Fundamental and Practical Perspectives in Regenerative Medicine
1. Introduction and Problem Overview
2. Highlights of New Directions and Future Outreach
2.1. A General Outlook and Methodology in the Field
2.2. Rise of Biomaterial Applications and Tissue Engineering
2.3. Cell-Free Methods Pave the Way for Translational Study
3. Conclusions
Funding
Conflicts of Interest
References
- Morrison, S.J.; Spradling, A.C. Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life. Cell 2008, 132, 598–611. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Barker, N. Engineering the niche for stem cells. Growth Factors 2013, 31, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Stocum, D.L. Stem cells in regenerative biology and medicine. Wound Repair. Regen. 2001, 9, 429–442. [Google Scholar] [CrossRef]
- Eremichev, R.; Kulebyakina, M.; Alexandrushkina, N.; Nimiritsky, P.; Basalova, N.; Grigorieva, O.; Egiazaryan, M.; Dyikanov, D.; Tkachuk, V.; Makarevich, P. Scar-Free Healing of Endometrium: Tissue-Specific Program of Stromal Cells and Its Induction by Soluble Factors Produced After Damage. Front. Cell Dev. Biol. 2021, 9, 616893. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.J.; Deptula, P.L.; Buncke, G.M.; Maan, Z.N. Digit Tip Injuries: Current Treatment and Future Regenerative Paradigms. Stem Cells Int. 2019, 2019, 9619080. [Google Scholar] [CrossRef] [PubMed]
- Morgan, T.H. Regeneration in the egg, embryo, and adult. Am. Nat. 1901, 35, 949–973. [Google Scholar] [CrossRef]
- Dolan, C.P.; Dawson, L.A.; Muneoka, K. Digit Tip Regeneration: Merging Regeneration Biology with Regenerative Medicine. Stem Cells Transl. Med. 2018, 7, 262–270. [Google Scholar] [CrossRef]
- Esdaille, C.J.; Washington, K.S.; Laurencin, C.T. Regenerative engineering: A review of recent advances and future directions. Regen. Med. 2021, 16, 495–512. [Google Scholar] [CrossRef]
- Hicks, M.R.; Pyle, A.D. The emergence of the stem cell niche. Trends Cell Biol. 2023, 33, 112–123. [Google Scholar] [CrossRef]
- Newton, P.T.; Li, L.; Zhou, B.; Schweingruber, C.; Hovorakova, M.; Xie, M.; Sun, X.; Sandhow, L.; Artemov, A.V.; Ivashkin, E.; et al. A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature 2019, 567, 234–238. [Google Scholar] [CrossRef]
- Nimiritsky, P.; Sagaradze, G.; Efimenko, A.; Makarevich, P.; Tkachuk, V. The stem cell niche. Tsitologiya 2018, 60, 575–586. [Google Scholar] [CrossRef]
- Chalak, M.; Hesaraki, M.; Mirbahari, S.N.; Yeganeh, M.; Abdi, S.; Rajabi, S.; Hemmatzadeh, F. Cell Immortality: In Vitro Effective Techniques to Achieve and Investigate Its Applications and Challenges. Life 2024, 14, 417. [Google Scholar] [CrossRef] [PubMed]
- de Bardet, J.C.; Cardentey, C.R.; González, B.L.; Patrone, D.; Mulet, I.L.; Siniscalco, D.; Robinson-Agramonte, M.L.A. Cell Immortalization: In Vivo Molecular Bases and In Vitro Techniques for Obtention. BioTech 2023, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Voloshin, N.; Tyurin-Kuzmin, P.; Karagyaur, M.; Akopyan, Z.; Kulebyakin, K. Practical Use of Immortalized Cells in Medicine: Current Advances and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 12716. [Google Scholar] [CrossRef]
- Zhao, Z.; Fowle, H.; Valentine, H.; Liu, Z.; Tan, Y.; Pei, J.; Badal, S.; Testa, J.R.; Graña, X. Immortalization of human primary prostate epithelial cells via CRISPR inactivation of the CDKN2A locus and expression of telomerase. Prostate Cancer Prostatic Dis. 2021, 24, 233–243. [Google Scholar] [CrossRef]
- Cheng, Q.; Liu, C.; Chen, Q.; Luo, W.; He, T.-C.; Yang, D. Establishing and characterizing human stem cells from the apical papilla immortalized by hTERT gene transfer. Front. Cell Dev. Biol. 2023, 11, 1158936. [Google Scholar] [CrossRef]
- Yakovlev, I.A.; Emelin, A.M.; Slesarenko, Y.S.; Limaev, I.S.; Vetrova, I.A.; Belikova, L.D.; Grafskaia, E.N.; Bobrovsky, P.A.; Pokrovsky, M.V.; Kuzubova, E.V.; et al. Dual Adeno-Associated Virus 9 with Codon-Optimized DYSF Gene Promotes In Vivo Muscle Regeneration and May Decrease Inflammatory Response in Limb Girdle Muscular Dystrophy Type R2. Int. J. Mol. Sci. 2023, 24, 13551. [Google Scholar] [CrossRef]
- Kulebyakina, M.; Basalova, N.; Butuzova, D.; Arbatsky, M.; Chechekhin, V.; Kalinina, N.; Tyurin-Kuzmin, P.; Kulebyakin, K.; Klychnikov, O.; Efimenko, A. Balance between Pro- and Antifibrotic Proteins in Mesenchymal Stromal Cell Secretome Fractions Revealed by Proteome and Cell Subpopulation Analysis. Int. J. Mol. Sci. 2024, 25, 290. [Google Scholar] [CrossRef]
- Sibbald, B. Death but one unintended consequence of gene-therapy trial. Can. Med. Assoc. J. 2001, 164, 1612. [Google Scholar]
- Hsiao, Y.C.; Wang, I.H.; Yang, T.L. Fibrotic remodeling and tissue regeneration mechanisms define the therapeutic potential of human muscular progenitors. Bioeng. Transl. Med. 2023, 8, e10439. [Google Scholar] [CrossRef]
- Jou, V.; Lehoczky, J.A. Toeing the line between regeneration and fibrosis. Front. Cell Dev. Biol. 2023, 11, 1217185. [Google Scholar] [CrossRef] [PubMed]
- Rabelink, T.J.; Little, M.H. Stromal cells in tissue homeostasis: Balancing regeneration and fibrosis. Nat. Rev. Nephrol. 2013, 9, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Farahbakhsh, M.; Anderson, E.J.; Maimon-Mor, R.O.; Rider, A.; Greenwood, J.A.; Hirji, N.; Zaman, S.; Jones, P.R.; Schwarzkopf, D.S.; Rees, G.; et al. A demonstration of cone function plasticity after gene therapy in achromatopsia. Brain 2022, 145, 3803–3815. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.; Zhu, W. Gene Therapy for Cardiomyocyte Renewal: Cell Cycle, a Potential Therapeutic Target. Mol. Diagn. Ther. 2023, 27, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wu, H.; Huang, S. Role of NGF and its receptors in wound healing (Review). Exp. Ther. Med. 2021, 21, 599. [Google Scholar] [CrossRef]
- Noble, A.; Qubrosi, R.; Cariba, S.; Favaro, K.; Payne, S.L. Neural dependency in wound healing and regeneration. Dev. Dyn. 2024, 253, 181–203. [Google Scholar] [CrossRef]
- Johnson, A.; DiPietro, L.A. Apoptosis and angiogenesis: An evolving mechanism for fibrosis. FASEB J. 2013, 27, 3893–3901. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, Y.; Zhou, Y.; Yang, S.; Xiao, X.; Feng, L. Angiogenesis—An Emerging Role in Organ Fibrosis. Int. J. Mol. Sci. 2023, 24, 14123. [Google Scholar] [CrossRef]
- Kraskovskaya, N.; Bolshakova, A.; Khotin, M.; Bezprozvanny, I.; Mikhailova, N. Protocol Optimization for Direct Reprogramming of Primary Human Fibroblast into Induced Striatal Neurons. Int. J. Mol. Sci. 2023, 24, 6799. [Google Scholar] [CrossRef]
- Műzes, G.; Sipos, F. Mesenchymal Stem Cell-Derived Secretome: A Potential Therapeutic Option for Autoimmune and Immune-Mediated Inflammatory Diseases. Cells 2022, 11, 2300. [Google Scholar] [CrossRef]
- Indah Sari, M.; Jusuf, N.; Munir, D.; Putra, A.; Putra, I.; Bisri, T.; Farhat, F.; Ilyas, S.; Muhar, A. Mesenchymal stem cell secretome therapy on inflammation: A systematic review. J. Pharm. Pharmacogn. Res. 2024, 12, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Savukinas, U.B.; Enes, S.R.; Sjöland, A.A.; Westergren-Thorsson, G. Concise Review: The Bystander Effect: Mesenchymal Stem Cell-Mediated Lung Repair. Stem Cells 2016, 34, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhou, T.; Liu, W.; Zuo, L. Molecular mechanism of bystander effects and related abscopal/cohort effects in cancer therapy. Oncotarget 2018, 9, 18637. [Google Scholar] [CrossRef] [PubMed]
- Oberweis, C.V.; Marchal, J.A.; López-Ruiz, E.; Gálvez-Martín, P. A worldwide overview of regulatory frameworks for tissue-based products. Tissue Eng. Part B Rev. 2020, 26, 181–196. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makarevich, P.I.; Tkachuk, V.A. Fundamental and Practical Perspectives in Regenerative Medicine. Int. J. Mol. Sci. 2024, 25, 11508. https://doi.org/10.3390/ijms252111508
Makarevich PI, Tkachuk VA. Fundamental and Practical Perspectives in Regenerative Medicine. International Journal of Molecular Sciences. 2024; 25(21):11508. https://doi.org/10.3390/ijms252111508
Chicago/Turabian StyleMakarevich, Pavel I., and Vsevolod A. Tkachuk. 2024. "Fundamental and Practical Perspectives in Regenerative Medicine" International Journal of Molecular Sciences 25, no. 21: 11508. https://doi.org/10.3390/ijms252111508
APA StyleMakarevich, P. I., & Tkachuk, V. A. (2024). Fundamental and Practical Perspectives in Regenerative Medicine. International Journal of Molecular Sciences, 25(21), 11508. https://doi.org/10.3390/ijms252111508