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Abstract: In this study, “Longjia (LJ)” and “Yangpao (YP)”exhibited higher contents of major nutrients
compared to “Niangqing (NQ)” walnuts. The combination of transcriptome and proteome by RNA
sequencing and isotope labeling for relative and absolute quantification techniques provides new
insights into the molecular mechanisms underlying the nutritional quality of the three walnut species.
A total of 4146 genes and 139 proteins showed differential expression levels in the three comparison
groups. Combined transcriptome and proteome analyses revealed that these genes and proteins
were mainly enriched in signaling pathways such as fatty acid biosynthesis, protein processing in
endoplasmic reticulum, and amino acid metabolism, revealing their relationship with the nutritional
quality of walnut kernels. This study identified key genes and proteins associated with nutrient
metabolism and accumulation in walnut kernels, provided transcriptomic and proteomic information
on the molecular mechanisms of nutrient differences in walnut kernels, and contributed to the
elucidation of the mechanisms of nutrient differences and the selection and breeding of high-quality
walnut seedlings.
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1. Introduction

Walnuts, renowned as one of the four major nut species, have garnered global acclaim
for their nutritional value, health benefits, and exquisite taste, attracting avid consumers
in Asia, North America, and Southeastern Europe [1,2]. Commonly referred to as the
“longevity fruit” and the “educational fruit” [3], walnuts have been designated as a priority
crop by the Food and Agriculture Organization of the United Nations. China emerges
as a prominent producer and consumer of walnuts, with Yunnan Province boasting the
largest production area in the country [3,4]. The two walnut species commonly cultivated
for commercial nut production worldwide are the English or Persian walnut (Juglans regia)
and the iron walnut (Juglans sigillata) [5]. Juglans sigillata, a temperate deciduous tree
native to China and an ecotype of Juglans regia, is primarily distributed in southwestern
China. Its nuts are favored by consumers and manufacturers due to their delicious taste,
nutritional value, and cultural significance [6,7]. The attributes of walnuts primarily stem
from their kernels, which are rich in nutrients, particularly lipids and proteins, as well
as carbohydrates, vitamins, and minerals, endowing antioxidant and anti-inflammatory
properties [2,8]. Furthermore, walnuts exhibit potential efficacy in enhancing cognitive
function and mitigating the risk of various diseases, including dementia, cardiovascular
diseases, depression, and diabetes [9].

The nutritional quality and health benefits of walnut kernels are closely tied to factors
such as cultivar or genotype. Previous studies have demonstrated that cultivar (genetic
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factors) exerts significant influence on multiple aspects of walnut kernels, including their
vitamin content, lipid composition, peroxide values, and sterol profile [10,11]. Never-
theless, these investigations have not delved deeper into the underlying molecular-level
mechanisms that are responsible for these observed differences. Juglans regia is a globally
cultivated and well-studied species, whereas research on the nutritional differences among
varieties of Juglans sigillata, despite its centuries-long cultivation for nut production in
Yunnan Province, China [5], remains extremely limited. The combined analysis of tran-
scriptomics and proteomics constitutes a vital methodology in contemporary biological
research. Its objective lies in comprehensively integrating multi-layered biological informa-
tion, thereby serving as an effective tool for elucidating differences in nutritional quality
and other attributes at the molecular level, encompassing gene and protein expression,
regulation, and biological processes [12]. A previous study investigated the nutritional
quality-related molecular mechanisms of coix seed during breeding by this technique [13].
Furthermore, nutritional quality-related molecular mechanisms in different varieties of
olive [14] and tea [15] have also been investigated through transcriptomic and proteomic
techniques. The combined application of transcriptomic and proteomic approaches is
widespread and diverse in its utilization. However, surprisingly, there have been few
reports on walnuts (Juglans sigillata). Despite the factual differences in nutritional quality
among different walnut kernel varieties, the underlying mechanisms responsible for these
discrepancies remain largely unexplored.

Therefore, this study evaluated the nutritional quality of three walnuts (Juglans sigillata)
from Yunnan, namely Longjia (LJ), Niangqing (NQ), and Yangpao (YP), encompassing
crude protein, crude fat, total sugar, amino acids, and fatty acids. Furthermore, this study
analyzed and clarified the molecular mechanisms related to their nutritional quality using
transcriptomic and proteomic methods, with the aim of enhancing the quality of walnuts
and facilitating the selection and breeding of high-quality varieties.

2. Results
2.1. Nutritional Quality Analysis

As shown in Table 1, the crude fat content of all three walnut varieties exceeded 65%,
with no statistically significant difference (p > 0.05). The crude protein content was above
13%, with LJ having the highest content, followed by YP, both significantly higher than
NQ (p < 0.05). Total sugar content was significantly higher in NQ compared to LJ and YP.
Most amino acids and the primary fatty acid (linoleic acid) were present in higher amounts
in LJ and YP than in NQ. These results indicate that LJ and YP possess superior primary
nutritional components compared to NQ.

Table 1. Nutritional quality differences among three varieties of walnut kernels. Different letters
indicate significant differences (p < 0.05).

Nutritional Quality
Content

LJ YP NQ

Crude fat (g/100 g) 66.84 ± 0.68 a 65.04 ± 0.31 a 66.55 ± 0.48 a

Crude protein (g/100 g) 16.17 ± 0.10 a 15.90 ± 0.16 a 13.44 ± 0.09 b

Total sugar (g/100 g) 2.43 ± 0.11 b 2.63 ± 0.11 b 4.57 ± 0.06 a

Aspartic acid (g/100 g) 0.575 ± 0.015 a 0.580 ± 0.020 a 0.500 ± 0.000 b

Glutamic acid (g/100 g) 2.455 ± 0.025 a 2.410 ± 0.060 a 2.120 ± 0.070 b

Serine (g/100 g) 1.205 ± 0.015 a 1.185 ± 0.025 a 1.025 ± 0.005 b

Histidine (g/100 g) 1.390 ± 0.020 a 1.350 ± 0.020 a 1.160 ± 0.020 b

Glycine (g/100 g) 3.040 ± 0.060 a 2.955 ± 0.055 a 2.425 ± 0.015 b

Threonine (g/100 g) 0.400 ± 0.00 a 0.395 ± 0.005 a 0.350 ± 0.000 b

Arginine (g/100 g) 5.205 ± 0.085 a 5.060 ± 0.070 a 4.400 ± 0.060 b

Alanine (g/100 g) 0.770 ± 0.010 a 0.760 ± 0.020 a 0.700 ± 0.000 b

Tyrosine (g/100 g) 0.705 ± 0.015 a 0.695 ± 0.015 a 0.620 ± 0.030 a
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Table 1. Cont.

Nutritional Quality
Content

LJ YP NQ

Valine (g/100 g) 0.585 ± 0.005 a 0.585 ± 0.015 a 0.510 ± 0.000 b

Isoleucine (g/100 g) 0.490 ± 0.000 a 0.485 ± 0.005 a 0.440 ± 0.010 b

Phenylalanine (g/100 g) 0.885 ± 0.015 a 0.870 ± 0.020 a 0.780 ± 0.010 b

Lysine (g/100 g) 0.545 ± 0.025 a 0.515 ± 0.015 a 0.505 ± 0.0150 a

Leucine (g/100 g) 1.180 ± 0.010 a 1.180 ± 0.030 a 1.050 ± 0.010 b

Proline (g/100 g) 0.965 ± 0.015 b 1.085 ± 0.035 a 0.935 ± 0.005 b

Methionine (g/100 g) 0.290 ± 0.000 a 0.285 ± 0.005 ab 0.260 ± 0.010 b

C14:0 Myristic acid (%) 0.013 ± 0.000 a 0.014 ± 0.001 a 0.012 ± 0.000 a

C16:0 Palmitic acid (%) 6.945 ± 0.015 b 7.340 ± 0.000 a 4.820 ± 0.005 c

C16:1 Palmitoleic acid (%) 0.208 ± 0.001 a 0.201 ± 0.000 b 0.081 ± 0.001 c

C17:0 Margaric acid (%) 0.046 ± 0.000 a 0.046 ± 0.001 a 0.042 ± 0.001 b

C18:0 Stearic acid (%) 2.005 ± 0.005 b 1.985 ± 0.005 b 2.090 ± 0.005 a

C18:1 Oleic acid (%) 19.100 ± 0.000 c 20.700 ± 0.000 b 35.100 ± 0.050 a

C18:2 Linoleic acid (%) 61.750 ± 0.050 a 61.600 ± 0.000 a 47.800 ± 0.050 b

C18:3 Linolenic acid (%) 9.715 ± 0.025 b 7.850 ± 0.000 c 9.860 ± 0.000 a

C20:0 Arachidic acid (%) 0.067 ± 0.001 b 0.065 ± 0.001 b 0.072 ± 0.001 a

C20:1 Eicosenoic acid (%) 0.109 ± 0.000 b 0.108 ± 0.004 b 0.157 ± 0.001 a

C20:2 Eicosadienoic acid (%) 0.016 ± 0.001 a 0.014 ± 0.000 ab 0.012 ± 0.001 b

C22:0 Behenic acid (%) 0.022 ± 0.000 b 0.021 ± 0.000 b 0.028 ± 0.001 a

2.2. Transcriptomic Differential Analysis Among Three Walnut Varieties
2.2.1. Data Quality Control and Sequence Alignment Analysis

Employing the RNA-Seq technique, transcriptome sequencing was performed on three
walnut samples, resulting in raw reads. Following the removal of redundant sequences, a
total of 59.36 G of clean reads were obtained, with each sample’s clean data exceeding 5.33 G.
The Q20 base percentage was above 99.99%, the Q30 base percentage was above 98.22%, and
the GC content ranged from 46% to 48.5%. These metrics indicate high-quality sequencing
of the walnuts, enabling subsequent analysis. Comparative analysis of the filtered clean
data with the reference genome revealed mapped read proportions exceeding 95.46%.
Correlation analysis of the gene expression heatmap (Figure 1A) demonstrated strong
correlations among the three walnut varieties (Pearson correlation coefficient R2 ≥ 0.611),
confirming the effectiveness of the sample selection.

2.2.2. Differential Expression Gene (DEG) Analysis

A volcano plot was generated using the criteria of |log2FC| > 1 and p < 0.05, revealing
a total of 4146 differentially expressed genes (DEGs) across the three walnut varieties.
Specifically, 907 DEGs were identified in the LJ vs. NQ comparison (Figure 1B), 1249 in LJ
vs. YP (Figure 1C), and 1990 in YP vs. NQ (Figure 1D). Detailed information on these DEGs
is provided in Supplementary Table S1. Genes related to amino acid synthesis, fatty acid
metabolism, protein junctions and transport, repair of damaged proteins, cell cycle, and
transcription factors differed significantly among the three comparison groups.

2.2.3. GO Enrichment Analysis of DEGs

The DEGs from the three comparison groups underwent GO functional annotation
analysis, with the results presented in Figure 2. In the LJ vs. NQ group, DEGs were
significantly enriched in 13 GO terms, including carboxylic ester hydrolase activity, mi-
crotubule binding, Golgi to vacuole transport, seed maturation, fruit development, and
ADP binding (Figure 2A). In the LJ vs. YP group, DEGs were prominently enriched in
51 GO terms, such as core promoter sequence-specific, DNA binding, glycolytic process,
fatty acid biosynthetic process, glucan catabolic process, transcription by RNA polymerase
II, unsaturated fatty acid biosynthetic process, amino acid transmembrane transporter
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activity, and nutrient reservoir activity (Figure 2B). In the YP vs. NQ group, DEGs were
significantly enriched in 15 GO terms, including transcription regulatory region DNA
binding, fatty acid biosynthetic process, nutrient reservoir activity, seed maturation, and
metal ion transport (Figure 2C).
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LJ vs. NQ, LJ vs. YP, and YP vs. NQ are presented in (A–C), respectively. The KEGG enrichment
results for the same comparisons are shown in (D–F), respectively.

2.2.4. KEGG Enrichment Classification of DEGs

The DEGs from the three comparison groups were annotated to KEGG pathways
using the KEGG database, with the results presented in Figure 2. In the LJ vs. NQ group,
DEGs were significantly enriched in 33 signaling pathways, including arginine biosynthesis,
valine, leucine, and isoleucine biosynthesis/degradation, glycine, serine, and threonine
metabolism, lipid biosynthesis proteins, glycerophospholipid metabolism, glycerolipid
metabolism, and MAPK signaling pathway-plant (Figure 2D). In the LJ vs. YP group, DEGs
were prominently enriched in 16 pathways, such as protein processing in endoplasmic
reticulum, arginine biosynthesis, lipid biosynthesis proteins, valine, leucine, and isoleucine
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degradation, sphingolipid metabolism, N-glycan biosynthesis, various types of N-glycan
biosynthesis, MAPK signaling pathway-plant, and cysteine and methionine metabolism
(Figure 2E). In the YP vs. NQ group, DEGs were significantly enriched in pathways
including lipid biosynthesis proteins, arginine biosynthesis, sphingolipid metabolism, and
ubiquinone and other terpenoid-quinone biosynthesis (Figure 2F).

2.3. Proteomic Differential Analysis Among Three Walnut Varieties
2.3.1. Protein Identification Information

As illustrated in Figure 3, SDS-PAGE revealed high-quality proteins with sufficient
total quantity and good parallelism (Figure 3A). Utilizing TMT quantitative technology
for relative protein quantification, a total of 261,706 total spectra were acquired. Among
these, 49,804 spectra were matched to identified peptides, representing 26,800 peptides,
including 21,501 unique peptides. A total of 4656 protein groups were identified. The
majority of proteins had molecular masses ranging from 20 to 120 kDa, with the highest
abundance observed between 20 and 40 kDa (Figure 3B). The length distribution of identi-
fied peptides predominantly fell within 6 to 23 amino acids, showing a gradual decrease
with increased length, indicating reasonable peptide lengths and satisfactory enzymatic
digestion results (Figure 3C). The peptide coverage of identified proteins, as depicted,
was relatively low, with most proteins exhibiting less than 10% coverage (Figure 3D). The
mass deviation of ≥99% peptides in this project was within 8 ppm, indicating excellent
instrument performance and reliable data outcomes (Figure 3E). PCA analysis revealed
good intra-group clustering and distinct inter-group separation trends among the three
proteomic profiles (Figure 3F).
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Figure 3. SDS-PAGE results of the samples (A); distribution of protein molecular weights (B);
distribution of peptide lengths (C); distribution of protein sequence coverage (D); distribution of
peptide mass deviations (E); principal component analysis score plot (F).

2.3.2. Differentially Expressed Protein (DEP) Analysis

Volcano plot analysis was performed on the identified proteins to obtain DEPs. In the
LJ vs. NQ comparison, 33 DEPs were identified, with 12 upregulated and 21 downregulated
(Figure 4A). For the LJ vs. YP comparison, 37 DEPs were detected, including 8 upregulated
and 29 downregulated (Figure 4B). In the YP vs. NQ comparison, 69 DEPs were found,
comprising 35 upregulated and 34 downregulated proteins (Figure 4C). Significant dif-
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ferences in proteins related to amino acid synthesis and transfer, fatty acid metabolism,
riboprobe processing and transport, cell cycle, and antiviral properties were found in the
three comparison groups.
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comparisons are presented in panels (D–F), respectively. The KEGG enrichment results for DEPs in
the same comparisons are shown in panels (G–I), respectively.

2.3.3. GO Enrichment Analysis of DEPs

The GO enrichment analysis of DEPs was conducted, and the results are presented in
Figure 4. In the LJ vs. NQ comparison group, DEPs were significantly enriched in 102 GO
terms, including gluconeogenesis, mRNA binding, glucose-mediated signaling pathway,
furaneol oxidoreductase activity, enone reductase activity, 2-alkenal reductase (NADP+)
activity, and alpha-amino acid metabolic process (Figure 4D). In the LJ vs. YP comparison
group, DEPs were prominently enriched in 139 GO terms, such as fatty acid biosynthetic
process, fatty acid synthase complex, galacturonate binding, and amino-terminal vacuolar
sorting propeptide binding (Figure 4E). In the YP vs. NQ comparison group, DEPs were
significantly enriched in 232 GO terms, encompassing carbohydrate metabolic process,
fatty acid biosynthetic process, fatty acid synthase complex, canonical glycolysis, and
glutathione transferase activity (Figure 4F).

2.3.4. KEGG Enrichment Analysis of DEPs

The KEGG enrichment analysis of DEPs was performed, and the results are depicted
in Figure 4. In the LJ vs. NQ comparison group, DEPs were significantly enriched in
16 signaling pathways, including glycolysis/gluconeogenesis, HIF-1 signaling pathway,
ether lipid metabolism, and linoleic acid metabolism (Figure 4G). In the LJ vs. YP compari-
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son group, DEPs were prominently enriched in 20 pathways, such as metabolic pathways,
fatty acid metabolism/biosynthesis, HIF-1 signaling pathway, and protein processing in
endoplasmic reticulum (Figure 4H). In the YP vs. NQ comparison group, DEPs were
markedly enriched in 55 signaling pathways, including metabolic pathways, biosynthesis
of amino acids, fatty acid biosynthesis, and pentose phosphate pathway (Figure 4I).

2.4. Integrated Transcriptomic and Proteomic Analysis

Through the combined analysis of DEGs and DEPs, it was observed that no significant
common GO enrichment pathways or KEGG enrichment pathways were identified between
the LJ and NQ groups. In contrast, DEGs and DEPs of the LJ vs. YP group exhibited five
significantly shared GO enrichment pathways, including fatty acid biosynthetic process,
iron ion binding, acetyl-CoA carboxylase activity, flavin adenine dinucleotide binding, and
phenylpropanoid metabolic process (Figure 5A). Furthermore, DEGs and DEPs of the LJ
vs. YP group demonstrated a significant common KEGG enrichment pathway related to
protein processing in the endoplasmic reticulum (Figure 5B). For the YP vs. NQ group,
DEGs and DEPs significantly shared the GO enrichment pathway of fatty acid biosynthetic
process (Figure 5C). DEGs and DEPs of the YP vs. NQ group also featured a significant
common KEGG enrichment pathway associated with arginine biosynthesis (Figure 5D).
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Figure 5. Venn diagrams displaying the commonly significantly enriched signaling pathways shared
by DEGs and DEPs. DEGs and DEPs in the LJ vs. YP group significantly shared GO enrichment
pathways (A) and KEGG enrichment pathways (B). DEGs and DEPs in the YP vs. NQ group
significantly shared GO enrichment pathways (C) and KEGG enrichment pathways (D).

A correlation analysis was performed between DEGs and DEPs co-significantly en-
riched in the GO term “fatty acid biosynthetic process” in the LJ vs. YP group. As
depicted in Figure 6A, all DEPs showed significant correlations with DEGs, except for
the XP_018842241.1 protein. Figure 6B illustrates the interaction relationships between
DEGs and DEPs. Through these interactions, key nodes in the walnut fatty acid biosyn-
thetic process were identified, including XP_018814589.1, XP_018819156.1, XP_018825271.1,
XP_018825366.1, XP_018828611.1, XP_018833363.1, XP_018834639.1, XP_018806299.1,
XP_018840594.1, XP_018842241.1, XP_018849207.1, XP_018860003.1, XP_035544419.1,
YP_009186177.1, LOC108986433, LOC108979094, LOC108983105, LOC109002248,
LOC108989851, and LOC108995042 (Figure 6C).
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Figure 6. Correlation analysis of DEGs and DEPs co-significantly enriched in the “fatty acid biosyn-
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Correlation analysis was conducted between DEGs and DEPs that were collectively and
significantly enriched in the KEGG signaling pathway (protein processing in endoplasmic
reticulum). High correlations were observed between XP_018811458.1 and LOC108986375,
LOC109020832, and LOC109021727, as well as between XP_018818540.2 and LOC109005833,
LOC108986375, and LOC109006316. XP_018805731.1 exhibited high correlations with all DEGs
analyzed (Figure 6D). Through interaction analysis, key nodes in walnut fatty acid biosynthesis
were identified, including XP_018805731.1, XP_018811458.1, XP_018818540.2, LOC109021470,
LOC109011248, LOC109020832, LOC109010118, LOC109002332, LOC108986375, and
LOC108989469 (Figure 6E,F). These findings reveal crucial proteins and genes involved in
walnut fatty acid biosynthesis, protein synthesis, and processing, highlighting their essential
roles in walnut growth, development, and the formation of nutritional components.
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Correlation analysis was performed on DEGs and DEPs co-significantly enriched in
the GO term “fatty acid biosynthetic process” from the YP vs. NQ group. High correla-
tions were found between XP_018825366.1 and XP_018806488.2 with genes (Figure 7A).
Through interaction analysis, key nodes in walnut fatty acid biosynthesis were identified, in-
cluding XP_018815161.1, LOC109010859, XP_018814223.2, LOC109002248, XP_018806488.2,
LOC118348401, LOC109007090, LOC108996994, XP_018830356.1, LOC109004195,
XP_018828611.1, XP_018826050.1, LOC108995042, XP_018825366.1, XP_018825271.1,
LOC108992677, XP_018819156.1, XP_018816951.1, LOC108998294, and XP_018816525.1
(Figure 7B,C). As in the previous section, these proteins and genes may be equally impor-
tant for fatty acid synthesis in walnuts.
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Figure 7. Correlation analysis of DEGs and DEPs co-significantly enriched in the “fatty acid biosyn-
thetic process” GO signaling pathway in the YP vs. NQ comparison group (A); interaction network
analysis (B) and key nodes (C). Correlation analysis of DEGs and DEPs co-significantly enriched
in the “arginine biosynthesis” KEGG signaling pathway in the YP vs. NQ comparison group (D);
interaction network analysis (E) and key nodes (F).
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Correlation analysis was conducted on DEGs and DEPs that were co-significantly
enriched in the KEGG pathway of “arginine biosynthesis”. High correlations were observed
between LOC108988222 and both LOC108985979 and all analyzed DEPs (Figure 7D). The
key nodes identified in the interaction network included XP_018810825.1, XP_018817132.1,
XP_018822248.1, XP_018829218.1, XP_018835765.1, XP_018837796.2, XP_018845711.2,
XP_035547799.1, LOC108981044, and LOC108996365 (Figure 7E,F). Furthermore, the inter-
action network diagram demonstrates a high degree of correlation among these proteins,
suggesting the existence of a complex protein interaction network. These key nodes indicate
their potential crucial regulatory roles in amino acid biosynthesis in walnuts, potentially
interconnected through physical interactions or signaling pathways to collectively regulate
walnut protein metabolism.

Moreover, as shown in Figure 8, the genes and their corresponding proteins exhib-
ited consistent expression trends within the same comparison group, indicating that the
transcriptome sequencing results and the proteome sequencing results in this study could
correspond to and complement each other, with reliable sequencing results.
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Figure 8. Expression trends of some genes and their corresponding proteins in the same comparison
group. (A–G) indicate that genes and their corresponding proteins in the same comparison group
are jointly upregulated, whereas (H–N) indicate that they are jointly downregulated. Among them,
(A,H,J–N) correspond to the LJ vs. YP group, while (B–G,I) correspond to the YP vs. NQ group.

3. Discussion

In the past, walnut breeding efforts were primarily focused on achieving high yield,
inadvertently leading to a decline in essential nutrients such as lipids and proteins. Nowa-
days, the breeding objectives for walnuts have shifted towards attaining both superior
quality and high yield. However, there is a scarcity of understanding regarding the molecu-
lar mechanisms underlying these changes in nutritional composition. This study utilized
transcriptomics and proteomics approaches to identify DEGs and DEPs in three walnut
varieties. The signaling pathways that were significantly enriched for DEGs and DEPs to-
gether between the comparison groups included fatty acid biosynthesis, protein processing
in endoplasmic reticulum, and arginine biosynthesis.

3.1. Fatty Acid Biosynthesis

Walnut, as a crucial woody oil crop, is characterized by its high oil content in the
kernel, reaching approximately 60% [16]. The health benefits of walnut oil are attributed
to its abundant polyunsaturated fatty acids (PUFAs), which are the highest among all
nuts, primarily linoleic acid and α-linolenic acid [17,18]. The primary fatty acid (linoleic
acid) content in LJ and YP is higher than that in NQ, while YP exhibits a higher content
of the second most abundant fatty acid (oleic acid) compared to LJ (Table 1). Integrated
analysis revealed that both DEGs and DEPs in the comparison groups of LJ vs. YP and
YP vs. NQ were significantly enriched in the fatty acid biosynthesis signaling pathway.
The shared key node DEGs and DEPs primarily included LOC109002248 (omega-3 fatty
acid desaturase), LOC108995042 (acyl carrier protein 1), XP_018819156.1 (malonyl CoA-



Int. J. Mol. Sci. 2024, 25, 11671 12 of 17

acyl carrier protein transacylase), XP_018825271.1 (enoyl-[acyl-carrier-protein] reductase
[NADH]), XP_018825366.1 (SNF1-related protein kinase regulatory subunit gamma-1),
and XP_018828611.1 (malonyl CoA-acyl carrier protein transacylase). LOC109002248, an
omega-3 fatty acid desaturase (ω-3 FAD), is capable of introducing a double bond at the
ω3 position of various ω6 fatty acids, thereby converting ω6 PUFAs into ω3 PUFAs [19].
This enzyme, ω-3 FAD, participates in the desaturation reaction of linoleic acid (C18:2)
to C18:3n3, which serves as a precursor for the synthesis of long-chain polyunsaturated
fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA, C20:5n3) and docosahexaenoic
acid (DHA, C22:6n3) [20]. Both EPA and DHA exhibit significant therapeutic value in
clinical and epidemiological studies [21]. LOC108995042 (acyl carrier protein 1), a small
acidic protein, covalently binds to fatty acyl intermediates during fatty acid elongation,
serving as an essential cofactor in the process of fatty acid biosynthesis [22,23]. Malonyl
CoA-acyl carrier protein transacylase (XP_018819156.1 and XP_018828611.1) serves as a
pivotal enzyme in the Type II fatty acid synthesis pathway [24]. Studies have revealed
that its combinatorial action with essential enzymes such as desaturases holds practical
feasibility for the sustainable production of LC-PUFAs [25]. XP_018825271.1 (enoyl-[acyl-
carrier-protein] reductase [NADH]) is a pivotal regulatory protein involved in fatty acid
synthesis, catalyzing the final step in each elongation cycle [26].

3.2. Protein Processing in Endoplasmic Reticulum

Proteins, which constitute approximately 18% of walnuts, are the second most abun-
dant component and a significant source of plant-based protein [27]. Walnut protein, a
primary byproduct of walnut oil processing, is composed primarily of glutelin, glutenin,
globulin, and albumin. In the past, this protein-rich byproduct has often been discarded
or utilized as animal feed, resulting in a waste of valuable protein resources [28]. How-
ever, recent research has uncovered the potential benefits of walnut protein peptides in
antioxidant, anti-fatigue, anticancer, and antidiabetic activities, underscoring their im-
mense commercial value and application potential [29–31]. In the LJ vs. YP comparison
group, both DEGs and DEPs were significantly enriched in the protein processing in
endoplasmic reticulum signaling pathway. Key node DEGs and DEPs primarily com-
prised XP_018805731.1 (dnaJ protein homolog), XP_018818540.2 (heat shock protein 90-
5), LOC109021470 (glutamine synthetase cytosolic isozyme 1), LOC109011248 (phospho-
glycerate kinase 3), LOC109020832 (arogenate dehydratase/prephenate dehydratase 1),
LOC109010118 (glyceraldehyde-3-phosphate dehydrogenase), LOC109002332 (asparagine
synthetase), LOC108986375 (triosephosphate isomerase), and LOC108989469 (pyruvate ki-
nase isozyme A). XP_018805731.1 (dnaJ protein homolog) and XP_018818540.2 (heat shock
protein 90-5) belong to the dnaJ protein chaperone family, where chaperones facilitate
the avoidance of inappropriate protein binding or aggregation in the exposed hydropho-
bic regions of unfolded or partially folded proteins. They guide these proteins towards
productive folding and transport while also modulating non-productive interactions and
aggregation with other proteins [32,33]. LOC109021470 (glutamine synthetase cytosolic
isozyme 1) functions as a crucial enzyme in ammonium assimilation in higher plants,
mediating the incorporation of ammonium into glutamate and yielding glutamine as the
product [34]. LOC109020832 (arogenate dehydratase/prephenate dehydratase 1) represents
a pivotal enzyme in the biosynthesis of phenylalanine (Phe) in plants. Phe serves as an
essential constituent of proteins and a precursor for numerous plant-derived metabolites,
playing a vital role in plant growth, development, reproduction, and environmental re-
sponses [35]. LOC109010118 (glyceraldehyde-3-phosphate dehydrogenase) is a pivotal
enzyme involved in glycolysis, and it also interacts with proteins that participate in DNA
repair [36]. LOC109002332 (asparagine synthetase), in the presence of magnesium ions, cat-
alyzes the ATP-dependent transfer of ammonia to aspartic acid, resulting in the production
of asparagine. Asparagine plays a central role in nitrogen transport and storage in plants
and participates in nitrogen metabolism across various developmental stages [37].
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3.3. Arginine Biosynthesis

The nutritional value of proteins is determined by their amino acid composition.
Walnut protein is rich in essential amino acids with a well-balanced ratio [38]. In this
study, walnuts contained relatively low levels of lysine and high levels of arginine, which
is consistent with previous findings [39]. Research suggests that walnut consumption
may act through the gut microbiota, thereby increasing endogenous production of high
arginine [40]. Furthermore, walnut protein-derived arginine-containing peptides exhibit
potent neuroprotective effects [41]. In the comparison between YP and NQ, both DEGs and
DEPs were significantly enriched in the arginine biosynthesis pathway, with key nodes
including XP_018810825.1 (glutamate dehydrogenase 1), XP_018817132.1 (aminoacylase-1-
like), XP_018822248.1 (aspartate aminotransferase P2), XP_018829218.1 (aminoacylase-1),
XP_018835765.1 (probable amino-acid acetyltransferase NAGS1), XP_018837796.2 (argini-
nosuccinate lyase), XP_018845711.2 (acetylglutamate kinase), XP_035547799.1 (arginase 1),
LOC108981044 (malate dehydrogenase), and LOC108996365 (aldehyde dehydrogenase fam-
ily 3 member H1-like). XP_018810825.1 (glutamate dehydrogenase 1), a pivotal player in
glutamate metabolism, has been recognized as a primary ammonium assimilatory enzyme
and potentially involved in nitrogen remobilization during senescence [42]. XP_018829218.1
(aminoacylase-1) and XP_018817132.1 (aminoacylase-1-like) are zinc-binding enzymes in-
volved in arginine metabolism and the methionine cycle. They catalyze the hydrolysis
of acylated L-amino acids into L-amino acids and acyl groups, playing a pivotal role in
the decomposition and recovery of acylated amino acids [43]. XP_035547799.1 (arginase 1)
is a jasmonate-inducible protein that plays a role in polyamine production, contributing
to fruit development. Furthermore, abiotic stresses can also induce the production and
expression of arginase [44]. LOC108981044 (malate dehydrogenase), a pivotal enzyme in
the tricarboxylic acid cycle, reversibly catalyzes the oxidation of malate to oxaloacetate by
reducing NAD+ to NADH, playing a crucial role in energy balance and plant growth [45].
LOC108996365 (aldehyde dehydrogenase family 3 member H1-like) is a member of the
aldehyde dehydrogenase family, which is involved in plant growth and development and
plays an important role in glycolysis/glycolysis and amino acid catabolic pathways [46,47].

4. Materials and Methods
4.1. Sample Preparation

The three walnut varieties used in this study were harvested from Machang Forest
Farm, Cangshanxi Town, Yangbi County, Dali, Yunnan, China (altitude: 1820 m). From
each variety, three trees with robust growth, stable yield, and no pathogen infection were
selected. Fruits were randomly picked from a single tree, and the kernels were aseptically
extracted using sterile forceps and placed into centrifuge tubes, with approximately 1000 g
of kernels from each tree individually numbered and encapsulated. These samples were
immediately frozen in liquid nitrogen and stored at −80 ◦C for subsequent analysis.

4.2. Determination of Nutrient Quality

The crude protein content in walnut kernels was determined by the Kjeldahl method
according to the Chinese Standard GB 5009.5-2016 [48]. The crude fat content was mea-
sured using the Soxhlet extraction method, adhering to the Chinese Standard GB 5009.6-
2016 [49]. The amino acid, fatty acid, and total sugar contents were analyzed following the
methodologies outlined in the Chinese Standard: GB 5009.124-2016, GB 5009.168-2016, and
GB 15672-2009 [50–52], respectively.

4.3. mRNA Library Construction and Sequencing

Total RNA was extracted and purified from walnuts using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) following the manufacturer’s procedure, followed by Poly(A) RNA pu-
rification via Dynabeads Oligo (dT) with double purification. Poly(A) RNA was fragmented
using a Mg RNA Fragmentation Module at 94 ◦C. The fragments were reverse-transcribed
to cDNA, and second-strand DNAs labeled with U were synthesized. A-bases were added
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to the blunt ends for adapter ligation. UDG enzyme was used to treat U-labeled DNAs
before PCR amplification under specific conditions. The final cDNA library had an average
insert size of 300 ± 50 bp. Then, 2 × 150 bp paired-end sequencing (PE150) was performed
on Illumina Novaseq™ 6000 (LC Bio Technology CO., Ltd., Hangzhou, China).

4.4. RNA-Seq Data Processing and Analysis

Cutadapt software (cutadapt-1.9) was used to remove reads containing adaptor con-
tamination. After removing the low-quality and undetermined bases, we utilized HISAT2
software (hisat2-2.0.4) to map the reads to the genome. The mapped reads of each sample
were assembled using StringTie (stringtie-1.3.4d.Linux_x86_64) with default parameters.
Subsequently, all transcriptomes from the samples were merged to reconstruct a compre-
hensive transcriptome using gffcompare software (gffcompare-0.9.8.Linux_x86_64). Once
the final transcriptome was generated, StringTie and ballgown were employed to estimate
the expression levels of all transcripts and to perform expression level analysis for mR-
NAs by calculating FPKM. The differentially expressed mRNAs were selected based on a
|Log2(fold change)| ≥ 1 and a p value < 0.05. Subsequently, GO enrichment and KEGG
enrichment analyses were performed on the DEGs.

4.5. Proteome Sequencing and Analysis
4.5.1. Sample Preparation

The samples were frozen in liquid nitrogen and ground using a pestle and mortar.
A 5-fold volume of TCA/acetone (1:9) was added to the powder, and the mixture was
vortexed thoroughly. The mixture was then placed at −20 ◦C for 4 h and centrifuged at
6000× g for 40 min at 4 ◦C. The supernatant was discarded, and the precipitate was washed
three times with pre-cooled acetone. The resulting precipitate was air-dried. To 20–30 mg
of the dried powder, 30-fold volume of SDT buffer was added, mixed thoroughly, and
boiled for 5 min. The lysate was then sonicated and boiled again for 15 min. Following
centrifugation at 14,000× g for 40 min, the supernatant was filtered through 0.22 µm filters.
The filtrate was quantified using the BCA Protein Assay Kit (P0012, Beyotime, Shanghai,
China). The sample was stored at −20 ◦C.

4.5.2. SDS-PAGE Separation

For each sample, 20 µg of proteins was mixed individually with 6× loading buffer
and boiled for 5 min. Subsequently, the proteins were separated on a 12.5% SDS-PAGE gel.
The protein bands were visualized through Coomassie Blue R-250 staining.

4.5.3. Filter-Aided Sample Preparation

For each sample, 200 µg of proteins was incorporated into 30 µL of SDT buffer (con-
taining 4% SDS, 100 mM DTT, and 150 mM Tris-HCl, pH 8.0). Detergent, DTT, and other
low-molecular-weight components were removed using UA buffer (consisting of 8 M
urea and 150 mM Tris-HCl, pH 8.5) through repeated ultrafiltration (Sartorius, Göttingen,
Germany, 30 kD cutoff). Subsequently, 100 µL of iodoacetamide (100 mM IAA in UA buffer)
was added to block reduced cysteine residues, and the samples were incubated for 30 min
in the dark. The filters were washed with 100 µL of UA buffer three times, followed by two
washes with 100 µL of 0.1 M TEAB buffer. Finally, the protein suspensions were digested
overnight at 37 ◦C with 4 µg of trypsin (Promega, Madison, WI, USA) in 40 µL of 0.1 M
TEAB buffer, and the resulting peptides were collected as filtrate.

4.5.4. Tandem Mass Tag (TMT) Labeling

An amount of 100 µg peptide mixture of each sample was labeled using TMT reagent
according to the manufacturer’s instructions (Thermo Fisher Scientific, Waltham, MA, USA).
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4.5.5. Mass Spectrometry Analysis

Each fraction was injected for nanoLC-MS/MS analysis. The peptide mixture was
loaded onto the C18-reversed phase analytical column (Thermo Fisher Scientific, Acclaim
PepMap RSLC 50 µm × 15 cm, nano viper, P/N 164943) in buffer A (0.1% formic acid) and
separated with a linear gradient of buffer B (80% acetonitrile and 0.1% formic acid) at a
flow rate of 300 nl/min. The linear gradient was 6% buffer B for 3 min, 6–28% buffer B for
42 min, 28–38% buffer B for 5 min, 38–100% buffer B for 5 min, and held at 100% buffer B
for 5 min.

4.5.6. Proteome Sequencing Data Processing and Analysis

Proteome Discoverer 2.2 (Thermo Fisher Scientific) software was used to convert
the raw map files (.raw files) generated by Q Exactive plus into .mgf files, which were
submitted to the MASCOT 2.6 server for database searching through the software’s built-in
tool. Then, the lookup file (.dat file) formed on the MASCOT server was transferred back to
the software through Proteome Discoverer 2.2, and the data were screened according to the
FDR < 0.01 criterion to obtain highly reliable qualitative results. Mass spectrometry raw
data were analyzed as raw files, and the software Mascot2.6 and Proteome Discoverer2.2
were used for library identification and quantitative analysis. According to the protein
abundance level, differences of |Log2 (fold change)| ≥ 1 and a p value < 0.05 were deemed
to be differentially expressed proteins (DEPs). All the DEPs were analyzed by GO and
KEGG pathway analyses.

5. Conclusions

In conclusion, the main nutrient content of LJ and YP is higher than that of NQ. Com-
bining transcriptomic and proteomic analyses as complementary approaches allowed us to
investigate the mechanisms underlying the differences in the major nutrient components of
three walnuts at the molecular level. A number of functional genes and proteins related to
nutritional quality were identified that may contribute to nutritional quality differences
among the three walnuts, especially associated with fatty acid biosynthesis, proteome
processing in endoplasmic reticulum, and amino acid metabolism, which affect the synthe-
sis, accumulation, and metabolism of nutrients in walnuts. Overall, this study provides
new information on the walnut (Juglans sigillata) transcriptome and proteome to elucidate
the molecular mechanisms underlying complex differences in walnut nutritional quality.
This information will provide new references for walnut (Juglans sigillata and Juglans regia)
nutritional breeding at the gene and protein levels. Nevertheless, this study lacks insight
into the differences in metabolite composition among walnuts, which could potentially
serve as a direction for subsequent work.
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