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Abstract: Women with polycystic ovary syndrome (PCOS) have varying difficulties in achieving
weight loss by lifestyle intervention, which may depend on adipose tissue metabolism. The objective
was to study baseline subcutaneous adipose tissue gene expression as a prediction of weight loss
by lifestyle intervention in obese/overweight women with PCOS. This is a secondary analysis of a
randomized controlled trial where women with PCOS, aged 18–40 and body mass index (BMI) ≥ 27
were initially randomized to either a 4-month behavioral modification program or minimal interven-
tion according to standard care. Baseline subcutaneous adipose tissue gene expression was related to
weight change after the lifestyle intervention. A total of 55 obese/overweight women provided sub-
cutaneous adipose samples at study entry. Weight loss was significant after behavioral modification
(−2.2%, p = 0.0014), while there was no significant weight loss in the control group (−1.1%, p = 0.12).
In microarray analysis of adipose samples, expression of 40 genes differed significantly between
subgroups of those with the greatest weight loss or weight gain. 10 genes were involved in metabolic
pathways including glutathione metabolism, gluconeogenesis, and pyruvate metabolism. Results
were confirmed by real-time polymerase chain reaction (RT-PCR) in all 55 subjects. Expressions of
GSTM5, ANLN, and H3C2 correlated with weight change (R = −0.41, p = 0.002; R = −0.31, p = 0.023
and R = −0.32, p = 0.016, respectively). GSTM5, involved in glutathione metabolism, was the strongest
predictor of weight loss, and together with baseline waist-hip ratio (WHR) explained 31% of the
variation in body weight change. This study shows that baseline subcutaneous adipose tissue genes
play a role for body weight outcome in response to lifestyle intervention in overweight/obese women
with PCOS.

Keywords: PCOS; obesity; lifestyle; adipose tissue; gene expression; weight loss

1. Introduction

Polycystic ovary syndrome (PCOS) is the most common endocrinopathy in women
of reproductive age, with a prevalence of about 10% depending on the criteria used. The
syndrome is characterized by oligo- or anovulation, polycystic ovarian morphology, and
clinical or biochemical signs of hyperandrogenism [1]. The most frequent symptoms are
menstrual irregularities, infertility, and hirsutism [2]. PCOS is also associated with obesity
and insulin resistance (IR), as well as a long-term increased risk of type 2 diabetes (T2D) and
metabolic syndrome [3–5]. Obesity and IR are known to exacerbate all classic symptoms
of PCOS [6]. In addition, women with PCOS report that obesity causes significant anxiety
and reduced quality of life [7,8].
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Lifestyle intervention, including any combination of exercise, diet, and behavioral
modification intervention, is the recommended first-line management for women with
PCOS [1]. Several studies have shown that a minor weight loss of up to 5% can restore
menstrual cyclicity and ovulation and also improve metabolic variables [1,9,10]. However, a
great clinical problem is posed by many patients failing to lose weight by lifestyle changes or
quickly regaining weight after an initial weight loss [10–12]. Women with PCOS may even
have more difficulty succeeding in weight loss regimens compared to other women [13].
For resumption of ovulation, a short-term lifestyle intervention may be sufficient, but for
metabolic improvement, continued weight maintenance is necessary [1,10]. It is important
to identify factors predicting successful weight loss and maintenance of lower body weight
by lifestyle intervention.

PCOS is associated with several aspects of adipose tissue dysfunction, including
impaired insulin signaling and glucose transport, adipokine dysregulation, chronic inflam-
mation, and oxidative stress, as well as dysregulated lipolysis [14]. Subcutaneous lipolysis
is important for body weight regulation and risk of weight gain, and thereby the develop-
ment of IR and T2D [15]. Specifically, it has been demonstrated that expression of adipose
tissue lipolysis-regulating genes like PRKAR2B, MGLL, FABP4, and AQP7 can predict
future weight gain [15]. In women with PCOS, increased catecholamine-induced lipolysis
in visceral fat but decreased lipolysis in subcutaneous fat cells has been reported [16,17].
Furthermore, hypertrophic adipocytes are associated with IR, T2D, and cardiovascular
disease, and studies on women with PCOS have shown larger adipocytes in abdominal
subcutaneous tissue independent of body mass index (BMI) [17,18]. However, the role of
adipocyte size and subcutaneous adipose tissue gene expression for body weight regulation
in response to lifestyle intervention in women with PCOS has not been explored.

The present study is based on our prior randomized controlled behavioral modification
intervention in overweight/obese women with PCOS [10]. The aim was to investigate the
expression of baseline subcutaneous adipose tissue metabolic regulating genes as prediction
of weight loss by lifestyle intervention in these women.

2. Results
2.1. Clinical Characteristics of the Behavioral Intervention and Minimal Intervention Groups

Clinical characteristics at baseline were comparable between the two groups of women
undergoing four months of behavioral modification intervention or minimal intervention
(control treatment) (Table 1). In the behavioral modification group (n = 29), there were
significant decreases in body weight, BMI, total fat percentage, trunk fat mass, total choles-
terol, and low-density lipoprotein cholesterol after the intervention (Table 1). In the control
treatment group (n = 26), there were significant decreases in testosterone, free androgen
index, and aspartate transaminase (ASAT) but not in weight loss. There was no significant
difference in weight change between the groups. In the behavioral modification group,
17% of the women succeeded in losing more than 5% of their body weight, while 21% even
gained weight (Figure 1). The corresponding percentages in the control treatment group
were 15% and 42%, respectively.

2.2. Clinical Characteristics of Subgroups of Weight Loss and Weight Gain for Microarray Analysis

Clinical characteristics of subgroups with the most weight loss (n = 5) and the most
weight gain (n = 5) (regardless of what treatment arm they belonged to) at baseline and
after four months of lifestyle intervention are provided in Table 2. After intervention, the
subgroups differed significantly in the expected direction regarding body weight (p < 0.01),
BMI (p < 0.01), total fat mass (p < 0.05), total trunk fat mass (p < 0.05), and homeostatic
model assessment for insulin resistance (HOMA-IR) (p < 0.05). There was no significant
difference in average adipocyte size within or between the subgroups.
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Table 1. Clinical characteristics of participants randomized to behavioral modification or minimal intervention.

Behavioral Modification Intervention (n = 29) Minimal Intervention (n = 26)

Parameters Baseline 4 Months p-Value Baseline 4 Months p-Value Between-Group Change

Age 31.1 (29.3–33.0) 29.9 (27.9–32.0)
Anthropometric
Bodyweight (kg) 93.4 (87.8–99.0) 91.3 (85.7–97.0) 0.0014 93.3 (87.7–98.9) 92.2 (86.6–97.8) 0.12 −1.07 (−2.88–0.75)

BMI 33.7 (31.9–35.4) 32.9 (31.2–34.6) 0.0017 34.0 (32.3–35.8) 33.6 (31.9–35.4) 0.12 −0.38 (−1.04–0.29)
WHR 0.90 (0.88–0.92) 0.90 (0.88–0.92) 0.98 0.88 (0.86–0.91) 0.88 (0.86–0.90) 0.83 0.002 (−0.03–0.02)

Total fat (%) 42.6 (41.2–44.0) 41.7 (40.3–43.1) 0.0079 43.5 (42.1–44.9) 43.3 (41.9–44.7) 0.67 −0.79 (−1.78–0.20)
Trunk fat mass (kg) 20.2 (18.3–22.1) 19.4 (17.5–21.3) 0.004 20.5 (18.6–22.3) 20.2 (18.3–22.1) 0.47 0.63 (−1.4–0.18)

Lean body mass (kg) 51.6 (48.8–54.4) 51.4 (48.6–54.2) 0.69 50.7 (48.0–53.5) 50.7 (47.8–53.5) 0.87 −0.1 (−1.6–1.3)
Endocrine

FSH (IU/L) L 6.80 (5.58–8.01) 6.90 (5.65–8.15) 0.45 5.46 (4.26–6.66) 5.86 (4.53–7.19) 0.64 −0.31 (−1.87–1.26)
LH (IU/L) 6.59 (5.10–8.08) 7.70 (6.14–9.26) 0.20 7.63 (6.16–9.10) 6.66 (4.95–8.37) 0.30 2.08 (−0.45–4.61)

Testosterone L (nmol/L) 1.23 (1.06–1.40) 1.19 (1.01–1.36) 0.47 1.42 (1.24–1.60) 1.28 (1.09–1.47) 0.023 0.10 (−0.09–0.29)
SHBG (nmol/L) 27.1 (22.0–32.2) 27.8 (22.6–32.9) 0.63 25.9 (20.8–31.0) 26.4 (21.0–31.7) 0.78 0.25 (−4.17–4.68)

FAI 5.59 (4.14–7.05) 5.40 (3.90–6.90) 0.76 7.60 (6.10–9.10) 5.78 (4.14–7.42) 0.014 1.62 (−0.30–3.55)
Metabolic
HOMA-IR 3.39 (2.39–4.40) 3.12 (2.09–4.16) 0.40 3.33 (2.29–4.37) 3.54 (2.47–4.61) 0.57 −0.48 (−1.45–0.50)

Triglycerides (mmol/L) 1.25 (1.03–1.46) 1.12 (0.90–1.34) 0.20 1.35 (1.14–1.56) 1.16 (0.92–1.39) 0.07 0.07 (−0.21–0.35)
Cholesterol (mmol/L) 4.87 (4.61–5.14) 4.59 (4.31–4.87) 0.013 4.80 (4.53–5.07) 4.66 (4.37–4.96) 0.27 −0.15 (−0.48–0.17)

HDL (mmol/L) 0.97 (0.87–1.07) 1.03 (0.92–1.13) 0.13 1.08 (0.98–1.18) 1.16 (1.05–1.27) 0.07 −0.02 (−0.13–0.09)
LDL (mmol/L) 3.34 (3.10–3.58) 3.05 (2.80–3.29) 0.002 3.10 (2.86–3.34) 2.98 (2.72–3.24) 0.20 −0.17 (−0.43–0.09)

ASAT (mikrokat/L) L 0.40 (0.35–0.45) 0.36 (0.31–0.42) 0.42 0.39 (0.34–0.45) 0.34 (0.28–0.40) 0.045 0.02 (−0.06–0.1)
ALAT (mikrokat/L) L 0.24 (0.16–0.31) 0.23 (0.15–0.31) 0.56 0.27 (0.20–0.34) 0.20 (0.12–0.29) 0.26 0.06 (−0.09–0.20)

Adjusted adipocyte size (µm) 122 (120–124) 123 (120–125) 0.46 121 (119–123) 122 (119–124) 0.63 0.33 (−3.63–4.29)

Values presented as median interquartile range (25th–75th). Significant results presented in bold. ALAT, alanine transaminase; ASAT, aspartate transaminase; BMI, body mass index; FAI,
free androgen index; FSH, follicle-stimulating hormone; HDL, high-density lipoprotein cholesterol; HOMA-IR, homeostatic model assessment for insulin resistance; LDL, low-density
lipoprotein cholesterol; LH, luteinizing hormone; SHBG (sex hormone-binding globulin); WHR, waist-hip ratio. L Denotes log transformed variables.
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Table 2. Clinical characteristics at baseline and after 4 months of lifestyle intervention in the weight loss and weight gain subgroups.

Outlier Weight Loss Group (n = 5) Outlier Weight Gain Group (n = 5) p-Value

Parameters Baseline 4 Months Change Baseline 4 Months Change Change Between Groups

Anthropometric
Body weight

(kg) 87.6 (80.6–88.8) 81.1 (73.2–83.5) −5.3 (−6.5–−4.9) 82.7 (81.5–85.8) 86.5 (84.4–92.4) 3.4 (2.9–3.8) 0.008

BMI 31.8 (31.1–33.1) 29.4 (29.2–30.1) −1.85 (−2.36–−1.70) 30.1 (29.6–31.1) 31.2 (30.4–32.3) 1.15 (1.07–1.31) 0.008
WHR 0.89 (0.89–0.89) 0.88 (0.85–0.89) −0.03 (−0.04–0.00) 0.83 (0.83–0.86) 0.89 (0.87–0.93) 0.03 (−0.008–0.09) 0.217

Total fat (%) 41.2 (41.1–43.8) 39.2 (38.5–41.5) −1.9 (−2.3–−1.3) 41.3 (41.2–43.3) 42.9 (42.2–43.0) 0.1 (−0.4–1.0) 0.056
Trunk fat mass

(kg) 18.3 (17.9–18.4) 16.7 (15.8–17.4) −1.7 (−2.2–−0.9) 16.6 (14.6–18.2) 17.2 (16.4–18.2) 0.6 (0.3–0.6) 0.016

Endocrine
Testosterone

(nmol/L) 1.77 (1.20–1.83) 0.94 (0.74–1.22) −0.46 (−0.78–−0.36) 1.29 (1.05–1.42) 0.96 (0.89–1.21) −0.09 (−0.26–−0.03) 0.151

SHBG (nmol/L) 32.3 (23.0–38.2) 36.3 (28.5–38.3) 4.5 (4.0–5.5) 38.8 (32.3–38.8) 32.9 (31.6–42.9) −1.1 (−5.4–4.1) 0.691
Metabolic
HOMA-IR 2.9 (2.4–4.2) 1.5 (1.3–1.8) −0.88 (−1.1–−0.001) 1.4 (1.1–1.6) 1.8 (1.7–2.2) 0.62 (0.40–0.79) 0.032
Adjusted

adipocyte size
(µm)

127 (124–129) 116 (113–125) −2.2 (−11.3–2.2) 120 (116–122) 120 (114–120) −0.44 (−3.1–6.9) 0.421

Values presented as median interquartile range (25th–75th). Significant results presented in bold. BMI, body mass index; HOMA-IR, homeostatic model assessment for insulin resistance;
SHBG (sex hormone binding globulin); WHR, waist-hip ratio.
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Figure 1. Weight change (%) after 4 months of intervention in the behavioral modification group
and the minimal intervention group (control treatment). Results presented as mean change from
baseline and confidence interval. Body weight decreased significantly (p = 0.0014, represented by **)
in the behavioral modification group but not in the control treatment group. There was no significant
difference between the two treatment groups (p = 0.24).

2.3. Microarray and Pathway Analysis of the Subgroups of Weight Loss and Weight Gain

Table 3 shows the results of all gene expressions that were significantly different
between the subgroups of weight loss (n = 5) and weight gain (n = 5) by microarray
analysis. Gene expressions are described as a ratio between the Subgroup of weight loss
and the Subgroup of weight gain. Further pathway analysis showed that gene expressions
of GSTM5, RRM2, ANLN, ANPEP, TOP2A, STMN1;MIR3917, H3C2, PFKB1, ACLY, and
PC were connected in different metabolic pathways, including glutathione metabolism,
gluconeogenesis, pyruvate metabolism, and the citrate cycle, as marked in bold in Table 3.
Two of the genes connected to metabolic pathways were also associated with retinoblastoma
cancer genes, and two genes were connected to retinoblastoma cancer genes only.

2.4. Real-Time PCR Analysis of All Individuals

To confirm the results from the microarray and pathway analysis, all individuals who
completed the four-month trial and provided baseline adipose tissue samples (n = 55) had
their tissue samples analyzed by real-time polymerase chain reaction (RT-PCR). The selected
genes were from the results of microarray and pathway analysis and those connected to
different metabolic pathways (n = 10). The whole sample (n = 55) was divided into two
groups, regardless of lifestyle treatment arm, based on the 50th centile of their weight
change from baseline. The Weight loss group (n = 28) with a mean weight loss of −4.34%
(−5.35–−3.33), (p < 0.001) and the Weight gain group (n = 27) with a mean weight gain of
1.12% (0.19–2.04), (p = 0.026). Figure 2a–j shows the differences in relative expression of the
10 genes between the Weight loss group and the Weight gain group for the whole sample.
The relative expression of GSTM5 and H3C2 were significantly higher in the Weight loss
group compared to the Weight gain group, and the expression of RRM2 and ANLN tended
to be higher in the Weight loss group (p = 0.051 and p = 0.056, respectively).
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Table 3. Gene ID and encoded protein for microarray analysis, ratio of gene expressions between the subgroups of weight loss (n = 5) and weight gain (n = 5) and
p-values for the difference between groups, FDR for each Gene ID and pathway for Gene IDs.

Gene ID Encoding Protein Weight Loss: Weight
Gain Ratio p-Value FDR Pathway

GSTM5 Glutathione S-transferase mu 5 1.32 0.0005 0.2498 Glutathione metabolism,
Glutathione-mediated detoxification

PARVG Parvin, gamma 1.29 2.90 × 10−5 0.0811

ARHGAP11B; ARHGAP11A Rho GTPase activating protein 11B; Rho GTPase
activating protein 11A 1.21 0.0002 0.1836

MSR1 Macrophage scavenger receptor 1 1.20 0.0004 0.223
ALCAM Activated leukocyte cell adhesion molecule 1.19 5.38 × 10−5 0.0962
CPXM1 Carboxypeptidase X (M14 family), member 1 1.18 0.0002 0.1621

RRM2 Ribonucleotide reductase M2 1.16 6.41 × 10−6 0.0603
Glutathione metabolism,

Glutathione-mediated detoxification,
Retinoblastoma gene in cancer

CD52 CD52 molecule 1.16 3.43 × 10−5 0.0811
SIPA1L2 Signal-induced proliferation-associated 1 like 2 1.14 0.0002 0.1836
ANLN Anillin actin binding protein 1.12 8.20 × 10−6 0.0603 Retinoblastoma gene in cancer

GPR183 G protein-coupled receptor 183 1.12 0.0003 0.1877
CDK15 Cyclin-dependent kinase 15 1.12 0.0004 0.2233
H2BC14 Histone cluster 1, H2bm 1.11 8.43 × 10−6 0.0603
H2AC11 Histone cluster 1, H2ag 1.09 0.0003 0.1877
ANPEP Alanyl (membrane) aminopeptidase 1.07 2.66 × 10−5 0.0811 Glutathione metabolism

TOP2A Topoisomerase (DNA) II alpha 1.07 0.0002 0.1551 Retinoblastoma gene in cancer,
DNA replication

IL1RN Interleukin 1 receptor antagonist 1.06 4.97 × 10−5 0.0962
STMN1; MIR3917 Stathmin 1; microRNA 3917 1.06 0.0001 0.1551 Retinoblastoma gene in cancer

H1-5 Histone cluster 1, H1b 1.05 2.36 × 10−5 0.0811
CD83 CD83 molecule 1.05 0.0001 0.1548
H3C2 Histone cluster 1, H3b 1.02 0.0002 0.1637 DNA replication

TM7SF2 Transmembrane 7 superfamily member 2 0.97 0.0003 0.1983
THRSP Thyroid hormone responsive 0.96 9.32 × 10−5 0.1333

PFKFB1 6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 1 0.96 0.0001 0.1548 Gluconeogenesis

APOL1 Apolipoprotein L1 0.95 3.46 × 10−5 0.0811
GBP4 Guanylate binding protein 4 0.95 3.78 × 10−5 0.0811
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Table 3. Cont.

Gene ID Encoding Protein Weight Loss: Weight
Gain Ratio p-Value FDR Pathway

GBP4 Guanylate binding protein 4 0.95 3.78 × 10−5 0.0811
MARC1 Mitochondrial amidoxime reducing component 1 0.95 0.0001 0.1548
SLC4A4 Solute carrier family 4, member 4 0.95 0.0003 0.1983

LGALS12 Lectin, galactoside-binding, soluble, 12 0.95 0.0004 0.2233
PTPRU Protein tyrosine phosphatase, receptor type, U 0.94 0.0003 0.1877
GBP1 Guanylate binding protein 1, interferon-inducible 0.93 9.24 × 10−5 0.1333

SLC19A3 Solute carrier family 19, member 3 0.91 1.26 × 10−5 0.0678
TMEM246 Transmembrane protein 246 0.90 0.0002 0.1836
SLC25A26 Solute carrier family 25, member 26 0.89 0.0002 0.1776

ACLY ATP citrate lyase 0.88 0.0002 0.1836 Pyruvate metabolism, Citrate cycle
MAMLD1 Mastermind-like domain containing 1 0.87 0.0004 0.223

PLEKHA6 Pleckstrin homology domain containing, family A
member 6 0.87 0.0005 0.2498

PC Pyruvate carboxylase 0.86 0.0003 0.1877 Gluconeogenesis, Pyruvate metabolism,
Citrate cycle

DEFB1 Defensin, beta 1 0.81 0.0001 0.1548
SLC7A10 Solute carrier family 7, member 10 0.79 6.46 × 10−5 0.1066

Genes involved in pathways allocated from the pathway analysis are provided in bold. FDR, False Discovery Rate.
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Figure 2. (a–j). Relative expression of (a) GSTM5, (b) RRM2, (c) ANLN, (d) ANPEP, (e) TOP2A, (f) 
STMN1;MIR3917, (g) H3C2, (h) PFKB1, (i) ACLY, and (j) PC of the whole sample (n = 55) divided 
into the 50th centile of weight change from baseline into a Weight loss group and a Weight gain 
group. (a) GSTM5 and (g) H3C2 differed significantly in relative expression between the groups, p 
= 0.01 and p = 0.045, respectively. Black dots represent extreme values. 

Figure 2. (a–j). Relative expression of (a) GSTM5, (b) RRM2, (c) ANLN, (d) ANPEP, (e) TOP2A,
(f) STMN1;MIR3917, (g) H3C2, (h) PFKB1, (i) ACLY, and (j) PC of the whole sample (n = 55) divided
into the 50th centile of weight change from baseline into a Weight loss group and a Weight gain group.
(a) GSTM5 and (g) H3C2 differed significantly in relative expression between the groups, p = 0.01 and
p = 0.045, respectively. Black dots represent extreme values. ns = Not significant.
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2.5. Correlations Between Baseline Gene Expression and Weight Change

In the whole sample (n = 55), baseline gene expression of GSTM5, ANLN and H3C2
correlated inversely to weight change after lifestyle intervention; R = −0.41, p = 0.0017;
R = −0.31, p = 0.023 and R = −0.32, p = 0.016, respectively (Figure 3a–d). RRM2 correlated
negatively but the correlation did not reach a level of significance (R = −0.2, p = 0.15)
(Figure 3a–d). Baseline gene expression of GSTM5 also tended to correlate with average
adipocyte size at baseline (R = 0.25, p = 0.055). There was no correlation between baseline
weight and weight change (R = −0.09, p = 0.52).
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Pearson correlation with regression line and confidence intervals were used for statistical analysis of
(a) GSTM5 and (b) RRM2. Spearman correlations were used for statistical analysis of (c) ANLN, and
(d) H3C2.

2.6. Multiple Regression Analysis

Of the 10 genes, expression of GSTM5 and H3C2 explained 27% of the variation in
body weight change measured in percentage (p < 0.001) in the multiple regression analysis
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of the whole sample (n = 55). The strongest predictor of weight loss was GSTM5, explaining
19% of change in weight measured in percentage (p < 0.001), H3C2 explained 10.3% of the
weight change (p = 0.02). When including also clinical variables in the model, the multiple
regression analysis revealed that baseline expression of GSTM5 together with baseline
(waist-hip ratio) WHR explained 31% of the variation in body weight change (p < 0.001)
(Table 4), of which GSTM5 was the strongest predictor explaining 18.2% of the variation
(p = 0.0014). GSTM5 and WHR had an AUC of 0.729 (95% CI: 0.571–0.887) (Figure 4).

Table 4. Association between baseline variables and weight change in the whole sample (n = 55).

Variable R2 p-Value

GSTM5 0.182 0.0014
WHR 0.162 0.003
FAI 0.145 0.006

SHBG (nmol/L) 0.135 0.007
H3C2 0.103 0.02

Simple linear regression analysis of baseline variables and change in weight (%). Significant results presented in
bold. FAI, free androgen index; SHBG (sex hormone binding globulin); WHR, waist-hip ratio.
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3. Discussion

In this study, we have shown the influence of baseline subcutaneous adipose tissue
gene expression for body weight outcome after lifestyle intervention in overweight/obese
women with PCOS. Among the expression of 40 genes that differed significantly in the mi-
croarray analysis between the subgroups of weight loss and weight gain after participating
in a lifestyle intervention study, 10 genes were found after pathway analysis to be involved
in various metabolic pathways, such as glutathione metabolism (GSTM5, RRM2, ANPEP),
gluconeogenesis (PFKB1 and PC), citrate cycle (ACLY and PC), pyruvate metabolism (ACLY
and PC), and DNA replication (H3C2). After validation with RT-PCR of the whole sample,
the relative baseline expression of GSTM5, ANLN, and H3C2 correlated with weight change
after lifestyle intervention. The strongest predictor of weight change among all genes
involved in metabolic pathways and clinical variables studied was the relative expression
of GSTM5 involved in glutathione metabolism.
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There is evidence that lifestyle intervention improves reproductive and metabolic
health in women with PCOS [1,9,10]. A healthy lifestyle is therefore recommended for all
women with PCOS to optimize general health, quality of life, body composition, and weight
control to prevent weight gain or to lose weight in those with overweight/obesity [1].
However, studies show that the success rate of a lifestyle intervention varies between
individuals [11,12], and failure to adhere to dietary, exercise, and/or behavioral programs
can be debilitating and cause additional stigma for these patients. Failure to lose weight
after lifestyle intervention is likely multifactorial. One reason for the lack of response
could be genetic constitution [11]. We have also previously shown that psychological well-
being and personality factors could impact successful weight loss [7]. The present study
furthermore supports that the expression of certain genes in subcutaneous adipose tissue,
particularly GSTM5, can influence weight outcome in response to lifestyle intervention in
women with PCOS.

GSTM5 belongs to the glutathione transferase (GST) superfamily (Alpha, Mu, Pi,
Sigma, Theta, and Zeta) and to the mu-class consisting of 5 enzymes and is involved in
cell metabolism and the metabolic detoxification of several endogenous and exogenous
compounds, among them reactive oxygen species (ROS), electrophilic compounds, car-
cinogens, and medications by conjugation with glutathione [19–22]. Genes belonging to
the GST superfamily have been studied in metabolic disorders; for example, GSTA4 has
been shown to be downregulated in obese individuals in relation to the inflammatory
state associated with obesity [21,23], and GSTM1 null-polymorphisms have been linked to
coronary heart disease [24]. Furthermore, a randomized clinical trial (RCT) of glutathione
supplementation demonstrated improved IR and decreased body fat percentage and fatty
liver in older individuals with glutathione deficiency [25].

The clinical role of GSTMs is not elucidated [19], and particularly not in PCOS. One
previous study in non-obese adolescent girls with PCOS demonstrated that carriers of
the GSTM1-null genotype have significantly lower levels of testosterone in comparison
to PCOS carriers of the GSTM1-active genotype, which may be related to the ability of
GSTM1 to serve as a steroid-binding protein of testosterone [26]. The null-polymorphisms
of GSTT1 and GSTM1 have also, in combination, but not separately, been associated in the
etiology of PCOS [27]. A study on ovarian cancer reported decreased GSTM5 expression in
cancer tissue compared to normal tissue, and the expression was positively correlated with
ovarian cancer prognosis [28]. Data also indicate that GSTM5 expression might reduce ROS
levels to ameliorate oxidative stress. It can be speculated that GSTM5 deficiency in adipose
tissue related to failure to lose weight in PCOS, as shown in the present study, may be
linked to low-grade chronic inflammation, oxidative stress, and insulin resistance [14,29].
In addition, animal studies lend support for a role of glutathione in counteracting obesity
by enhancing insulin sensitivity and promoting lipid degradation [30].

It is well known that chronic inflammation and oxidative stress have a significant role
in obesity [31]. In PCOS, adipocyte dysfunction, independently of obesity, is associated
with systemic chronic inflammation and oxidative stress, in turn linked to clinically adverse
cardiometabolic profiles [32–34]. Furthermore, oxidative stress and increased production
of ROS may contribute to infertility and miscarriage in women with PCOS, and oxidative
stress has also been associated with miscarriage in PCOS-like rats [35]. However, more
research is needed to understand the clinical role of adipocyte dysfunction in PCOS [14].
This report lends support for a role of GSTM5 as a target for predicting successful weight
loss through lifestyle intervention.

Some limitations should be pointed out. In this study, we collected subcutaneous
adipose tissue biopsies, whereas visceral adipose tissue is associated with a more detri-
mental metabolic profile [16,36]. However, visceral adipose tissue biopsies are difficult to
collect, requiring invasive surgical interventions. Importantly, adipose tissue dysfunction
has also been demonstrated in subcutaneous adipose tissue in women with PCOS [1,17].
For the detection of gene expression, a false discovery rate of <0.25 was used. This value
was, after consultation with a bioinformatician, considered acceptable in an explorative
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study as the present one [37]. In support, several genes were found to differ in relative
gene expression in the RT-PCR analysis for the various comparisons in relation to weight
change after lifestyle intervention. The reason why not all genes were significantly different
between the groups of weight loss and weight gain might be explained by limited power
to detect significant differences.

The strengths of the study include a well-characterized population of women fulfilling
all three criteria of PCOS, a relatively large number of participants providing adipose
tissue biopsies at baseline, evaluation of weight outcome after a structured behavioral
modification program as part of an RCT, and robust validation with RT-PCR and pathway
analysis of the microarray results.

In conclusion, we have demonstrated that subcutaneous adipose tissue gene expres-
sions are of importance for prediction of weight loss in response to participation in a
lifestyle intervention study in overweight/obese women with PCOS. Among the metabolic-
regulating genes studied, the gene expression of GSTM5, a gene involved in glutathione
metabolism, was the strongest predictor of weight loss in these women. Our results of
different expression of subcutaneous adipose tissue genes of importance for body weight
regulation may contribute to the understanding of the large variation in weight change
following lifestyle intervention in women with PCOS. Hopefully, increased knowledge
about how to identify which women with PCOS benefit most from lifestyle programs can
guide doctors to offer more individualized treatment in the future.

4. Materials and Methods
4.1. Participants and Study Design

Overweight or obese women with PCOS (n = 68) participated in an RCT conducted at
the Karolinska University Hospital, Stockholm, Sweden, comparing behavioral modifica-
tion intervention with minimal intervention for four months as previously described by
Oberg et al. [10]. The inclusion criteria were: 18–40 years of age, BMI ≥ 27, and all 3 of the
Rotterdam diagnostic criteria of PCOS (phenotype A of PCOS) [38], i.e., oligomenorrhea or
amenorrhea, polycystic ovaries on a transvaginal ultrasound scan and displaying clinical
(hirsutism, acne, or androgenic alopecia) or biochemical (elevated serum androgen level)
hyperandrogenism. Exclusion criteria were pregnancy or breastfeeding, history of eating
disorder, substantial weight change during the past year, smoking, taking regular medica-
tion, and another medical condition including congenital adrenal hyperplasia, Cushing’s
syndrome, thyroid dysfunction, hyperprolactinemia, and virilizing tumor.

Women were randomized in a ratio of 1:1 to either receive behavioral modification
intervention (n = 34) or minimal intervention (control treatment) (n = 34) for four months.
The behavioral modification treatment consisted of a structured approach for long-term
weight control to improve reproductive and metabolic function [10]. The treatment was
characterized by a formal course in small groups, held 3 times a month, and led by a lifestyle
coach with a PhD in endocrinology and metabolism. The course included knowledge
concerning weight control, personal leadership, mindfulness, physical activity, and diet
and contained reading material, homework, group discussions, and personalized meetings
to discuss individual training regimes, diet changes, and to ensure compliance.

The minimal intervention, designed to reflect standard patient care, consisted of rec-
ommendations given by a research midwife regarding a general healthy lifestyle supported
by a pamphlet with written advice about diet and exercise. Women in both groups at-
tended monthly visits to measure weight, waist, hip, and vital signs. The participants were
encouraged to wear an accelerometer (ActiGraph GT3X) for seven days at baseline and at
the 4-month follow-up for measurements of energy expenditure.

The women were assessed at baseline, 4 months, and 12 month follow-up on men-
strual cycle days 6–8 after spontaneous or induced menstrual bleeding by progestogen.
Gynecological examination and anthropometric measurements (height, weight, hip, and
waist circumference) were performed, and fasting venous blood samples were collected for
analysis of hormones and metabolic parameters. Body weight was measured on the same
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electronic scale for all women wearing underwear and a light hospital shirt. Analytical
methods for hormones, binding proteins, and metabolic factors are previously reported [10].
The participants also underwent assessment of body composition by Dual-Energy X-ray
Absorptiometry (DEXA) scanner Hologic Discovery A, manufactured by Hologic, and
collection of biopsies of the endometrium, muscle, and subcutaneous adipose tissue. The
subcutaneous adipose tissue samples were collected under standard sampling technique
from the abdomen at the level between the umbilicus and the iliac crest through a small
incision in the skin under local anesthesia and snap frozen and stored at −80 ◦C.

The Regional Review Board of Ethics in Research in Stockholm approved the study
protocol (2012/146–31/3). The trial was registered with the clinical trial registry number:
ISRCTN48947168.

4.2. Procedure of the Present Study

Out of 57 individuals completing the 4-month trial, 55 provided baseline adipose
tissue samples, and these women constitute the material of the present study, Figure 5. Of
these individuals, regardless of what treatment arm they belonged to, 5 were selected that
had lost the most weight and 5 that had gained the most weight for analysis of adipose
tissue gene expression by microarray after total RNA extraction. The gene expressions that
differed significantly between the subgroups in the microarray analysis were processed in a
gene list enrichment analysis for metabolic pathways. Finally, total RNA extraction, cDNA
synthesis and RT-PCR were performed on the whole study material (n = 55) to validate the
results. For comparison, the whole material was divided into 2 groups based on the 50th
centile of their weight change: a Weight loss group and a Weight gain group.
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4.3. RNA Extraction

Frozen adipose tissue was homogenized in 1 mL Trizol for microarray samples and
Qiazol for whole sample using Tissuelyser (Qiagen, Hilden, Germany) with settings
2 × 2 min/25.0 for RNA extraction. A standard Trizol protocol was utilized, RNA cleanup
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was performed with Qiagen RNeasy mini kit (Qiagen, Hilden, Germany). Quality control
of total RNA was performed with Agilent Technologies 2200 Tapestation (Agilent, Santa
Clara, CA, USA). NanoDrop ND-1000 Spectrophotometer (Thermo Scientific, Wilmington,
NC, USA) was used for measurement of RNA concentration.

4.4. Microarray

Biotinylated DNA targets were prepared from 100 ng total RNA using the GeneChip
WT Plus Reagent Kit (Thermo Scientific, Wilmington, NC, USA) according to the manufac-
turer’s instructions. Hybridization, washing, and staining were carried out on Affymetrix
Clariom S, human arrays, using Affymetrix GeneChip® Fluidics Station 450 (Thermo Sci-
entific, Wilmington, NC, USA), according to the manufacturer’s protocol. The fluorescent
intensities were determined with Affymetrix GeneChip Scanner 3000 7 G (Thermo Scientific,
Wilmington, NC, USA).

4.5. Pathway Analysis

The genes found to differ in baseline expression between the subgroups of weight loss
and weight gain were processed in a gene list functional enrichment analysis for metabolic
pathways, the ToppGene function ToppFun [39]. A p < 0.05 was set as the cut-off limit for
genes connected in the same pathway.

4.6. RT-PCR

SuperScript VILO cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA)
was used for cDNA synthesis and the SybrGreen method for determination of gene ex-
pression levels. To normalize gene expression levels, ribosomal protein L13A (RPL13A)
was used as a housekeeping gene. Determination of the relative gene expression levels
was performed with the ∆∆Ct method. All reactions were run in triplicates. RT-PCR
was performed on StepOnePlus Real-time PCR systems (Thermo Fisher Scientific, USA).
Supplementary Table S1 lists the applied oligonucleotides (Sigma-Aldrich, St. Louis, MO,
USA).

4.7. Adipocyte Morphology

Fixed tissue samples were embedded in paraffin and stained with hematoxylin and
eosin. Using CellInsight CX5 High Content Screening (HCS) Platform (IC904000)(4×
magnification) photomicrographs were taken, 4 images per fixed sample. The methods
have been described in detail previously [40]. Average adipocyte size (Feret’s diameter)
was calculated using ImageJ (version 1.52) and the plugin Adipocyte Tools [41].

4.8. Statistical Analysis

Statistical analyses were performed using the RStudio statistical program (version
1.4.1106) and Statistica TIBCO Software Inc., Santa Clara, CA, USA, 241027. (version 14.0).
Tests for normality were assessed using Shapiro–Wilk test, test of skew, visual scrutiny
of histograms and QQ-plots. Mixed-model analysis of variance (mixed-model ANOVA),
with the factors Group, Time and the interaction Group*Time, was used to analyze within
and between-group differences for behavioral modification intervention and minimal
intervention. Values for the subgroups are presented as median and interquartile range
(25th–75th). With-in group differences were calculated using subtraction of the median
values of the 2 time-points, and between group differences with Mann–Whitney U test. A
p < 0.05 and a false discovery rate < 0.25 were set to detect significant differences in gene
expression in the microarray analysis. Gene expression ratios of the weight loss and weight
gain subgroups were calculated by dividing the results of these two subgroups. All gene
expressions of the RT-PCR analysis were logarithmically transformed. Logarithmically
transformed variables are presented untransformed.

Furthermore, all individuals who had completed the 4-month trial and provided
adipose tissue samples at baseline (n = 55) were divided into two groups based on the
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50th centile of their weight change, regardless of lifestyle treatment arm. The relative
gene expression of the Weight loss group and the Weight gain group was compared using
one-way analysis of variance (one-way ANOVA). Extremes were removed before one-
way ANOVA if the assumption of equal variance was not met. Spearman or Pearson’s
correlations, based upon homoscedasticity, were performed to study associations between
selected gene expression and weight change in the whole study group. Multiple regression
analysis was used to evaluate which of the baseline variables was the strongest predictor of
weight change. An area under the curve and receiver operating characteristic (ROC) curve
were performed on the strongest predictors of weight loss (%) as a binary variable with 0%
as the cutoff. Overall, a p < 0.05 was considered significant.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms252111566/s1.
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