Weight Changes Are Linked to Adipose Tissue Genes in Overweight Women with Polycystic Ovary Syndrome
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics of the Behavioral Intervention and Minimal Intervention Groups
2.2. Clinical Characteristics of Subgroups of Weight Loss and Weight Gain for Microarray Analysis
2.3. Microarray and Pathway Analysis of the Subgroups of Weight Loss and Weight Gain
2.4. Real-Time PCR Analysis of All Individuals
Gene ID | Encoding Protein | Weight Loss: Weight Gain Ratio | p-Value | FDR | Pathway |
---|---|---|---|---|---|
GSTM5 | Glutathione S-transferase mu 5 | 1.32 | 0.0005 | 0.2498 | Glutathione metabolism, Glutathione-mediated detoxification |
PARVG | Parvin, gamma | 1.29 | 2.90 × 10−5 | 0.0811 | |
ARHGAP11B; ARHGAP11A | Rho GTPase activating protein 11B; Rho GTPase activating protein 11A | 1.21 | 0.0002 | 0.1836 | |
MSR1 | Macrophage scavenger receptor 1 | 1.20 | 0.0004 | 0.223 | |
ALCAM | Activated leukocyte cell adhesion molecule | 1.19 | 5.38 × 10−5 | 0.0962 | |
CPXM1 | Carboxypeptidase X (M14 family), member 1 | 1.18 | 0.0002 | 0.1621 | |
RRM2 | Ribonucleotide reductase M2 | 1.16 | 6.41 × 10−6 | 0.0603 | Glutathione metabolism, Glutathione-mediated detoxification, Retinoblastoma gene in cancer |
CD52 | CD52 molecule | 1.16 | 3.43 × 10−5 | 0.0811 | |
SIPA1L2 | Signal-induced proliferation-associated 1 like 2 | 1.14 | 0.0002 | 0.1836 | |
ANLN | Anillin actin binding protein | 1.12 | 8.20 × 10−6 | 0.0603 | Retinoblastoma gene in cancer |
GPR183 | G protein-coupled receptor 183 | 1.12 | 0.0003 | 0.1877 | |
CDK15 | Cyclin-dependent kinase 15 | 1.12 | 0.0004 | 0.2233 | |
H2BC14 | Histone cluster 1, H2bm | 1.11 | 8.43 × 10−6 | 0.0603 | |
H2AC11 | Histone cluster 1, H2ag | 1.09 | 0.0003 | 0.1877 | |
ANPEP | Alanyl (membrane) aminopeptidase | 1.07 | 2.66 × 10−5 | 0.0811 | Glutathione metabolism |
TOP2A | Topoisomerase (DNA) II alpha | 1.07 | 0.0002 | 0.1551 | Retinoblastoma gene in cancer, DNA replication |
IL1RN | Interleukin 1 receptor antagonist | 1.06 | 4.97 × 10−5 | 0.0962 | |
STMN1; MIR3917 | Stathmin 1; microRNA 3917 | 1.06 | 0.0001 | 0.1551 | Retinoblastoma gene in cancer |
H1-5 | Histone cluster 1, H1b | 1.05 | 2.36 × 10−5 | 0.0811 | |
CD83 | CD83 molecule | 1.05 | 0.0001 | 0.1548 | |
H3C2 | Histone cluster 1, H3b | 1.02 | 0.0002 | 0.1637 | DNA replication |
TM7SF2 | Transmembrane 7 superfamily member 2 | 0.97 | 0.0003 | 0.1983 | |
THRSP | Thyroid hormone responsive | 0.96 | 9.32 × 10−5 | 0.1333 | |
PFKFB1 | 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 | 0.96 | 0.0001 | 0.1548 | Gluconeogenesis |
APOL1 | Apolipoprotein L1 | 0.95 | 3.46 × 10−5 | 0.0811 | |
GBP4 | Guanylate binding protein 4 | 0.95 | 3.78 × 10−5 | 0.0811 | |
MARC1 | Mitochondrial amidoxime reducing component 1 | 0.95 | 0.0001 | 0.1548 | |
SLC4A4 | Solute carrier family 4, member 4 | 0.95 | 0.0003 | 0.1983 | |
LGALS12 | Lectin, galactoside-binding, soluble, 12 | 0.95 | 0.0004 | 0.2233 | |
PTPRU | Protein tyrosine phosphatase, receptor type, U | 0.94 | 0.0003 | 0.1877 | |
GBP1 | Guanylate binding protein 1, interferon-inducible | 0.93 | 9.24 × 10−5 | 0.1333 | |
SLC19A3 | Solute carrier family 19, member 3 | 0.91 | 1.26 × 10−5 | 0.0678 | |
TMEM246 | Transmembrane protein 246 | 0.90 | 0.0002 | 0.1836 | |
SLC25A26 | Solute carrier family 25, member 26 | 0.89 | 0.0002 | 0.1776 | |
ACLY | ATP citrate lyase | 0.88 | 0.0002 | 0.1836 | Pyruvate metabolism, Citrate cycle |
MAMLD1 | Mastermind-like domain containing 1 | 0.87 | 0.0004 | 0.223 | |
PLEKHA6 | Pleckstrin homology domain containing, family A member 6 | 0.87 | 0.0005 | 0.2498 | |
PC | Pyruvate carboxylase | 0.86 | 0.0003 | 0.1877 | Gluconeogenesis, Pyruvate metabolism, Citrate cycle |
DEFB1 | Defensin, beta 1 | 0.81 | 0.0001 | 0.1548 | |
SLC7A10 | Solute carrier family 7, member 10 | 0.79 | 6.46 × 10−5 | 0.1066 |
2.5. Correlations Between Baseline Gene Expression and Weight Change
2.6. Multiple Regression Analysis
3. Discussion
4. Materials and Methods
4.1. Participants and Study Design
4.2. Procedure of the Present Study
4.3. RNA Extraction
4.4. Microarray
4.5. Pathway Analysis
4.6. RT-PCR
4.7. Adipocyte Morphology
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teede, H.J.; Tay, C.T.; Laven, J.J.E.; Dokras, A.; Moran, L.J.; Piltonen, T.T.; Costello, M.F.; Boivin, J.; Redman, L.M.; Boyle, J.A.; et al. Recommendations From the 2023 International Evidence-based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2023, 108, 2447–2469. [Google Scholar] [CrossRef] [PubMed]
- Brennan, K.M.; Kroener, L.L.; Chazenbalk, G.D.; Dumesic, D.A. Polycystic Ovary Syndrome: Impact of Lipotoxicity on Metabolic and Reproductive Health. Obstet. Gynecol. Surv. 2019, 74, 223–231. [Google Scholar] [CrossRef]
- Barber, T.M. Why are women with polycystic ovary syndrome obese? Br. Med. Bull. 2022, 143, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Cassar, S.; Misso, M.L.; Hopkins, W.G.; Shaw, C.S.; Teede, H.J.; Stepto, N.K. Insulin resistance in polycystic ovary syndrome: A systematic review and meta-analysis of euglycaemic-hyperinsulinaemic clamp studies. Hum. Reprod. 2016, 31, 2619–2631. [Google Scholar] [CrossRef]
- Kakoly, N.S.; Khomami, M.B.; Joham, A.E.; Cooray, S.D.; Misso, M.L.; Norman, R.J.; Harrison, C.L.; Ranasinha, S.; Teede, H.J.; Moran, L.J. Ethnicity, obesity and the prevalence of impaired glucose tolerance and type 2 diabetes in PCOS: A systematic review and meta-regression. Hum. Reprod. Update 2018, 24, 455–467. [Google Scholar] [CrossRef]
- Hirschberg, A.L. Polycystic ovary syndrome, obesity and reproductive implications. Women’s Health 2009, 5, 529–540; quiz 541–542. [Google Scholar] [CrossRef] [PubMed]
- Oberg, E.; Lundell, C.; Blomberg, L.; Gidlof, S.B.; Egnell, P.T.; Hirschberg, A.L. Psychological well-being and personality in relation to weight loss following behavioral modification intervention in obese women with polycystic ovary syndrome: A randomized controlled trial. Eur. J. Endocrinol. 2020, 183, 1–11. [Google Scholar] [CrossRef]
- Stener-Victorin, E.; Manti, M.; Fornes, R.; Risal, S.; Lu, H.; Benrick, A. Origins and Impact of Psychological Traits in Polycystic Ovary Syndrome. Med. Sci. 2019, 7, 86. [Google Scholar] [CrossRef]
- Lim, S.S.; Hutchison, S.K.; Van Ryswyk, E.; Norman, R.J.; Teede, H.J.; Moran, L.J. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst. Rev. 2019, 3, CD007506. [Google Scholar] [CrossRef]
- Oberg, E.; Gidlof, S.; Jakson, I.; Mitsell, M.; Tollet Egnell, P.; Hirschberg, A.L. Improved menstrual function in obese women with polycystic ovary syndrome after behavioural modification intervention-A randomized controlled trial. Clin. Endocrinol. 2019, 90, 468–478. [Google Scholar] [CrossRef]
- Dent, R.; McPherson, R.; Harper, M.E. Factors affecting weight loss variability in obesity. Metabolism 2020, 113, 154388. [Google Scholar] [CrossRef] [PubMed]
- van Baak, M.A.; Mariman, E.C.M. Mechanisms of weight regain after weight loss—The role of adipose tissue. Nat. Rev. Endocrinol. 2019, 15, 274–287. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.J.; Joham, A.E.; Paul, E.; Moran, L.J.; Loxton, D.; Jolley, D.; Lombard, C. Longitudinal weight gain in women identified with polycystic ovary syndrome: Results of an observational study in young women. Obesity 2013, 21, 1526–1532. [Google Scholar] [CrossRef] [PubMed]
- Bril, F.; Ezeh, U.; Amiri, M.; Hatoum, S.; Pace, L.; Chen, Y.H.; Bertrand, F.; Gower, B.; Azziz, R. Adipose Tissue Dysfunction in Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2023, 109, 10–24. [Google Scholar] [CrossRef]
- Arner, P.; Andersson, D.P.; Backdahl, J.; Dahlman, I.; Ryden, M. Weight Gain and Impaired Glucose Metabolism in Women Are Predicted by Inefficient Subcutaneous Fat Cell Lipolysis. Cell Metab. 2018, 28, 45–54.e3. [Google Scholar] [CrossRef]
- Ek, I.; Arner, P.; Ryden, M.; Holm, C.; ThÖRne, A.; Hoffstedt, J.; Wahrenberg, H. A Unique Defect in the Regulation of Visceral Fat Cell Lipolysis in the Polycystic Ovary Syndrome as an Early Link to Insulin Resistance. Diabetes 2002, 51, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Faulds, G.; Ryden, M.; Ek, I.; Wahrenberg, H.; Arner, P. Mechanisms behind lipolytic catecholamine resistance of subcutaneous fat cells in the polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 2003, 88, 2269–2273. [Google Scholar] [CrossRef]
- Manneras-Holm, L.; Leonhardt, H.; Kullberg, J.; Jennische, E.; Oden, A.; Holm, G.; Hellstrom, M.; Lonn, L.; Olivecrona, G.; Stener-Victorin, E.; et al. Adipose tissue has aberrant morphology and function in PCOS: Enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance. J. Clin. Endocrinol. Metab. 2011, 96, E304–E311. [Google Scholar] [CrossRef]
- Board, P.G.; Menon, D. Glutathione transferases, regulators of cellular metabolism and physiology. Biochim. Biophys. Acta 2013, 1830, 3267–3288. [Google Scholar] [CrossRef]
- Pearson, W.R.; Vorachek, W.R.; Xu, S.J.; Berger, R.; Hart, I.; Vannais, D.; Patterson, D. Identification of class-mu glutathione transferase genes GSTM1-GSTM5 on human chromosome 1p13. Am. J. Hum. Genet. 1993, 53, 220–233. [Google Scholar]
- Picklo, M.J.; Long, E.K.; Vomhof-DeKrey, E.E. Glutathionyl systems and metabolic dysfunction in obesity. Nutr. Rev. 2015, 73, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Campbell, E.A.; Hirata, Y.; Takayama, T.; Listowsky, I. A basis for differentiating among the multiple human Mu-glutathione S-transferases and molecular cloning of brain GSTM5. J. Biol. Chem. 1993, 268, 8893–8898. [Google Scholar] [CrossRef] [PubMed]
- Curtis, J.M.; Grimsrud, P.A.; Wright, W.S.; Xu, X.; Foncea, R.E.; Graham, D.W.; Brestoff, J.R.; Wiczer, B.M.; Ilkayeva, O.; Cianflone, K.; et al. Downregulation of adipose glutathione S-transferase A4 leads to increased protein carbonylation, oxidative stress, and mitochondrial dysfunction. Diabetes 2010, 59, 1132–1142. [Google Scholar] [CrossRef]
- Martin, N.J.; Collier, A.C.; Bowen, L.D.; Pritsos, K.L.; Goodrich, G.G.; Arger, K.; Cutter, G.; Pritsos, C.A. Polymorphisms in the NQO1, GSTT and GSTM genes are associated with coronary heart disease and biomarkers of oxidative stress. Mutat. Res. 2009, 674, 93–100. [Google Scholar] [CrossRef]
- Kumar, P.; Liu, C.; Suliburk, J.; Hsu, J.W.; Muthupillai, R.; Jahoor, F.; Minard, C.G.; Taffet, G.E.; Sekhar, R.V. Supplementing Glycine and N-Acetylcysteine (GlyNAC) in Older Adults Improves Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Physical Function, and Aging Hallmarks: A Randomized Clinical Trial. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Savic-Radojevic, A.; Mazibrada, I.; Djukic, T.; Stankovic, Z.B.; Pljesa-Ercegovac, M.; Sedlecky, K.; Bjekic-Macut, J.; Simic, T.; Mastorakos, G.; Macut, D. Glutathione S-transferase (GST) polymorphism could be an early marker in the development of polycystic ovary syndrome (PCOS)—An insight from non-obese and non-insulin resistant adolescents. Endokrynol. Pol. 2018, 69, 366–374. [Google Scholar] [CrossRef]
- Azevedo, M.M.P.; Marqui, A.B.T.; Bacala, B.T.; Balarin, M.A.S.; Resende, E.; Lima, M.F.P.; Gomes, M.K.O.; Cintra, M.T.R. Polymorphisms of the GSTT1 and GSTM1 genes in polycystic ovary syndrome. Rev. Assoc. Med. Bras. 2020, 66, 1560–1565. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Zou, J.; Lai, C.T.; Zeng, T.; Peng, J.; Zou, W.D.; Cao, B.; Liu, D.; Zhu, L.Y.; et al. Comprehensive analysis of the glutathione S-transferase Mu (GSTM) gene family in ovarian cancer identifies prognostic and expression significance. Front. Oncol. 2022, 12, 968547. [Google Scholar] [CrossRef] [PubMed]
- Maqdasy, S.; Lecoutre, S.; Renzi, G.; Frendo-Cumbo, S.; Rizo-Roca, D.; Moritz, T.; Juvany, M.; Hodek, O.; Gao, H.; Couchet, M.; et al. Impaired phosphocreatine metabolism in white adipocytes promotes inflammation. Nat. Metab. 2022, 4, 190–202. [Google Scholar] [CrossRef]
- Zheng, J.; Xiao, H.; Duan, Y.; Song, B.; Zheng, C.; Guo, Q.; Li, F.; Li, T. Roles of amino acid derivatives in the regulation of obesity. Food Funct. 2021, 12, 6214–6225. [Google Scholar] [CrossRef]
- Crewe, C.; An, Y.A.; Scherer, P.E. The ominous triad of adipose tissue dysfunction: Inflammation, fibrosis, and impaired angiogenesis. J. Clin. Investig. 2017, 127, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Morreale, H.F.; Luque-Ramirez, M.; Gonzalez, F. Circulating inflammatory markers in polycystic ovary syndrome: A systematic review and metaanalysis. Fertil. Steril. 2011, 95, 1048–1058.e2. [Google Scholar] [CrossRef] [PubMed]
- Hirschberg, A.L. Hyperandrogenism and Cardiometabolic Risk in Pre- and Postmenopausal Women-What Is the Evidence? J. Clin. Endocrinol. Metab. 2023, 109, 1202–1213. [Google Scholar] [CrossRef]
- Victor, V.M.; Rovira-Llopis, S.; Banuls, C.; Diaz-Morales, N.; Martinez de Maranon, A.; Rios-Navarro, C.; Alvarez, A.; Gomez, M.; Rocha, M.; Hernandez-Mijares, A. Insulin Resistance in PCOS Patients Enhances Oxidative Stress and Leukocyte Adhesion: Role of Myeloperoxidase. PLoS ONE 2016, 11, e0151960. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, M.; Jia, W.; Liu, G.; Zhang, J.; Wang, B.; Li, J.; Cui, P.; Li, X.; Lager, S.; et al. Hyperandrogenism and insulin resistance modulate gravid uterine and placental ferroptosis in PCOS-like rats. J. Endocrinol. 2020, 246, 247–263. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, T.; Zhang, S.; Zhou, L. Associations of Different Adipose Tissue Depots with Insulin Resistance: A Systematic Review and Meta-analysis of Observational Studies. Sci. Rep. 2015, 5, 18495. [Google Scholar] [CrossRef]
- Zhang, K.; Cui, S.; Chang, S.; Zhang, L.; Wang, J. i-GSEA4GWAS: A web server for identification of pathways/gene sets associated with traits by applying an improved gene set enrichment analysis to genome-wide association study. Nucleic Acids Res. 2010, 38, W90–W95. [Google Scholar] [CrossRef] [PubMed]
- Joham, A.E.; Norman, R.J.; Stener-Victorin, E.; Legro, R.S.; Franks, S.; Moran, L.J.; Boyle, J.; Teede, H.J. Polycystic ovary syndrome. Lancet Diabetes Endocrinol. 2022, 10, 668–680. [Google Scholar] [CrossRef]
- Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009, 37, W305–W311. [Google Scholar] [CrossRef]
- Petrus, P.; Mejhert, N.; Corrales, P.; Lecoutre, S.; Li, Q.; Maldonado, E.; Kulyte, A.; Lopez, Y.; Campbell, M.; Acosta, J.R.; et al. Transforming Growth Factor-beta3 Regulates Adipocyte Number in Subcutaneous White Adipose Tissue. Cell Rep. 2018, 25, 551–560.e5. [Google Scholar] [CrossRef]
- Bäcker, V. ImageJ Macro Tool. Sets for Biological Image Analysis; Centre de Recherche Public Henri Tudor: Luxemburg, 2012. [Google Scholar]
Behavioral Modification Intervention (n = 29) | Minimal Intervention (n = 26) | ||||||
---|---|---|---|---|---|---|---|
Parameters | Baseline | 4 Months | p-Value | Baseline | 4 Months | p-Value | Between-Group Change |
Age | 31.1 (29.3–33.0) | 29.9 (27.9–32.0) | |||||
Anthropometric | |||||||
Bodyweight (kg) | 93.4 (87.8–99.0) | 91.3 (85.7–97.0) | 0.0014 | 93.3 (87.7–98.9) | 92.2 (86.6–97.8) | 0.12 | −1.07 (−2.88–0.75) |
BMI | 33.7 (31.9–35.4) | 32.9 (31.2–34.6) | 0.0017 | 34.0 (32.3–35.8) | 33.6 (31.9–35.4) | 0.12 | −0.38 (−1.04–0.29) |
WHR | 0.90 (0.88–0.92) | 0.90 (0.88–0.92) | 0.98 | 0.88 (0.86–0.91) | 0.88 (0.86–0.90) | 0.83 | 0.002 (−0.03–0.02) |
Total fat (%) | 42.6 (41.2–44.0) | 41.7 (40.3–43.1) | 0.0079 | 43.5 (42.1–44.9) | 43.3 (41.9–44.7) | 0.67 | −0.79 (−1.78–0.20) |
Trunk fat mass (kg) | 20.2 (18.3–22.1) | 19.4 (17.5–21.3) | 0.004 | 20.5 (18.6–22.3) | 20.2 (18.3–22.1) | 0.47 | 0.63 (−1.4–0.18) |
Lean body mass (kg) | 51.6 (48.8–54.4) | 51.4 (48.6–54.2) | 0.69 | 50.7 (48.0–53.5) | 50.7 (47.8–53.5) | 0.87 | −0.1 (−1.6–1.3) |
Endocrine | |||||||
FSH (IU/L) L | 6.80 (5.58–8.01) | 6.90 (5.65–8.15) | 0.45 | 5.46 (4.26–6.66) | 5.86 (4.53–7.19) | 0.64 | −0.31 (−1.87–1.26) |
LH (IU/L) | 6.59 (5.10–8.08) | 7.70 (6.14–9.26) | 0.20 | 7.63 (6.16–9.10) | 6.66 (4.95–8.37) | 0.30 | 2.08 (−0.45–4.61) |
Testosterone L (nmol/L) | 1.23 (1.06–1.40) | 1.19 (1.01–1.36) | 0.47 | 1.42 (1.24–1.60) | 1.28 (1.09–1.47) | 0.023 | 0.10 (−0.09–0.29) |
SHBG (nmol/L) | 27.1 (22.0–32.2) | 27.8 (22.6–32.9) | 0.63 | 25.9 (20.8–31.0) | 26.4 (21.0–31.7) | 0.78 | 0.25 (−4.17–4.68) |
FAI | 5.59 (4.14–7.05) | 5.40 (3.90–6.90) | 0.76 | 7.60 (6.10–9.10) | 5.78 (4.14–7.42) | 0.014 | 1.62 (−0.30–3.55) |
Metabolic | |||||||
HOMA-IR | 3.39 (2.39–4.40) | 3.12 (2.09–4.16) | 0.40 | 3.33 (2.29–4.37) | 3.54 (2.47–4.61) | 0.57 | −0.48 (−1.45–0.50) |
Triglycerides (mmol/L) | 1.25 (1.03–1.46) | 1.12 (0.90–1.34) | 0.20 | 1.35 (1.14–1.56) | 1.16 (0.92–1.39) | 0.07 | 0.07 (−0.21–0.35) |
Cholesterol (mmol/L) | 4.87 (4.61–5.14) | 4.59 (4.31–4.87) | 0.013 | 4.80 (4.53–5.07) | 4.66 (4.37–4.96) | 0.27 | −0.15 (−0.48–0.17) |
HDL (mmol/L) | 0.97 (0.87–1.07) | 1.03 (0.92–1.13) | 0.13 | 1.08 (0.98–1.18) | 1.16 (1.05–1.27) | 0.07 | −0.02 (−0.13–0.09) |
LDL (mmol/L) | 3.34 (3.10–3.58) | 3.05 (2.80–3.29) | 0.002 | 3.10 (2.86–3.34) | 2.98 (2.72–3.24) | 0.20 | −0.17 (−0.43–0.09) |
ASAT (mikrokat/L) L | 0.40 (0.35–0.45) | 0.36 (0.31–0.42) | 0.42 | 0.39 (0.34–0.45) | 0.34 (0.28–0.40) | 0.045 | 0.02 (−0.06–0.1) |
ALAT (mikrokat/L) L | 0.24 (0.16–0.31) | 0.23 (0.15–0.31) | 0.56 | 0.27 (0.20–0.34) | 0.20 (0.12–0.29) | 0.26 | 0.06 (−0.09–0.20) |
Adjusted adipocyte size (μm) | 122 (120–124) | 123 (120–125) | 0.46 | 121 (119–123) | 122 (119–124) | 0.63 | 0.33 (−3.63–4.29) |
Outlier Weight Loss Group (n = 5) | Outlier Weight Gain Group (n = 5) | p-Value | |||||
---|---|---|---|---|---|---|---|
Parameters | Baseline | 4 Months | Change | Baseline | 4 Months | Change | Change Between Groups |
Anthropometric | |||||||
Body weight (kg) | 87.6 (80.6–88.8) | 81.1 (73.2–83.5) | −5.3 (−6.5–−4.9) | 82.7 (81.5–85.8) | 86.5 (84.4–92.4) | 3.4 (2.9–3.8) | 0.008 |
BMI | 31.8 (31.1–33.1) | 29.4 (29.2–30.1) | −1.85 (−2.36–−1.70) | 30.1 (29.6–31.1) | 31.2 (30.4–32.3) | 1.15 (1.07–1.31) | 0.008 |
WHR | 0.89 (0.89–0.89) | 0.88 (0.85–0.89) | −0.03 (−0.04–0.00) | 0.83 (0.83–0.86) | 0.89 (0.87–0.93) | 0.03 (−0.008–0.09) | 0.217 |
Total fat (%) | 41.2 (41.1–43.8) | 39.2 (38.5–41.5) | −1.9 (−2.3–−1.3) | 41.3 (41.2–43.3) | 42.9 (42.2–43.0) | 0.1 (−0.4–1.0) | 0.056 |
Trunk fat mass (kg) | 18.3 (17.9–18.4) | 16.7 (15.8–17.4) | −1.7 (−2.2–−0.9) | 16.6 (14.6–18.2) | 17.2 (16.4–18.2) | 0.6 (0.3–0.6) | 0.016 |
Endocrine | |||||||
Testosterone (nmol/L) | 1.77 (1.20–1.83) | 0.94 (0.74–1.22) | −0.46 (−0.78–−0.36) | 1.29 (1.05–1.42) | 0.96 (0.89–1.21) | −0.09 (−0.26–−0.03) | 0.151 |
SHBG (nmol/L) | 32.3 (23.0–38.2) | 36.3 (28.5–38.3) | 4.5 (4.0–5.5) | 38.8 (32.3–38.8) | 32.9 (31.6–42.9) | −1.1 (−5.4–4.1) | 0.691 |
Metabolic | |||||||
HOMA-IR | 2.9 (2.4–4.2) | 1.5 (1.3–1.8) | −0.88 (−1.1–−0.001) | 1.4 (1.1–1.6) | 1.8 (1.7–2.2) | 0.62 (0.40–0.79) | 0.032 |
Adjusted adipocyte size (μm) | 127 (124–129) | 116 (113–125) | −2.2 (−11.3–2.2) | 120 (116–122) | 120 (114–120) | −0.44 (−3.1–6.9) | 0.421 |
Variable | R2 | p-Value |
---|---|---|
GSTM5 | 0.182 | 0.0014 |
WHR | 0.162 | 0.003 |
FAI | 0.145 | 0.006 |
SHBG (nmol/L) | 0.135 | 0.007 |
H3C2 | 0.103 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hellberg, A.; Salamon, D.; Ujvari, D.; Rydén, M.; Hirschberg, A.L. Weight Changes Are Linked to Adipose Tissue Genes in Overweight Women with Polycystic Ovary Syndrome. Int. J. Mol. Sci. 2024, 25, 11566. https://doi.org/10.3390/ijms252111566
Hellberg A, Salamon D, Ujvari D, Rydén M, Hirschberg AL. Weight Changes Are Linked to Adipose Tissue Genes in Overweight Women with Polycystic Ovary Syndrome. International Journal of Molecular Sciences. 2024; 25(21):11566. https://doi.org/10.3390/ijms252111566
Chicago/Turabian StyleHellberg, Anton, Daniel Salamon, Dorina Ujvari, Mikael Rydén, and Angelica Lindén Hirschberg. 2024. "Weight Changes Are Linked to Adipose Tissue Genes in Overweight Women with Polycystic Ovary Syndrome" International Journal of Molecular Sciences 25, no. 21: 11566. https://doi.org/10.3390/ijms252111566
APA StyleHellberg, A., Salamon, D., Ujvari, D., Rydén, M., & Hirschberg, A. L. (2024). Weight Changes Are Linked to Adipose Tissue Genes in Overweight Women with Polycystic Ovary Syndrome. International Journal of Molecular Sciences, 25(21), 11566. https://doi.org/10.3390/ijms252111566