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Abstract: Clinical differentiation of progressive supranuclear palsy (PSP) from Parkinson’s disease
(PD) is challenging due to overlapping phenotypes and late onset of PSP specific symptoms, highlight-
ing the need for easily assessable biomarkers. We used proximity elongation assay (PEA) to analyze
460 proteins in serum samples from 46 PD, 30 PSP patients, and 24 healthy controls. ANCOVA was
used to identify the most promising proteins and machine learning (ML) XGBoost and random forest
algorithms to assess their classification performance. Promising proteins were also quantified by
ELISA. Moreover, correlations between serum biomarkers and biological and clinical features were
investigated. We identified five proteins (TFF3, CPB1, OPG, CNTN1, TIMP4) showing different levels
between PSP and PD, which achieved good performance (AUC: 0.892) when combined by ML. On
the other hand, when the three most significant biomarkers (TFF3, CPB1 and OPG) were analyzed
by ELISA, there was no difference between groups. Serum levels of TFF3 positively correlated with
age in all subjects’ groups, while for OPG and CPB1 such a correlation occurred in PSP patients
only. Moreover, CPB1 positively correlated with disease severity in PD, while no correlations were
observed in the PSP group. Overall, we identified CPB1 correlating with PD severity, which may
support clinical staging of PD. In addition, our results showing discrepancy between PEA and
ELISA technology suggest that caution should be used when translating proteomic findings into
clinical practice.

Keywords: Parkinson’s disease; progressive supranuclear palsy; PEA; machine learning

1. Introduction

Parkinson’s disease (PD) and progressive supranuclear palsy (PSP) are two neurode-
generative parkinsonian syndromes, both characterized by bradykinesia, rigidity, and
postural and gait impairment [1,2]. Some specific symptoms, such as supranuclear gaze
palsy, may guide the differential diagnosis when patients develop the full clinical pic-
ture [1,2]; however, the overlap in clinical signs may cause a high rate of misdiagnosis,
especially in the early stages of the diseases [1–3]. For this reason, significant research
has been devoted to the identification of biomarkers that could support the clinical di-
agnosis. From a molecular point of view, PD is a synucleinopathy [4] while PSP is a
tauopathy [5]; thus, α-synuclein and tau proteins have been investigated as diagnostic
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biomarkers in cerebrospinal fluid (CSF) and, more recently, in more accessible fluids such
as plasma and serum [6]. However, results from these hypothesis-driven biomarkers were
inconclusive [7–15], suggesting that unbiased analyses might be more informative.

Quantitative proteomics allows the simultaneous screening of a wide range of ana-
lytes to identify protein signatures. Among the different techniques, OLINK proximity
elongation assay (PEA) is increasingly used in parkinsonism research to identify diagnostic
and prognostic biomarkers [16–22]. OLINK is a 96-plex immunoassay employing antibody
binding and oligonucleotide elongation through quantitative real-time polymerase chain
reaction (qPCR) for the high-throughput identification and quantification of proteins within
biofluids [22]. However, OLINK is a complex methodology hardly applicable in clinical
practice, where simpler assays and more immediate results are highly preferred. In addi-
tion, although CSF is a significant biological sample for neurodegenerative disorder, lumbar
puncture is an invasive procedure, often performed in selected patients, while biomarkers
assessable in blood-derived fluids can be easily translated into routine diagnostic tests.

In this study, we used PEA on OLINK platform to screen 460 different proteins from
five panels in serum from PD and PSP patients as well as healthy controls (HC). The
most effective proteins in discriminating between the two diseases were identified by
ANCOVA, and their classification performance was assessed using a machine learning
(ML) technique with XGBoost and random forest algorithms. Finally, the utility of these
proteins as diagnostic biomarkers was investigated by ELISA [23], which is largely used in
clinical routine.

2. Results

Our cohort included 46 PD patients, 30 PSP patients, and 24 HC. Demographic and
clinical data of patients and controls are reported in Table 1. While there were no differences
in sex, PD patients were slightly younger than PSP and HC. Disease duration was slightly
longer in PD than in PSP, but it was not significantly different between the two patient
groups. On the other hand, PSP showed higher on the MDS-Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS) than PD, reflecting higher disease severity.

Table 1. Demographic and clinical data of patients with Parkinson’s disease and progressive supranu-
clear as well as healthy controls.

PD
(n = 46)

PSP
(n = 30)

HC
(n = 24) p-Value

Sex (F/M) 28/19 21/22 14/17 0.77 a

Age at examination (years) 65.0 ± 8.62 *◦ 71.0 ± 6.42 70.5 ± 6.00 0.001 b

Disease duration (years) 6.7 ± 5.87 3.8 ± 2.38 - 0.10 c

MDS-UPDRS 28.6 ± 16.92 44.3 ± 16.99 - <0.001 c

PSP rating scale - 44.0 ± 16.30 - -

Data are shown as mean ± SD. Abbreviations: PD: Parkinson’s disease; PSP: progressive supranuclear palsy; HC:
healthy control; MDS-UPDRS: MDS-Unified Parkinson’s Disease Rating Scale; HY: Hoehn and Yahr. * PD vs. PSP
(p-value: 0.003). ◦ PD vs. PSP (p-value: 0.13). a Fisher’s exact test. b ANOVA followed by Bonferroni’s correction.
c Mann–Whitney test.

2.1. Biomarkers Assessment by ANCOVA

To distinguish betweewn PD, PSP, and HC, an ANCOVA test was performed for each
OLINK panel using age, the plate run number and disease duration (where appropriate)
as covariates. After the ANCOVA and post hoc tests, proteins not statistically significant
for any comparison were removed. Based on this criterion, the final dataset included
78 proteins (7 from Cardiometabolic panel, 58 from Cardiovascular panel, 4 from Im-
munoresponse panel, 8 from Inflammation panel and 1 from Neuroexploratory panel). In
detail, 33 proteins were significant in the comparison PD-HC, 32 proteins were significant
in the comparison PD-PSP and 28 proteins were significant in the comparison PSP-HC.
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A volcano plot for each comparison is shown in Figure 1; the proteins above the dotted
line were statistically different between groups after bonferroni correction for the number
of tests. Collectively, for the comparison PD-PSP, 5 proteins (TFF3, CPB1, OPG, CNTN1,
TIMP4) remained significant (Figure 1A), while 4 (TFF3, CPB1, OPG, CNTN1) and 2 pro-
teins (LAP/TGFβ1, ST1A1) remained significant in the comparison of PD-HC and PSP-HC,
respectively (Figure 1B,C), after Bonferroni’s correction. Of note, four proteins (TFF3, CPB1,
OPG, CNTN1) were significant in multiple comparisons. The effect size values for each
comparison are shown in Table S1. The ANOVA test was repeated employing boostraping
procedure, and the results confirmed the high significance of the 7 proteins, all showing the
upper limit of the p-value Confidence Intervals under 0.05. Therefore, 7 proteins (TFF3,
CPB1, OPG, CNTN1, TIMP4, LAP/TGFβ1, ST1A1) were overall selected and included in
further analyses (Table S2).
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left have a higher concentration in PSP. Bonferroni’s correction method was employed to define the
threshold for p-value significance. PD = Parkinson’s disease; PSP = progressive supranuclear palsy;
HC = healthy control.

2.2. Classification Performance of ML Models

The ML models were used for three different comparisons, PD-HC, PD-PSP and
PSP-HC, using the 7 proteins identified by ANCOVA. The cross-validation performances
of XGBoost [24] ML models in each classification task are shown in Table 2. The best
performance was obtained in distinguishing between PD and HC (AUC: 0.959 ± 0.029),
while the lowest performance was obtained in distinguishing between PSP and HC (AUC:
0.768 ± 0.083). The classification task between PSP and PD reached a good performance
with an AUC of 0.892 ± 0.067. Notably, the feature selection procedure identified the TFF3,
as the most important feature for distinguishing PD from both PSP and HC, suggesting
its possible role in PD, while other proteins were selected as relevant in the comparison
between PSP and HC. These results were confirmed using random forest, which showed
performance very similar to those obtained with XGBoost (AUC: 0.870 ± 0.065 in PD-PSP,
AUC: 0.973 ± 0.026 in PD-HC and AUC: 0.783 ± 0.126 in PSP-HC comparisons).

Table 2. Classification performances and feature selection with XGBoost in distinguishing between
PD, PSP and HC.

Feature Selection PD-PSP PD-HC PSP-HC

AUC: 0.892 ± 0.067 AUC: 0.959 ± 0.029 AUC: 0.768 ± 0.083
ACC: 0.874 ± 0.051 ACC: 0.943 ± 0.034 ACC: 0.789 ± 0.069
SENS: 0.8 ± 0.141 SENS: 0.913 ± 0.051 SENS: 0.964 ± 0.041

SPEC: 0.922 ± 0.054 SPEC: 0.98 ± 0.041 SPEC: 0.45 ± 0.241

Best features #5 #1 #2

TFF3 TFF3 LAP/TGFβ1

CPB1 ST1A1

OPG

CNTN1

TIMP4

2.3. Biomarkers Validation by ELISA

To evaluate the utility of OLINK-derived biomarkers in clinical practice, we quantified
the most significant proteins for differentiating between PSP and PD (TFF3, CPB1 and OPG;
Table S1) by using ELISA, which is a simple and rapid technique widely used in clinical
practice. None of the selected biomarkers, however, showed significantly different serum
concentration between groups (Figure 2). Similar results were obtained when the analysis
was corrected for age and disease duration (Table S3).

2.4. Linear Regression

The possible associations between serum biomarkers and demographic or clinical
variables in PD (Table 3), PSP (Table 4) and HC (Table 5) were assessed by Linear Regression
tests. Serum TFF3 positively correlated with age in all groups, while OPG and CPB1
correlated with age in PSP patients only (Tables 3–5). Moreover, serum CPB1 was positively
associated with disease severity in PD, correlating with HY Staging Scale (Table 3).
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Figure 2. Serum concentration of TFF3 (A), CPB1 (B), and OPG (C) in PD (n = 46), PSP (n = 30)
and HC (n = 24), as measured by ELISA. In each box plot, the 25th percentile, 75th percentile,
and median of data are depicted as lower, upper, and middle lines, respectively, while bars on
vertical lines indicate ranges. The Kruskal–Wallis test was used to calculate shown p-values.
TFF3 = trefoil factor 3; CPB1 = carboxypeptidase B1; OPG = osteoprotegerin; PD = Parkinson’s
disease; PSP = progressive supranuclear palsy; HC = healthy controls.

Table 3. Linear regression analysis between serum protein levels, demographic variables, and clinical
variables in PD patients.

PD
(n = 46)

Age Disease
Duration

MDS-
UPDRS

HY Staging
Scale

TFF3
Coefficients 0.42 0.01 0.11 0.14

p-value 0.003 0.78 0.41 0.09

CPB1
Coefficients 0.18 0.09 0.1 0.30

p-value 0.13 0.37 0.55 0.027

OPG
Coefficients 0.16 0.31 0.21 0.37

p-value 0.64 0.968 0.45 0.08
PD: Parkinson’s disease; MDS-UPDRS: MDS-Unified Parkinson’s Disease Rating Scale; HY: Hoehn and Yahr;
TFF3: trefoil factor 3; CPB1: carboxypeptidase B1; OPG: osteoprotegerin. Clinical variables were correlated with
age as covariate.

Table 4. Linear regression analysis between serum protein levels, demographic and clinical variables
in PSP patients.

PSP
(n = 30)

Age Disease
Duration

PSP
Rating Scale

TFF3
Coefficients 0.15 0.13 0.13

p-value 0.001 0.23 0.51

CPB1
Coefficients 0.35 0.1 0.1

p-value 0.01 0.76 0.67

OPG
Coefficients 0.42 0.01 0.10

p-value 0.009 0.88 0.98
PSP: progressive supranuclear palsy; TFF3: trefoil factor 3; CPB1: carboxypeptidase B1; OPG: osteoprotegerin.
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Table 5. Linear regression analysis between serum protein levels and age in HC.

HC
(n = 24)

Age

TFF3
Coefficients 0.57

p-value 0.003

CPB1
Coefficients 0.10

p-value 0.94

OPG
Coefficients 0.46

p-value 0.20
HC: healthy control; Yahr; TFF3: trefoil factor 3; CPB1: carboxypeptidase B1; OPG: osteoprotegerin.

3. Discussion

Currently, the clinical diagnosis of PSP relies on the assessment of parkinsonian symp-
toms along with the presence of additional signs such as slowness of vertical saccades
or vertical supranuclear gaze palsy [2]. However, these typical signs may appear late,
making early diagnosis challenging [25,26]. Furthermore, the early clinical differentiation
between PSP and PD is complicated by the existence of distinct PSP subtypes that vary in
progression rates, symptoms and clinical severity, with some subtypes strongly resembling
PD [25]. Therefore, intense efforts have focused on identifying easily assessable biomarkers
to help clinicians make an accurate diagnosis [6,27]. In this context, blood-based biomark-
ers are highly preferable over cerebrospinal fluid ones due to the possibility to obtain
the biological sample with safe and minimally invasive procedures. Currently, the best
peripheral biomarker to discriminate PSP from PD is the neurofilament light chain (Nf-L),
an axonal protein that is typically higher in PSP than in PD patients [28,29] and has been
proven to be particularly effective as diagnostic biomarker when combined with MRI mea-
surements [30,31]. However, Nf-L is a marker of axonal degeneration, and its serum levels
also rise in many other neurodegenerative disorders [28,29], making the identification of
more specific diagnostic biomarkers an urgent unmet need.

In this study, we employed for the first time PEA on OLINK platform to conduct
an unbiased screen of 460 proteins in serum, aiming to identify peripheral biomarkers
to distinguish between PD and PSP patients. Previous studies [16–19] employed the
same technique on blood-derived samples but only investigated proteins differentially
expressed between PD and HC without comparing PD and atypical parkinsonism. On
the other hand, two other studies focused on biomarkers to distinguish PD from atypical
parkinsonisms [20,21], but these data were obtained in CSF samples. Moreover, there are
key differences in the experimental settings across studies. In detail, we analyzed five
OLINK panels, while previous works assessed one or two panels only [20,21]. In addition,
the parkinsonism cohort comprised multiple system atrophy and vascular parkinsonism in
one study [20], while it included PSP, cortico-basal syndrome and multiple system atrophy
in another report [21]. Overall, such differences make the comparison of the results across
studies challenging.

In the current study, we identified five proteins (TFF3, CPB1, OPG, CNTN1, TIMP4)
significantly different between PSP and PD patients by using PEA (OLINK) technology,
and a combination of these protein levels showed a good performance in discriminating
between these two diseases (AUC: 0.892) using a machine learning approach. These high
performances were confirmed using two different decision tree-based algorithms (XGBoost
and Random Forest), increasing the reliability of this finding. This result is in line with
several studies employing machine learning technology to combine several markers for
patient classification [32,33]. Notably, 4 out of these 5 proteins (TFF3, CPB1, OPG and
CNTN1) also distinguished PD from HC. The importance of OPG protein is in line with a
previous work performed by Hepp et al. [19], who also identified this protein as relevant
using PEA (Olink) technology.
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We further measured by ELISA the three most significant proteins in discriminating
between PD and PSP patients (TFF3, CPB1 and OPG) to evaluate their diagnostic value and
applicability in clinical practice, where simple easy-to-read assays are desirable. However,
none of these proteins differed significantly between groups when measured by ELISA
commercial kits. While there are no available previous data on TFF3 or CPB1 assessment
by ELISA in Parkinsonian syndromes, conflicting results have been reported on OPG
protein, which was found to be increased or reduced in PD compared to HC [34,35]. Here,
we did not detect any difference between PD and HC, highlighting the need for further
studies on this protein. The discrepancies between results obtained by PEA and ELISA
technology could be due to the differences between the two methodologies. Among the
proteomic approaches, PEA is considered as the most translatable, since it is an antibody-
based assay requiring minimal sample processing before analysis [22]. However, it should
be kept in mind that the two methodologies employ different strategies to quantify the
analytes. PEA technology uses fluorescence, which is measured over a dark background
and allows the detection of very low levels of light [22]. On the other hand, ELISA exploits
absorbance, which is measured over a bright background and is less sensible to small
differences in light intensity [23]. Accordingly, sensitivity of ELISA is usually in the
range of picograms/milliliter (in the assays employed here, sensitivity spares from 1 to
20.5 pg/mL) while PEA sensitivity reaches fentograms/milliliter. Therefore, it is possible
that differences in serum biomarkers detected by PEA were too small to be confirmed by
ELISA technology. The antibody pairs employed in the two techniques are also different
since in PEA, they must recognize epitopes close enough for elongation to occur, while in
ELISA, recognized epitopes are usually opposed [22,23]. Regarding specificity, commercial
kits such as those used in this study are usually highly specific and do not display particular
issues. On the other hand, some cross-reactivity can occur in multiplex ELISA, where
multiple antibody pairs are used, reducing specificity [23], but this is not the case of the
current study. This limitation is overcome in PEA by conjugating antibody pairs with
oligonucleotides containing matched primers annealing only to each other, making PEA
technology more suitable for screening dosages of multiple analytes [22]. These differences
highlight the need for future development of increasingly sensitive and specific assays
to be used in research and clinical settings to address translationability challenges and
achieve more reliable results. Nevertheless, PEA results may be validated by ELISA into
alternative body fluids or matrices such as neural-derived vesicles, which better represent
the central nervous system (CNS) and may be less complex in terms of protein content
compared to plasma or serum [36]. Overall, our results suggest that PEA is a reliable
and sensitive technique for wide proteomic screening, but the discrepancy between PEA
and ELISA dosages detected in the current study suggests caution when translating new
discoveries from proteomics into clinical practice, making validation studies with ELISA or
SIMOA necessary.

Finally, we identified associations between serum biomarkers and demographic or
clinical variables in our cohorts. In detail, we showed that TFF3 serum levels positively
correlated with age in all groups, while OPG levels correlated with age in PSP patient only.
Moreover, we identified a positive correlation between CPB1 and OPG positively correlated
with disease severity in PD patients.

The TFF3 (trefoil factor 3) is a small peptide mainly produced by gut epithelial and
goblet cells to maintain the integrity of intestinal barrier. Moreover, TFF3 is expressed also
by a variety of different organs and is generally involved in cell migration and tissue repair
processes [37]. TFF3 has been detected in several regions of the brain [38,39], where it acts
as neuropeptide participating in several processes such as inflammation [40], memory [41]
and dementia development [42,43]. Since aging is characterized by the loss of cell function
and accumulation of damage [44], the increased levels of TFF3 observed in all groups might
be a general compensatory mechanism to restore damaged tissues. A similar relationship
with aging could also exist for OPG (osteoprotegerin) and CPB1 (carboxypeptidase B1).
OPG belongs to the RANK/RANKL/OPG system, which is a pathway involved in bone
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remodeling, adaptive immune function and inflammation. While the interaction between
RANK and RANKL promotes inflammation, OPG acts as decoy receptor for RANKL,
preventing its binding to RANK and thus attenuating pro-inflammatory signals [45]. In the
central nervous system, RANKL activates microglia and astrocytes, inducing an inflam-
matory cascade that would contribute to neurodegeneration, while OPG may modulate
such response [46]. On the other hand, CPB1 is a plasmatic enzyme able inactivate pro-
inflammatory mediators such as bradykinin, osteopontin and complement components [47].
Since PSP patients typically show a more aggressive phenotype compared to PD [2], the
age-related increase of these two proteins could represent further compensatory pathways
to counteract a more pronounced inflammatory state [48].

The association of serum CPB1 levels with severity in PD might be related to widespread
deposition of α-synuclein occurring not only within the brain but also in peripheral dis-
tricts [49]. Such inclusions have been demonstrated to promote complement activation
with cytotoxic effects [50]. Therefore, the CPB1 elevation in PD might represent a mecha-
nism to limit systemic inflammation causing progressive neuronal damage. In summary,
CPB1 could represent a useful biomarker to support clinical staging of PD, although fur-
ther research in larger cohorts is warranted to confirm such association and to clarify the
underlying molecular mechanisms.

Our study has some limitations to be considered. First, the number of subjects per
group is relatively small, although the sample size of PSP is in line with most studies in
the field due to the low incidence of the disease; this limitation did not allow deep patient
stratification according to disease severity or subtype. Second, this is a pilot study lacking
an external validation cohort to confirm the results. This implies that our results need to
be confirmed in larger studies to demonstrate the generalizability of the findings. Third,
patients’ diagnoses were made by movement disorder specialists with more than 10 years
of experience based on international criteria [1,2] but lacked histopathological confirmation,
and some misdiagnosis might have occurred.

4. Materials and Methods
4.1. Patients

In total, 46 PD patients, 30 PSP patients, and 24 healthy controls were enrolled in this
study. Clinical diagnosis was established according to the recent MDS diagnostic criteria
for PD and PSP [1,2]. Of the 30 PSP patients, 23 had probable PSP-Richardson’s Syndrome
(PSP-RS) and 7 had probable PSP-Parkinsonism (PSP-P) [2]. All patients underwent a
neurological examination in practical OFF performed by the same movement disorder
specialist, including MDS-UPDRS [51] and HY rating scales, and PSP patients were further
evaluated by using PSP rating scale [52]. In addition, patients underwent a 3T brain MRI
scan with a recently described protocol [53,54]. Exclusion criteria for patients consisted of
clinical features suggestive of other diseases, MRI abnormalities such as neoplasia, signs
suggestive of multiple system atrophy or normal pressure hydrocephalus, and lacunar
infarctions in the basal ganglia or diffuse subcortical vascular lesions. None of the control
participants had a history of neurologic, psychiatric, or other major medical illnesses as
well as no close relatives with neurodegenerative diseases. All the study procedures and
ethical aspects were in accordance with the Declaration of Helsinki and approved by the
Calabria Region Ethics Committee. All the subjects involved gave written informed consent
for participation in the study and the use of their medical records for research purposes.

4.2. Serum Sample Collection

Blood was collected from each subject between 9 a.m. and 12 p.m. in BD VacutainerTM

SSTTM Serum Separation Tubes (BD, Franklin Lakes, NJ, USA) and processed within 30 min
after collection. Serum was obtained by centrifuging tubes at 3000 rpm at 4 ◦C for 10 min.
Then, each sample was aliquoted and stored at −20 ◦C until use. For biomarkers assessment,
aliquots were thawed at 4 ◦C few hours before the assay and vortexed thoroughly. Each
serum aliquot was used once.
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4.3. Proximity Extension Assay by Olink

Serum biomarker testing was performed by PEA technology on OLINK platform
(Olink, Uppsala, Sweden) [22]. We run five protein panels: Cardiometabolic, Cardiovascu-
lar Immunoresponse, Inflammation and Neuroexploratory, for an overall assessment of
460 proteins. Each panel is composed of 92 biomarkers, whose complete list is available on
the company website (https://olink.com/products/olink-target-96 accessed on 9 Septem-
ber 2024). PEA identifies target proteins through polyclonal antibodies labeled with DNA
oligonucelotides; when two antibodies bind the same target, a proximity-dependent DNA
elongation occurs and target levels are read out by qPCR.

Serum samples from the three subject groups were randomized and loaded into
different plates (MicroAmp® Fast Optical 96-well Reaction Plate-Applied Biosystems,
Waltham, MA, USA) and processed following the manufacturer’s instructions. In addition,
plate controls, negative controls, and sample controls provided by Olink® Proteomics were
added to each plate. Negative controls are exclusively composed of buffer to establish
background noise and define the limit of detection (LOD), while sample controls are
external samples used for the determination of inter- and intra-plate quality of each assay.

Data for each biomarker expression are provided as normalized protein expression
(NPX) values, an arbitrary unit on a Log2 scale after internal intensity normalization. NPX
values are calculated from the threshold cycle, which is the number of qPCR cycles needed
to overcome a fluorescence signal threshold. NPX are proportional to the concentration of
the protein (https://olink.com/knowledge/documents accessed on 9 September 2024). We
subsequently performed intensity normalization of NPX values to allow the combination
of data from different plates, as performed in previous studies [21] and described in the
manufacturer manual. Proteins with values below LOD in more than 10% of samples were
excluded from the analyses.

4.4. Enzyme-Linked Immunosorbent Assay

Serum TFF3, CPB1, and OPG were evaluated by specific ELISA kits. Human TFF3
Quantikine ELISA kit (DTFF30) was provided by R&D Systems (Minneapolis, MN, USA)
while human CPB1 and OPG ELISA 96-assays (EH67RB and EHTNFRSF11B, respectively)
were provided by Thermo Fisher Scientific (Waltham, MA, USA). For all the assays, the man-
ufacturer instructions were followed. All the measurements were performed in duplicates
and plates were read on Thermo Fisher Varioskan™ LUX multimode microplate reader.

4.5. Statistical Analysis

Differences in sex distribution were investigated using Fisher’s exact test. The Shapiro–
Wilk test was used to check data normality. Based on the distribution, differences in age
at examination and ELISA data were assessed using ANOVA or the Kruskal–Wallis test
followed by Bonferroni correction, while differences in disease duration, MDS-UPDRS, and
HY scores between the two patient groups were assessed using the Mann–Whitney test.
The ELISA data were further analyzed through ANCOVA using age and disease duration
as covariates. Linear regression analysis was used to investigate the associations between
serum biomarkers and demographical or clinical variables. All tests were two-tailed, and
the α level was set at p < 0.05. Statistical analysis was conducted with R language v.4.1.2
and IBM SPSS v29.0.1.0.

For OLINK data, ANCOVA test with age, disease duration and the plate run as
covariates was performed for each panel, followed by post-hoc test in the three different
comparisons (PD-HC, PSP-HC, PD-PSP). For each comparison, a volcano plot was built by
using the mean and the p-value of each protein to visually highlight significantly different
proteins. The effect size for each comparison was calculated using Cohen D statistics. To
improve the robustness of the procedure we also performed an ANOVA with boostraping
to confirm statistical significance.

https://olink.com/products/olink-target-96
https://olink.com/knowledge/documents
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4.6. Machine Learning Approach

In this study, we employed two different machine learning (ML) algorithms, termed
XGBoost [24] and random forest (RF) [55], using the seven proteins extracted from the
Volcano plots. RF was used to confirm the performance of XGBoost. In the XGBoost
model, hyperparameters were tuned using five-fold cross-validation (CV) combined with a
randomized search over ten iterations, with the goal of maximizing classification accuracy
and reducing overfitting. Briefly, the dataset was split into K subsets (folds), and the model
was trained iteratively K times. For each iteration, the model was trained on (K-1) folds
and evaluated on the remaining Kth fold, which was left out of the training phase. The
hyperparameters tuned for XGBoost included: learning rate, maximum depth, minimum
child weight, gamma, and colsample bytree (which is the proportion of features randomly
selected to train each tree). For each iteration, a different set of hyperparameters was tested.
For each set of hyperparameters, five-fold cross-validation was executed and the average
performance metrics were calculated. The set of hyperparameters with the best average
performance was identified as the optimal one. Feature importance was assessed using
the “permutation accuracy importance” method, which measured the mean decrease in
accuracy after permuting each feature, with 50 repetitions to ensure robust feature ranking.
Following this, a feature selection process was carried out by iteratively training models
using features ranked by their importance; details about feature importance are shown
in Supplementary Materials (S1). Finally, the performance of the optimized XGBoost
model [24], trained on the most significant features, was evaluated using five-fold cross-
validation, calculating the mean and standard deviation of the area under the curve (AUC),
accuracy, sensitivity, and specificity across validation folds. A model was deemed capable
of distinguishing between groups if the mean AUC exceeded 0.85. The analyses were
performed using Python 3.9 and the scikit-learn package version 1.0.2.

5. Conclusions

In the current study, we first applied PEA technology to easily accessible blood-derived
biofluids to identify protein biomarkers useful for distinguishing PSP from PD patients.
We identified a panel of proteins which provided good classification performances through
machine learning technology, and we identified a new relevant protein, (CPB1) associated
with disease severity in PD patients, which may support clinical staging in PD. Additionally,
we compared PEA and ELISA technologies and we found discrepancies between these two
techniques, suggesting caution when translating proteomic findings into clinical practice.
Proteomic techniques indeed represent powerful strategies for biomarker discovery due to
their ability to unbiasedly screen a huge number of proteins, but validation studies using
standard technologies for protein dosages, such as ELISA, are warranted before translating
proteomic findings into clinical practice.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms252111663/s1.
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