Ventura, and Sandra Martínez. 2024. "Evaluation of the Effect of an α-Adrenergic Blocker, a PPAR-γ Receptor Agonist, and a Glycemic Regulator on Chronic Kidney Disease in Diabetic Rats" International Journal of Molecular Sciences 25, no. 21: 11372. https://doi.org/10.3390/ijms252111372
APA StyleMorones, J., Pérez, M., Muñoz, M., Sánchez, E., Ávila, M., Topete, J., Ventura, J., & Martínez, S. (2024). Evaluation of the Effect of an α-Adrenergic Blocker, a PPAR-γ Receptor Agonist, and a Glycemic Regulator on Chronic Kidney Disease in Diabetic Rats. International Journal of Molecular Sciences, 25(21), 11372. https://doi.org/10.3390/ijms252111372