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Abstract: Determining the effects of fermentation duration on the microbial ecosystem, potential
pathogenic risks, and metabolite generation during the fermentation of distilled grains is essential for
safeguarding the safety and enhancing the nutritional profile of animal feed. This study investigates
the effect of varying fermentation times (9, 30, and 60 days) on microbial diversity, pathogenic risk, and
metabolite profiles in distiller grains using 16S rDNA sequencing and LC–MS-based metabolomics.
The results showed that early fermentation (9–30 days) enhanced the abundance of beneficial bacteria,
such as Lactobacillus reuteri and Lactobacillus pontis (p < 0.05), while pathogenic bacteria, like Serratia
marcescens and Citrobacter freundii, were significantly reduced (p < 0.05). Metabolomic analysis
revealed an increase in unsaturated fatty acids and the degradation of biogenic amines during early
fermentation. However, prolonged fermentation (60 days) led to a resurgence of pathogenic bacteria
and reduced the synthesis of essential metabolites. These findings suggest that fermentation duration
must be optimized to balance microbial safety and nutrient quality, with 30 days being the optimal
period to reduce pathogenic risks and enhance feed quality.

Keywords: white distiller grains; fermentation duration; microbial communities; pathogenic risk;
LC–MS metabolomics; animal feed

1. Introduction

With the global increase in meat consumption and livestock and poultry farming, feed
resources are becoming increasingly scarce. In this context, distiller grain, a byproduct
of Chinese liquor brewing, has attracted attention. Distiller grain mainly refers to the
residues left after fermenting sorghum, wheat, and other raw materials to extract alcohol
and aromatic substances. The main nutrients in distiller grain include proteins, fats, and
cellulose, which are all rich in fermentation products, such as active factors [1], making it
an excellent candidate for alternative feed. Livestock and poultry find it difficult to digest
and absorb fresh distiller grain, resulting in low nutrient utilization. Owing to its high
acidity and moisture content, it is highly susceptible to mold. If discarded directly, it not
only severely pollutes the environment but also wastes resources [2].

Recent studies have confirmed that microorganisms can convert starch, sugars, cel-
lulose, and other substances in distiller grain into metabolic products, such as oligosac-
charides, short-chain fatty acids, and vitamins. They also produce lipase, protease, and
cellulase, which improve the digestibility of distiller grain [3]. Many fermentation strains,
such as lactic acid bacteria (LAB) and yeasts, are permitted for use in China. These strains
can also lower the pH of fermented feed and increase its lactic acid content, which have pos-
itive effects on animal gut health and production performance [4]. Some researchers have
added strains to distiller grain for fermentation before feeding to overcome the problem of
poor digestibility in livestock and poultry. Fermented distiller grains have been proven use-
ful in cattle farming, where consuming feed containing fermented distiller grain promotes
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the average daily gain and immune capacity of cattle [5]. However, He et al. [5] found that
cattle that consume a high proportion of fermented distiller grains have an increased risk
of diseases. This suggests that the fermentation of distiller grain may be accompanied by a
proliferation of certain pathogenic bacteria (e.g., Salmonella enterica), which increases the
risk of microbial contamination and pathogen invasion. Few studies have examined the
bacterial communities in distiller grains during the dynamic fermentation process, but it
is crucial because pathogenic microorganisms during fermentation may be key factors in
animal diseases.

Microbial communities and their biochemical metabolic pathways play an irreplace-
able role [6]. A full understanding of the metabolic pathways of bacterial communities in
the fermentation environment is crucial for improving the quality and safety of fermented
distiller grains as feed. However, few studies have examined the metabolism of bacterial
communities in distiller grain fermentation systems. In recent years, molecular tools, such
as metagenomics, have greatly facilitated the exploration of microbial communities and mi-
crobial metabolites in the gastrointestinal tract. A feasible approach is to use metagenomics
with liquid chromatography–mass spectrometry (LC–MS) to study the metabolic pathways
of microbial communities in the fermentation environment.

This study employs 16S rDNA sequencing and LC–MS technology to investigate
trends in microbial community dynamics and metabolite profiles during the fermentation
of distiller grains. This study aims to provide theoretical references for a clean and safe
production of feed-grade distiller grains and their subsequent application in animal feed
studies. The objectives of this study are as follows: (1) to elucidate the patterns of pathogenic
bacteria attachment to distiller grains during different fermentation stages; and (2) to
determine whether fermentation can effectively reduce the risk of microbial infections in
distiller grains.

2. Results and Discussion
2.1. Characteristics of Bacterial Community Changes During Distiller Grain Fermentation

The changes in bacterial alpha diversity during the fermentation of the distiller grains
are shown in Table 1. Good coverage was used to assess sequencing reliability. In this study,
coverage for all treatments was above 0.99, demonstrating the reliability of the 16S rDNA
sequencing in this research. The Chao1 index and observed species were used to evaluate
the abundance of bacterial communities. After fermentation, both the Chao1 index and
observed species showed a decreasing trend initially but experienced a sudden increase
at day 60 of fermentation. The Shannon and Simpson indices were used to assess the
diversity of the bacterial communities. The diversity of bacterial communities showed a
decreasing trend in the early stages (9 days) after fermentation but gradually increased
in the later stages. For fermented products, the decrease in both bacterial community
abundance and diversity after fermentation was attributed to lactic acid bacteria lowering
the pH by suppressing the growth of other bacteria [7]. The increase in bacterial community
abundance and diversity during the later stages of fermentation may be due to certain
bacteria possessing high resistance.

Table 1. Alpha diversity during distiller grain fermentation.

Item
Community Richness Community Diversity

Goods Coverage
Chao1 Observed Species Shannon Simpson

SJZ 3075.70 1572.40 8.59 0.99 0.99
SJZ9 2167.61 1384.45 4.32 0.81 0.99
SJZ30 1823.92 1247.37 4.77 0.88 0.99
SJZ60 2320.42 1354.13 5.32 0.82 0.99

The differences in bacterial composition were assessed using non-metric multidimen-
sional scaling (NMDS) analysis, with a Stress < 0.2 indicating a good model fit (Figure 1).
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In this study, there were significant differences in the bacterial composition before and after
fermentation. At different stages of fermentation, the bacterial composition varied and
showed some correlations. As fermentation progressed, the bacterial community gradually
became more similar to that before fermentation. Typically, fermentation lowers the pH
through lactate production to inhibit the proliferation of undesirable microorganisms, in-
cluding pathogens. This is a significant factor and contributes to the differences in bacterial
composition before and after fermentation. However, in the later stages of fermentation,
the microbial community gradually approached pre-fermentation states, which contributed
to the proliferation of pathogens in the fermented distiller grains.
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2.2. Characteristics of Changes in Bacterial Community Composition During Distiller
Grain Fermentation

To further understand the changes in pathogenic bacteria during the fermentation of
distiller grains, we used RDP classifier v2.2 software from the SILVA database to annotate
and summarize the OTUs of each sample at phylum, genus, and species classification
levels (Figure 2a). At the phylum level, Firmicutes were predominantly observed before
fermentation (SJZ), consistent with the findings reported by Zuo et al. [8]. As fermentation
progressed, Firmicutes gradually increased in abundance and peaked on day 30 of fermen-
tation (SJZ30). Most Firmicutes bacteria can produce spores, which allows them to survive
in extreme environments, such as high temperatures and water scarcity, and possess strong
degradation capabilities [9]. These characteristics are essential for Firmicutes to become the
dominant phylum in fermented distiller grains.
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Figure 2. Bacterial community abundance at different fermentation stages of distiller grain. (a) Circle
plot of bacterial community abundance from gate (internal) to species (external) level in the SJZ;
(b) Circle plot of bacterial community abundance from gate (internal) to species (external) level in
the SJZ9; (c) Circle plot of bacterial community abundance from gate (internal) to species (external)
level in the SJZ30; (d) Circle plot of bacterial community abundance from gate (internal) to species
(external) level in the SJZ60; (e) Relative abundance of representative species. SJZ: unfermented
distiller grains; SJZ9: fermented for 9 d; SJZ30: fermented for 30 d; SJZ60: fermented for 60 d.

At the genus level, before fermentation, the predominant genera were Bacteroides
(7.84%) and Lactobacillus (5.10%). As fermentation progressed, Lactobacillus gradually in-
creased to become the predominant genus, peaking at day 30, whereas Bacteroides gradually
decreased during fermentation but suddenly increased at day 60. In the brewing process,
the internal microbial community of Daqu in the later stages of fermentation was mainly
dominated by Lactobacillus [10]. A significant increase in Lactobacillus abundance was also
a major reason for the increase in the abundance of Firmicutes. Lactobacillus inhibits the
growth and reproduction of other bacteria by secreting substances such as bacteriocins,
fatty acids, and polysaccharide–protein complexes [11,12], thereby reducing the levels of
pathogenic and spoilage bacteria. This characteristic of Lactobacillus leads to a gradual
decrease in the abundance of Bacteroides during fermentation. However, the abundance
of Bacteroides increased during the later stages of fermentation. Bacteroides possess potent
virulence factors and strong resistance, making them one of the main pathogens causing
bacteremia and abscesses in body parts [13]. This increase in Bacteroides in the later stages
of fermentation exacerbates pathogenic risk in fermented distiller grains.

To further understand the changes in pathogenic bacteria during fermentation, bac-
terial communities were annotated at the species level, and the relative abundances of
representative species were compared using one-way ANOVA (Figure 2b). The analysis
showed that fermentation increased the relative abundance of beneficial bacteria (Lactobacil-
lus reuteri, Lactobacillus pontis, and Pediococcus acidilactici), but this increase was limited to
the early to middle stages of fermentation (9–30 d) and gradually decreased as fermentation
progressed. Especially notable were Lactobacillus reuteri and Lactobacillus pontis, which
promote gut health and enhance immunity in animals [14]. Similarly, fermentation inhib-
ited the increase in the relative abundance of certain pathogenic bacteria, such as Serratia
marcescens and Citrobacter freundii [15]; however, the abundance of these bacteria increased
during the later stages of fermentation (60 d). Furthermore, the Bacteroides vulgatus PC510,
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Bacteroides ovatus V975, and Clostridiales bacterium CIEAF 020 identified in this study showed
an increasing trend during the later stages of fermentation. These strains have been as-
sociated with inflammation and various diseases [16,17], but more evidence is required
to establish the risk of infection in humans and animals. Nevertheless, fermentation pro-
moted an increase in beneficial bacteria and inhibited an increase in pathogenic bacteria. It
should be noted that the significant increase in pathogenic bacteria in the later stages of
fermentation may increase the risk of livestock infection, but further research is required to
confirm this.

2.3. Prediction of Pathogenic Risk During Distiller Grain Fermentation

To further understand the pathogenic risk during the distiller grain fermentation
process, Ward et al. [18] predicted the bacterial community phenotypes during fermentation
(Figure 3). Regarding bacterial characteristics (Figure 3a), fermentation reduced aerobic,
anaerobic, and Gram-negative bacteria while increasing facultative anaerobic and Gram-
positive bacteria and those containing mobile genetic elements. Fermentation occurs in an
anaerobic environment, which gradually diminishes the metabolism of aerobic bacteria [19]
and is replaced by anaerobic and facultatively anaerobic bacteria capable of surviving
under anaerobic conditions. This explains the decrease in aerobic Gram-negative bacteria
(most aerobic bacteria are Gram-negative) and the increase in facultative anaerobic bacteria
observed in this study after fermentation.
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(a) Bacterial characterization of distiller grains at different fermentation times; (b) Phenotypes reflect-
ing bacterial resistance at different fermentation stages of wine distiller grains. SJZ: unfermented
distiller grain; SJZ9: fermented for 9 d; SJZ30: fermented for 30 d; SJZ60: fermented for 60 d.

The low pH generated during fermentation inhibits the proliferation of most anaerobic
bacteria, allowing only those capable of tolerating low pH (such as lactic acid bacteria) to
thrive. The pH tolerance of lactic acid bacteria contributes to their high relative abundance
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after fermentation, which also explains the decrease in anaerobic bacteria and increase
in Gram-positive bacteria. “Contains mobile elements” refers to mobile genetic elements
within bacterial genomes, including transposons, plasmids, and phages, which play crucial
roles in bacterial adaptation to new environments and in the acquisition of new metabolic
capabilities [20]. Their increase is a result of bacterial adaptation to the low pH environment
during distiller grain fermentation.

Regarding bacterial pathogenicity (Figure 3b), fermentation reduced the abundance
of potentially pathogenic bacteria, biofilm-forming bacteria, and stress-tolerant bacteria.
Traditionally, fermentation inhibits bacterial proliferation, resulting in a simplified bacterial
network in the fermentation system [21]. Simple networks lack stability and adaptability to
the external environment of complex networks. Consequently, fermentation in this study
resulted in a decrease in the number of stress-tolerant bacteria. Similarly, fermentation
suppressed the growth of potentially pathogenic bacteria. Additionally, a decrease in the
relative abundance of Gram-negative bacteria and biofilms, accompanied by a reduction in
the relative abundance of potentially pathogenic bacteria, is advantageous for the fermented
products. Gram-negative bacteria with biofilms, such as lipopolysaccharide layers, are
challenging and are reported to cause severe systemic infections [22]. In this study, Gram-
negative bacteria and bacteria that form biofilms showed higher relative abundances at
60 days of fermentation compared to 30 days; potentially pathogenic bacteria exhibited
a similar trend. This change may be associated with the increase in pathogenic bacteria.
Despite fermentation reducing potential pathogenic risks, the fact that these risks increased
in the later stages of fermentation cannot be ignored. Therefore, we recommend using
fermented distiller grains for animal feed within 30 days of fermentation to significantly
reduce the risk of animal disease.

2.4. Changes in Metabolites During the Distiller Grain Fermentation Process

To ensure the safety of distiller grains for animal feed, we conducted a metabolomic
analysis of distiller grains during the fermentation process and employed both multidimen-
sional and univariate analyses to screen for inter-group differential metabolites (Figure 4).
A total of 4737 metabolites were detected in the pre- and post-fermentation treatments.
SJZ9, SJZ30, and SJZ60 exhibited 773 (343 upregulated), 740 (353 upregulated), and 780
(349 upregulated) differential metabolites, respectively, as compared to SJZ0. In terms of
the number of differential metabolites, there were relatively few changes in the metabo-
lites during the fermentation of distiller grains; however, the levels of the upregulated
compounds gradually shifted toward early fermentation levels as fermentation progressed.
This change correlates with our earlier observation that the microbial community structure
in the late fermentation stage shifts toward pre-fermentation levels.

Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) significant en-
richment analysis, Tyrosine metabolism and the biosynthesis of unsaturated fatty acids
are widely active metabolic pathways in fermented distiller grains (p < 0.01, Figure 5).
The metabolites related to these pathways are listed in Table 2. Tyrosine serves multiple
metabolic pathways in organisms. It is utilized for protein synthesis and is also a precur-
sor for substances such as Thyroxine and Dopamine. Among the biomarkers identified
for Tyrosine metabolism, 4-Hydroxyphenylpyruvic acid is a crucial intermediate [23,24].
Tyramine and Dopamine are biogenic amines commonly found in fermented foods; while
moderate intake is beneficial, excessive concentrations can impact food flavor and deplete
monoamine oxidase, disrupting normal biogenic amine metabolism and leading to adverse
effects [25]. Reduced levels of Tyramine and Dopamine metabolism are associated with the
Lactobacillus genus, which is known for its ability to degrade various biogenic amines, such
as Histamine, Tyramine, and Putrescine, across different fermentation systems [26].
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Figure 4. Differential metabolites of distiller grains at different stages of fermentation. (a) SJZ9 vs.
SJZ; (b) SJZ30 vs. SJZ; (c) SJZ60. vs. SJZ. In the volcano plots, the red origin represents significantly
upregulated metabolites in the experimental group, the blue origin represents significantly downreg-
ulated metabolites, and the gray point represents insignificant metabolites. The dotted line indicates
the significance level threshold (p = 0.05).
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Table 2. Differential metabolites associated with Tyrosine metabolism and biosynthesis of unsaturated
fatty acids.

Metabolites
SJZ9 vs. SJZ SJZ30 VSS JZ SJZ60 vs. SJZ

VIP log2(FC) p-Value Trend VIP log2(FC) p-Value Trend VIP log2(FC) p-Value Trend

Tyramine 1.05 −1.61 <0.001 Downregulated 1.02 −1.4 <0.001 Downregulated 1.09 −1.66 <0.001 Downregulated
Dopamine 1.06 −1.68 <0.001 Downregulated 1.08 −1.7 <0.001 Downregulated 1.07 −1.58 <0.001 Downregulated

4-
Hydroxyphenylpyruvic

acid
1.17 1.47 <0.001 Upregulated 0.99 1.19 <0.001 Upregulated 1.15 1.4 <0.001 Upregulated

Clupanodonic acid 1.41 7.91 <0.001 Upregulated 1.44 7.99 <0.001 Upregulated 1.14 7.34 <0.001 Upregulated
Arachidic acid 1.01 0.71 0.027 Upregulated 1.51 0.99 <0.001 Upregulated 0.36 0.25 0.452 -

Gamma-Linolenic acid 2.24 0.97 0.031 Upregulated 2.02 0.64 <0.001 Upregulated 0.57 0.16 0.347 -

The biosynthesis of unsaturated fatty acids is an extensive metabolic activity of the
bacterial community during the 9th and 30th days of distiller grain fermentation. Polyun-
saturated fatty acids are classified into two main groups according to their structure:
n-3PUFAs, which mainly include a-Linolenic acid, Eicosapentaenoic acid, and Clupan-
odonic acid; and n-6PUFAs, which mainly include Linoleic acid, γ-Linolenic acid, and
Arachidonic acid [27]. Long-chain unsaturated fatty acids have important physiological
functions. For instance, Docosapentaenoic and Docosahexaenoic acids are the primary
active factors in the nutritional function of food, positively impacting the prevention of
cardiovascular diseases, alleviating inflammation, and enhancing immune function [28,29].
However, γ-Linolenic acid and Arachidonic acid were not significantly upregulated after
60 days of fermentation. Clearly, an excessively long fermentation time is not a necessary
condition for the high-quality fermentation of distiller grains.

Moreover, polyunsaturated fatty acids, which are essential for animals, must be ob-
tained from food sources. Yeasts can also synthesize fatty acids [30,31] (. Distiller grains
contain abundant yeast nutrients, such as proteins and oligosaccharides, which support
yeast growth. Yeasts and lactobacilli synergistically assimilate lactate and hydrolyze gluco-
sides, serving as metabolic substrates for hetero-fermentative lactobacilli to produce acetic
acid [32]. Although animal experiments validating the effects of consuming polyunsatu-
rated fatty acids on organisms are lacking, human studies have suggested that these fatty
acids have beneficial effects on animals.

In conclusion, fermentation promotes the degradation of biogenic amines and the
formation of polyunsaturated fatty acids in distiller grains, but this promoting effect is
limited to short- to medium-term fermentation, as beneficial metabolites (polyunsaturated
fatty acids) gradually revert to their unfermented state in the later stages of fermentation.

3. Materials and Methods
3.1. Fermentation Material and Sample Collection

The distiller grains used in this study were sourced from the Guizhou Maotai Group in
Maotai Town, Renhuai City, Guizhou Province, China. The distiller grains mainly consisted
of distilled sorghum and wheat, which are byproducts of the brewing process. The microbial
fermentation agent was supplied by Yijiayi Bioengineering Co., Ltd., Shijiazhuang, China,
and included lactic acid bacteria, yeast, bacillus, Bifidobacterium, butyric acid bacteria,
amylase, protease, cellulase, and lipase. Initially, the microbial fermentation agent was
added to molasses water for ambient temperature fermentation. The specific steps were: A
total 100 g of microbial fermentation agent was added to 0.5 kg of molasses mixed with
5 L of water to prepare the molasses water. Subsequently, after 3–5 days of fermentation,
the resulting mixture was used to ferment 1 t of distiller grains. The distiller grains
were mixed with cornmeal, rapeseed meal, and bran in specified proportions (distiller
grains/cornmeal/rapeseed meal/bran = 92%: 3%: 3%: 2%). The prepared molasses water
and microbial fermentation agent were added using a shovel, followed by thorough mixing.
Samples were collected for analysis after fermentation at room temperature (15–25 ◦C) for
0, 9, 30, and 60 days. Each bag contained five composite samples collected from different
areas, resulting in 24 bags of samples (six replicates × four stages).
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3.2. Microbiological Analysis

Genomic DNA of the samples was extracted using a DNeasy PowerSoil kit (QIA-
GEN, Hilden, Germany). The concentration of DNA was detected by 1% agarose gel
electrophoresis and NanoDrop2000. The extracted genomic DNA was used as a template
for the identification of bacterial diversity based on the selection of sequencing regions
using specific primers corresponding to the regions: 16S V3-V4 region (primers 343F: 5′-
TACGGRAGGCAGCAG-3′; 798R: 5′-AGGGTATCTAATCCT-3′), and Bio-rad’s Tks Gflex
DNA Polymerase (580BR10905) was used for PCR to ensure amplification efficiency and
accuracy. PCR system consisted of 2xGflex PCR Buffer (15 µL), 5 pmol/µL primer F (1 µL),
5 pmol/µL primer R (1 µL), template DNA (1 µL), 1.25 U/µL Tks Gflex DNA Polymerase
(0.6 µL), and H2O (11.4 µL), which amounted to a total of 30 µL. PCR reaction conditions
were as follows: 94 ◦C pre-denaturation for 5 min; 94 ◦C denaturation for 30 s, 56 ◦C
annealing for 30 s, and 72 ◦C extension for 20 s, total 26 cycles; and 72 ◦C extension for
5 min. After PCR, the products were sent to Ouyi Biomedical Ltd. (Shanghai, China) for
sequencing using a MiSeq PE300 platform (Illumina, San Diego, CA, USA).

3.3. Metabolomic Analysis

The samples were analyzed for macro-metabolomics. The LC–MS analytical instru-
ment was a liquid–liquid mass spectrometry system consisting of an ACQUITY UPLCI-
Class ultra-high-performance liquid-phase tandem VION IMS Q-Tof high-resolution mass
spectrometer from Waters (St, Rydalmere, NSW, Australian). The chromatographic con-
ditions were as follows: column ACQUITY UPLC BEH C18 (100 mm × 2.1 mm, 1.7 µm);
column temperature, 45 ◦C; mobile phase A was 0.1% formic acid in water and B was 0.1%
formic acid in acetonitrile; flow rate, 0.4 mL/min; injection volume, 1 µL. The sample’s
mass spectra were acquired in positive and negative ion scanning mode, and the ion source
was electron spray ionization (ESI). The mass spectrometry parameters were 2.5 kV for the
electrospray capillary, 40 V for the injection voltage, 4 eV for the collision voltage, 115 ◦C
for the ion source, 450 m for the desolvation temperature, 900 L/h for the carrier gas flow
rate, 50–1000 amu for the mass spectrometry scan range, 0.2 s for the scan time, and 0.02 s
for the interval.

3.4. Bacterial Phenotype Prediction Analyses

The BugBase algorithm (https://bugbase.cs.umn.edu/index.html) was used to predict
the phenotypes of bacterial communities, accessed on 28 May 2024. BugBase first normal-
ized the operational taxonomic unit (OTU) using the predicted 16S rRNA copy number
and then predicted the microbial phenotype using the pre-calculated files provided. The
BugBase algorithm relies on databases, such as Integrated Microbial Genomes (IMG), Kyoto
Encyclopedia of Genes and Genomes (KEGG), and Pathosystems Resource Integration
Center (PATRIC), to predict phenotypes and corresponding microbial contributors at a
genus level.

3.5. Statistical Analysis

The study used Microsoft Excel and GraphPad Prism 9.0 software. Using Graph-
Pad Prism 9.0, we conducted statistical analyses to determine the significance of bacte-
rial abundance and phenotypes, with a threshold p value of less than 0.05 considered
statistically significant.

4. Conclusions

Fermentation reduces the pathogenic potential of distiller grains, promotes the growth
of probiotics, degrades excessive biogenic amines, increases the content of unsaturated
fatty acids, significantly improves the palatability of distiller grains, and extends their
shelf life. However, prolonged storage time increases the pathogenic risk and reduces the
content of beneficial metabolites. In production practices, the adverse effects of storage
time should be considered to reduce the pathogenic risk during animal production. We

https://bugbase.cs.umn.edu/index.html
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recommend that distiller grains be fed to animals within 30 d of fermentation. A detailed
understanding of the microbial dynamics can be applied directly in practice. Simple tests,
such as fermentation time tracking or microbial community analysis, allow producers to
quickly assess product safety, providing a cost-effective and efficient method to manage
fermentation processes and prevent pathogen proliferation. However, it is important to
note that this study was conducted with a single fermentation batch. Therefore, caution
should be exercised when generalizing these findings, and future research with biological
replicates is needed to confirm the reproducibility of these results.
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