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Abstract: Perchlorate is one of the major inorganic pollutants in the natural environment and the
living environment, which is toxic to organisms and difficult to degrade due to its special structure. As
previously reported, the Phoenix Mars lander detected approximately 0.6% perchlorate in the Martian
soil, indicating challenges for Earth-based life to survive there. Currently, biological approaches using
dissimilatory perchlorate-reducing bacteria (DPRB) are the most promising methods for perchlorate
degradation. However, the majority of DPRB exhibit limited radiation resistance, rendering them
unsuitable for survival on Mars. In this study, we obtained the transcriptome data of Deinococcus
deserti, and predicted and identified multiple constitutive expression promoters of D. deserti with
varying activities. The top-five most active promoters were separately fused to specific genes involved
in the degradation of perchlorate from DPRB Dechloromonas agitata CKB, and transformed into
Deinococcus radiodurans R1, forming a novel dissimilatory perchlorate-reducing bacterium, R1−CKB. It
exhibited both efficient perchlorate degradation capability and strong radiation resistance, potentially
offering a valuable tool for the further enhancement of the Martian atmosphere in the future.

Keywords: dissimilatory perchlorate-reducing bacteria; Dechloromonas agitata; Deinococcus radiodurans;
Deinococcus deserti; promoter engineering

1. Introduction

Perchlorate can be used as a rocket fuel [1], an oxidizer in fireworks [2], and an ex-
plosive in airbag systems [3]. It is one of the major inorganic pollutants in the natural
environment and is abundant in surface water, groundwater, soil, many food and drinking
water sources [4–6]. As an endocrine disruptor, perchlorate ion has a similar radius and
charge as iodide ion, which competes with iodide to enter the thyroid gland when it enters
the human body, interfering with the absorption of iodide [7,8]. Due to its tetrahedron struc-
ture, perchlorate exhibits high chemical stability and excellent migration capabilities [9],
rendering its removal challenging.

Currently, technologies for degrading perchlorate include physical methods, chemical
methods, and biological methods. [10]. Among them, biological methods are the most
promising method for perchlorate degradation. Dissimilatory perchlorate-reducing bac-
teria (DPRB) are widely present in the natural environment, with isolated strains mainly
belonging to Proteobacteria, including α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria and
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ε-Proteobacteria [11]. The pathway of perchlorate degradation by DPRB is as follows: ini-
tially, perchlorate is degraded to chlorate by perchlorate reductase, then further degraded to
chlorite, and ultimately reduced to chloride ion and oxygen by chlorite dismutase. Perchlo-
rate reductase is encoded by the operon pcrABCD, with PcrAB being the effective catalytic
part of perchlorate reductase encoded by pcrA and pcrB, PcrC being responsible for electron
transfer encoded by pcrC, and PcrD being responsible for the assembly and modification
of the PcrAB protein complex encoded by pcrD. Chlorite dismutase is encoded by the
gene cld [12–15].

Not only does perchlorate exist on Earth, but traces of it have also been found on
Mars [16–18]. As previously reported, the Phoenix Mars lander detected approximately
0.6% perchlorate in the Martian soil [19]. High concentrations of perchlorate could have a
significant toxic effect on living organisms, posing a major challenge for life on Mars. Due
to the extreme Martian environment with high levels of radiation, most DPRB have poor
radiation resistance and are unable to survive on Mars. Therefore, they cannot provide
direct and effective assistance for improving the future Martian atmosphere.

As is well known, Deinococcus radiodurans is one of the most radiation-resistant organ-
isms on Earth, boasting a unique DNA damage repair system [20–22]. Integrating certain
genes involved in the degradation of perchlorate into D. radiodurans could potentially
create a novel dissimilatory perchlorate-reducing bacterium that possesses both efficient
perchlorate degradation ability and strong radiation resistance. To ensure the successful
expression of the cloned genes within D. radiodurans, it is necessary to insert universal
promoters for D. radiodurans upstream of each gene. The strength of a promoter is deter-
mined by the specificity of RNA polymerase σ factor for different promoter sequences, and
therefore most promoters cannot be universally used [23]. To optimize the expression of
target genes, the genetic modification of promoters is often required to achieve control-
lable regulation at the gene level. This can be achieved through the following two main
strategies: the mutation of endogenous promoters, and the replacement of endogenous or
exogenous promoters [24–26].

Deinococcus deserti also belongs to the Deinococcus genus and has a certain genetic
distance from D. radiodurans [27–29], whose heterologous promoter expression is less af-
fected by endogenous repressors in D. radiodurans, making its transcriptome an excellent
resource for screening constitutive promoters of D. radiodurans. In this study, we predicted
the promoter sequences of D. deserti using bioinformatics analysis based on the transcrip-
tome data of D. deserti [30], and a series of test vectors for constitutive promoter elements
were constructed. With D. radiodurans’ classic strong promoter, the groES promoter [31,32],
serving as the reference benchmark, we identified multiple constitutive promoters of
D. deserti with varying activities. The top-five most active promoters were separately
inserted into certain genes involved in the degradation of perchlorate (cld, pcrA, pcrB,
pcrC, pcrD) from DPRB Dechloromonas agitata CKB, and transformed into D. radiodurans R1
to obtain a novel dissimilatory perchlorate-reducing bacterium R1−CKB with proficient
perchlorate degradation and robust radiation resistance.

2. Results
2.1. Prediction of Strong Promoters from D. deserti

The top 24 genes (temporarily named gene_1 to gene_24), as identified from the tran-
scriptome data of D. deserti [30] and ranked by their FPKM values, are listed in Table 1. The
predicted promoter regions were designated as P1–P24, corresponding to their respective
genes. The −35 box, −10 box regions, and putative ribosome binding sites (RBSs) of the
promoters were identified and labeled using different colors, as shown in Figure 1A. The
specific promoter sequences of P1–P24 were listed in Table S1. Among these promoters, the
−35 box of P11, P14, P20, and P23 could not be predicted, suggesting that their promoter
activities might be weak.
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Multiple sequence alignment was performed on the −35 box and −10 box of the
predicted promoters, and the patterns were summarized, as depicted in Figure 1B. The
−35 box center is typically located around −35 bp upstream of the start codon, con-
taining signals recognized by RNA polymerase, and the statistical frequency of each
base is T82T84G78A65C54A45 [33]. The −10 box is a conserved sequence located around
−10 bp upstream of the start codon, containing many A-T base pairs that facilitate the
local separation of duplex DNA strands, and the statistical frequency of each base is
T80A95T45A60A50T96 [33]. The alignment results obtained from our analyses were consis-
tent with the statistical frequencies of prokaryotic promoter sequences.
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Table 1. The top 24 highly abundant genes and their FPKM values.

Name Transcript ID Gene ID Protein Characteristics FPKM

gene_1 RS03290 Deide_05740 acyl carrier protein 27,414.9
gene_2 RS12670 Deide_22131 putative ferredoxin 20,881.3
gene_3 RS19070 Deide_17971 hypothetical protein 19,113.8
gene_4 RS19355 Deide_04426 conserved hypothetical protein, precursor 13,246.9
gene_5 RS02555 Deide_04493 hypothetical protein 13,108.6
gene_6 RS10680 Deide_18600 putative Thioredoxin 11,626.1
gene_7 RS11895 Deide_20641 hypothetical protein 8012.08
gene_8 RS00720 Deide_01280 putative transglycosylase associated protein 6118.36
gene_9 RS00860 Deide_01461 putative adenylate/guanylate cyclase 5842.14
gene_10 RS13035 Deide_22810 hypothetical protein 5471.95
gene_11 RS10440 Deide_18130 hypothetical protein 5034.39
gene_12 RS10375 Deide_18000 hypothetical protein 4916.47
gene_13 RS19380 Deide_15270 hypothetical protein 4738.24
gene_14 RS01615 Deide_02853 hypothetical protein 4392.33
gene_15 RS06335 Deide_11052 preprotein translocase SecG subunit 3790.97
gene_16 RS11225 Deide_19564 hypothetical protein 3758.24
gene_17 RS04270 Deide_07352 hypothetical protein 3715.04
gene_18 RS18505 Deide_20313 hypothetical protein 3694.73
gene_19 RS03580 Deide_06180 conserved hypothetical protein, precursor 3349.25
gene_20 RS08665 Deide_15010 putative Peptidylprolyl isomerase 3184.30
gene_21 RS01005 Deide_01740 putative peptidase S8 and S53 3099.67
gene_22 RS03375 Deide_05864 hypothetical protein 3080.87
gene_23 RS19395 Deide_19231 hypothetical protein 2953.04
gene_24 RS01030 Deide_01780 conserved hypothetical protein 2907.72

2.2. Assessment of D. deserti Promoter Activities in D. radiodurans

The activities of each promoter element were assessed by measuring the transcriptional
and translational efficiency with the reporter gene mCherry in D. radiodurans. Among them,
the promoter elements carrying P4, P12, and P24 failed to be transformed into D. radiodurans,
and the growth curves of the remaining promoter elements were tested, as shown in
Figure S1.

The transcriptional levels were analyzed using RT-qPCR and calculated by the 2−∆∆ct

method, with the D. radiodurans’ classic strong promoter, groES promoter [31,32], serving as
the control reference (pRAD-PG). As shown in Figure 2A, the transcriptional levels of the
reporter genes in pRAD-P8, pRAD-P1, and pRAD-P21 possessed relatively strong activities,
approximately 4.5, 1.5, and 1.3 times that of pRAD-PG, respectively. The transcription level
of pRAD-P2 was equivalent to that of pRAD-PG, while the transcription levels of the other
pRAD-promoters were slightly or much lower than that of pRAD-PG.

The translational levels of the reporter gene mCherry were further investigated using a
fluorescence intensity ratio method. The non-transformed D. radiodurans’ deletion strain
∆dr0862 was used as a blank control, which was to exclude the interference of pigments in
D. radiodurans on the detection of the expression component strength. As shown in
Figure 2B, the fluorescence intensity value of pRAD-PG was 3.1, while the fluorescence in-
tensities of pRAD-P8, pRAD-P1, and pRAD-P21 were approximately 5.0, 1.6, and 1.3 times
that of pRAD-PG, respectively. The fluorescence intensity of pRAD-P2 was comparable to
that of pRAD-PG, whereas the levels of the other pRAD promoters were marginally lower
than that of pRAD-PG, which align with their transcriptional levels.

Based on the results above, the promoter activities were classified, and the results
were shown in Table S2. The top-five most active promoters (P8, P1, P21, P2, P22) were
selected for subsequent experiments.
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gene mCherry in each transformed strain. PG (marked in red) is the control promoter (* p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001, ns: not significant).

2.3. Expression of the Target Genes in D. radiodurans

We cloned the perchlorate-reducing related genes (cld, pcrA, pcrB, pcrC, pcrD) from
DPRB D. agitata CKB and separately fused to the selected promoters, as indicated in
Figure S2. The engineered recombinant vector was transformed into D. radiodurans R1,
resulting a novel bacterium designated as R1−CKB.

The relative transcription levels of the target genes in R1−CKB were shown in
Figure 3A. The housekeeping gene dr_1343, which encodes glyceraldehyde-3-phosphate de-
hydrogenase, is commonly used for the normalization of mRNA expression levels [34–36].
Given that dr_1343 typically exhibits stable high expression in D. radiodurans, it is evident
that all the transcription levels of the target genes were relatively high.

In addition, the R1−CKB experimental group, the R1 control group, and the
R1 + P group (which was a control group including a control strain containing the pro-
moters but without the target genes) were each placed in the funnels for the perchlorate
degradation assay (as described in the Materials and Methods Section 4.6), with the per-
chlorate concentrations being quantified by the solvent extraction method. The perchlorate
content in each funnel was subsequently measured using spectrophotometric determina-
tion [37], and the concentrations of the residual perchlorate in each funnel were depicted in
Figure 3B. In cultures of strain R1, the remaining perchlorate concentrations were
0.98 mg/L, 9.88 mg/L, 99.31 mg/L, respectively. Similarly, in group R1 + P, the remain-
ing perchlorate concentrations were 0.99 mg/L, 9.92 mg/L, 99.47 mg/L, respectively. In
contrast, strain R1−CKB displayed significantly lower residual perchlorate concentrations,
with the values of only 0.008 mg/L, 0.21 mg/L, 3.32 mg/L, respectively. It was evident that
strain R1−CKB exhibited a strong ability of degrading perchlorate.
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*** p < 0.001, **** p < 0.0001, ns: not significant).

2.4. Stress-Resistant Phenotypes of R1−CKB

The recombinant strain R1−CKB and the wild strain R1 were each exposed to var-
ious stress treatments, including UV irradiation, gamma radiation and oxidative stress
induced by H2O2. The post-treatment survival rates were depicted in Figure 4. Similar
to strain R1, strain R1−CKB also exhibited robust resistance to various agents, enduring
high doses of UV irradiation, gamma radiation, as well as high concentrations of H2O2,
demonstrating that the perchlorate-reducing bacterium R1−CKB possessed exceptional
radiation resistance.
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Int. J. Mol. Sci. 2024, 25, 11533 8 of 13

3. Discussion

It is well known that the extreme environmental tolerance and unique genetic resources
of D. radiodurans provide important foundations for synthetic biology studies, offering
crucial insights into applications such as enhancing organism resilience and productivity
traits [38]. Unfortunately, investigations into biological components of D. radiodurans are
scarce compared to those on model organisms such as E. coli and Lactobacillus [39–41],
particularly regarding the development of exogenous promoter libraries for D. radiodurans.

FPKM values were commonly used for characterizing promoters [42,43], which were
also utilized in this study to screen out 24 potential highly transcribed genes from the
transcriptome of D. deserti. The promoter sequences of these genes were effectively cloned
in vitro and integrated into the transformation vector pRAD plasmid, facilitating the
development of a testing vector for constitutive gene-expression promoter elements. By
introducing the testing vector into D. radiodurans, the characterization and identification of
multiple promoters with varying strengths were achieved. The results indicated that P8,
P1, and P21 are strong promoters; P2 has activity like PG; P5–P7, P10, P11, P15, P19, P22,
and P23 are relatively weak promoters; P13, P16, and P17 are weak promoters; and P3, P9,
P14, and P18 are very weak promoters.

Native D. radiodurans promoters were identified and utilized for tunable gene expres-
sion in D. radiodurans by Chen et al. [44], in which the groES promoter was also used as a
reference benchmark. Compared to the groES promoter, the relative fluorescence intensities
of the promoter elements in this study were, on average, stronger than those reported in
their work, as indicated in Figure S3. Notably, the most active promoter identified in this
study, P8, exhibited significantly greater strength compared to the strongest promoters,
PDR_1261 and PrpmB, as concluded by Chen et al. Furthermore, the concurrent intro-
duction of additional promoters from D. radiodurans may result in excessive repetitive
sequences within its genome, potentially leading to genomic instability over time [45], not
to mention its inherent robust recombination capability [46]. Therefore, it might be a more
stable way to select promoters from D. deserti, which has a certain genetic distance from
D. radiodurans, resulting in less interference by endogenous repressors on heterologous
promoter expression in D. radiodurans. Thus, this study broadened the range of promoters
accessible for D. radiodurans, culminating in a selection of resilient promoters with diverse
strengths and characteristics that hold potential for a wide array of applications.

In addition, we selected the top-five most robust promoters from the aforementioned
set, which were fused with certain genes involved in the degradation of perchlorate (cld,
pcrA, pcrB, pcrC, pcrD) from DPRB D. agitata, and transformed into D. radiodurans to
create a novel dissimilatory perchlorate-reducing bacterium R1−CKB. This strain not
only exhibited a strong ability of degrading perchlorate, but also demonstrated a strong
resistance to extreme conditions, such as high doses of UV irradiation, high doses of
gamma radiation, and high concentrations of H2O2 oxidative stress. While most radiation-
resistant bacteria cannot reduce perchlorate and most DPRB would not survive radiation
stress, the strain R1−CKB might become an ideal microorganism for exploring Mars in
the future. BLAST was employed to identify the homologous genes in D. radiodurans
corresponding to the top-five promoters, with gene_1 corresponding to dr_1942, gene_2
to dr_2330, and gene_8 to dr_2389; however, homologous genes for gene_21 and gene_22
were not identified. Subsequently, we compared these homologs with the transcriptome
data from D. radiodurans under radiation stress [47] and observed the significant activation
of all three homologous genes following irradiation. Therefore, we speculate that radiation
stress may activate these promoters, or at the very least, may not inhibit their activities.
If confirmed, this would serve as a positive indicator for R1−CKB, which may need to
function in a radiation environment for an extended period. Additionally, it is worth
mentioning that if R1−CKB is indeed widely used on Martian soil in the future, the ethical
considerations and practical challenges associated with deploying genetically modified
organisms in extraterrestrial environments should be taken into account. Measures in
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compliance with the Outer Space Treaty need to be implemented, such as isolating R1−CKB
and culturing it within a controlled environment.

4. Materials and Methods
4.1. Bioinformatic Analysis of the D. deserti Transcriptome

We obtained transcriptome data of D. deserti under normal growth conditions with
the NCBI SRA accession number SRX2611096 [48], calculated the Fragments Per Kilobase
Million (FPKM) values representing gene expression intensity, and sorted them. BLAST was
used to determine the gene accession numbers and functional annotations corresponding
to the transcriptome accession number. Based on the FPKM values, we temporarily named
the top 24 genes from high to low gene 1–gene 24. Then, 500 bp upstream regions of the
24 predicted highly expressed genes from Table 1 were selected, and the online promoter
prediction tool BPROM (SoftBerry, http://www.softberry.com/berry.phtml?topic=bprom&
group=programs&subgroup=gfindb, accessed on 23 October 2024) was used to analyze
the sequences and structures of their promoters. The predicted promoter regions were
designated as P1–P24, and primers used to amplify P1–P24 were listed in Table S3.

4.2. Strains, Plasmids, and Culture Conditions

D. radiodurans and its derivatives were cultivated in TGY medium (0.5% tryptone,
0.1% glucose, and 0.3% yeast extract) at 30 ◦C, shaking at 200 rpm. D. agitata was cultivated
in R2A medium (0.05% proteose peptone, 0.05% casamino acids, 0.05% yeast extract, 0.05%
dextrose, 0.05% soluble starch, 0.03% dipotassium phosphate, 0.005% magnesium sulfate,
and 0.03% sodium pyruvate) at 30 ◦C, shaking at 200 rpm. E. coli DH5α was used as the host
strain for the construction of recombinant plasmids and cultured at 37 ◦C in LB medium
(1% tryptone, 0.5% yeast extract, and 1% NaCl). When necessary, antibiotics were added at
a final concentration of 100 µg/mL ampicillin for E. coli, and 4 µg/mL chloramphenicol for
D. radiodurans.

4.3. DNA Manipulation and Plasmid Construction

The promoter-activity testing vector was constructed by enzymatic ligation, as shown
in Figure S4. In the PCR amplification reaction, restriction endonucleases SacI and SpeI were
used for P4 and P22, while HindIII and SpeI were used for the others. The double digestion
was performed overnight at 37 ◦C. The resulting promoter fragments with sticky ends were
ligated with the linear plasmid vector pRAD-mCherry (lab stock) using T4 DNA ligase at
16 ◦C overnight. The obtained plasmid was transformed into 500 µL competent cells of
D. radiodurans deletion strain ∆dr0862 (lab stock), which was to exclude the interference
of pigments in D. radiodurans on the detection of the expression component strength, and
incubated on ice for 30 min. The mixture was then transformed into 5 mL of TGY medium
and cultivated at 30 ◦C, shaking at 200 rpm overnight. After that, 200 µL of the mixture
was spread onto a TC4 agar plate (TGY agar containing 4 µg/mL chloramphenicol), and
then incubated at 30 ◦C for about 5 days until the colonies were visible.

The target genes (cld, pcrA, pcrB, pcrC, pcrD) were amplified with homologous arms,
and inserted into the linear plasmid vector pRAD-mCherry through homologous recombina-
tion. After that, the top-five most active promoters (P8, P1, P22, P2, P21) were also amplified
with homologous arms, and inserted into the linear plasmid vector through homologous
recombination one by one. The primers used for homologous recombination were listed
in Table S4, and the constructed target fragment was shown in Figure S2. The plasmid
transformation method mirrored the one described above, and the obtained colonies were
designated as R1−CKB.

4.4. Real-Time Quantitative PCR (RT-qPCR)

Strains were cultivated until OD600 = 1.0, and then 1 mL of the culture was centrifuged
at 3000× g for 3 min. The supernatant was discarded and 200 µL of lysozyme solution
(dissolved in DEPC-treated water) was added to the pellet. It was incubated at 37 ◦C for

http://www.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb
http://www.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb


Int. J. Mol. Sci. 2024, 25, 11533 10 of 13

30 min to lyse the cells. Total RNA was extracted from the suspension using a TransZol Up
Plus RNA Kit (TransGen, Beijing, China) according to the manufacturer’s instructions. For
real-time quantitative PCR analysis (RT-qPCR), cDNA was synthesized from 1 µg of total
RNA using a HiScript III 1st Strand cDNA Synthesis Kit (+gDNA wiper) (Vazyme, Nanjing,
China) following the manufacturer’s instructions. RT-qPCR amplification was conducted
using the TB Green® Fast qPCR Mix (Takara, Tokyo, Japan) on an Mx3005p (Stratagene,
San Diego, CA, USA).

4.5. The Detection of Protein Fluorescence Intensity

Single colonies were picked from the transformation strain plate and cultured to
OD600 = 1.0, and then 300 µL of each was taken and transferred to a 96-well black plate.
The non-transformed D. radiodurans deletion strain ∆dr0862 was used as a blank control.
The mCherry fluorescence intensity of each transformed strain was captured by exciting
it at a wavelength of 488 nm and absorbing it at 588 nm using a SpectraMax M5 Multi-
Mode Microplate Reader (Molecular Devices, San Jose, CA, USA), aiming to ascertain the
expression level of the reporter protein in each transformation.

4.6. The Determination and Degradation of Perchlorate

The perchlorate was determined using the solvent extraction method [37]. After the
4.0 × 10−4 M methylene blue solution and the standard perchlorate solution were pre-
pared, 10.0 mL of the standard perchlorate solution (0.25 mg/L, 0.5 mg/L, 0.75 mg/L, and
1.0 mg/L, respectively) was placed in a separatory funnel. Then, 0.5 mL of 0.05 M sulfuric
solution and 10.0 mL of dichloroethane were added. The separatory funnel was shaken
for about 30 s, whereby the complex formed between methylene blue and perchlorate was
extracted into the organic layer. When the two layers had clearly separated, the organic
layer was transferred to a glass tube with a glass stopper, about 0.5 g of the anhydrous
sodium sulfate was added, and the mixture was shaken vigorously to make it transparent.
With distilled water serving as the reference, the absorbance of the clear solution was
measured at 655 nm, using a BioSpectrometer (Eppendorf, Hamburg, Germany).

D. radiodurans R1, R1 + P, and R1−CKB were cultivated in 100 mL TGY culture media
at 30 ◦C, shaking at 200 rpm until the OD600 = 1.0. Then, the following three treatments
were performed: (A) 1 mg/L sodium perchlorate, 1 mg/L sodium acetate, and 50 µg/mL
hemin. (B) 10 mg/L sodium perchlorate, 10 mg/L sodium acetate, and 50 µg/mL hemin.
(C) 100 mg/L sodium perchlorate, 100 mg/L sodium acetate, and 50 µg/mL hemin. After
that, all the treatments were separately put into Oxoid AnaeroJar 2.5 L anaerobic jars
(Thermo Fisher, Waltham, MA, USA), respectively, and anaerobic gas packs AnaeroPackTM-
Anaero (Mitsubishi Gas Chemical, Tokyo, Japan) were added. The samples were incubated
at 30 ◦C for 30 days after sealing the jars.

4.7. The Phenotypes of R1 and R1−CKB

UV irradiation treatment was carried out as follows: D. radiodurans and R1−CKB
were cultivated in 5 mL TGY culture media at 30 ◦C, shaking at 200 rpm until the
OD600 = 1.0. Then, 1 mL of bacterial solution was collected and centrifuged at
3000× g for 3 min, the supernatant was discarded, and the bacterial cells were washed with
1×PBS solution once. Then, 1 mL 1×PBS solution was used for resuspending the bacterial
cells, and the bacterial solutions were serially diluted 10-fold with 1×PBS solution to obtain
dilutions of 101, 102, 103, 104, and 105. Then, 5 µL of each dilution was spotted onto TGY
agar media and irradiated with UV radiation at doses of 0, 100, 200, 300, 400, and 500 J/m2.
The plates were incubated upside down at 30 ◦C for approximately 2 days.

γ radiation treatment was carried out as follows: The pretreatment for γ radiation was
similar to that for UV irradiation, except that after washing the bacterial cells once, they
were not resuspended in solution but directly irradiated by 60Co with doses of 0, 2, 4, 6,
8, and 10 kGy. After the radiation, 1 mL 1×PBS solution was used for resuspending the
bacterial cells, and the bacterial solutions were serially diluted 10-fold with 1×PBS solution
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to obtain dilutions of 101, 102, 103, 104, and 105. Then, 5 µL of each dilution was spotted
onto TGY agar. The plates were incubated upside down at 30 ◦C for approximately 2 days.

H2O2 oxidative stress was carried out as follows: The pretreatment for H2O2 oxidative
stress was like that for UV irradiation. After resuspending the bacterial cells, H2O2 was
added to the solution at final concentrations of 0, 20, 40, 60, 80, and 100 mM, and then
the mixture was reacted at room temperature for 30 min. The reaction was terminated by
adding catalase at a final concentration of 20 ng/µL and incubating for 10 min. Then, the
bacterial solutions were serially diluted 10-fold with 1×PBS solution to obtain dilutions of
101, 102, 103, 104, and 105, and 5 µL of each dilution, which were spotted onto TGY agar
media. The plates were incubated upside down at 30 ◦C for approximately 2 days.
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