Genome-Wide Association-Based Identification of Alleles, Genes and Haplotypes Influencing Yield in Rice (Oryza sativa L.) Under Low-Phosphorus Acidic Lowland Soils
Abstract
:1. Introduction
2. Results
2.1. Nature of the Soil and Population Structure of the Genotypes Grown in Acidic Soils
2.2. Superior Genotypes for Yield Under Low-P Field Conditions and in Hydroponics Experiment
2.3. Correlation Analysis and Identifying Tolerant and Susceptible Genotypes
2.4. Identification of Desirable Haplotypes for Yield in Low-P Acidic Soils for the 1.847 Mb Region on Chromosome 2
2.5. Genome-Wide Association Study (GWAS) and Identification of Candidate Genes for Yield Under Lowland Acid Soil
2.6. Genome-Wide Association Study and Haplotype Analysis for Phosphorus Utilization Efficiency and Related Traits
3. Discussion
3.1. Peak SNPs Identified in Genes Involved in Abiotic Stress Tolerance in 1.8 Mb Region of Chromosome 2
3.2. Candidate Genes for Higher Yield Under Low-P Acidic Soils Identified Through GWAS
3.3. Candidate Genes Identified for PUE and Other Related Traits
4. Materials and Methods
4.1. Planting Material
4.2. Phenotyping for Agro-Morphological Traits and Pi Estimation
4.3. Evaluation for Low-P Tolerance Under Hydroponics Condition
4.4. Statistical Analysis of Phenotypic Data
4.5. Quality Control, Threshold Identification and Association Study
4.6. Linkage Disequilibrium (LD) Decay, LD Plot, Gene Identification and Haplotype Analysis
4.7. Association Study for a 1.847 Mb Region on Chromosome 2
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kochian, L.V.; Piñeros, M.A.; Liu, J.; Magalhaes, J.V. Plant adaptation to acid soils: The molecular basis for crop aluminum resistance. Annu. Rev. Plant Biol. 2015, 66, 571–598. [Google Scholar] [CrossRef] [PubMed]
- Mandal, D.K.; Mandal, C.; Prasad, J.; Bhattacharyya, T. Acid soils in agro-ecological sub-regions of India: A revisit. Indian J. Fert. 2019, 15, 1156–1166. [Google Scholar]
- Nishigaki, T.; Tsujimoto, Y.; Rinasoa, S.; Rakotoson, T.; Andriamananjara, A.; Razafimbelo, T. Phosphorus uptake of rice plants is affected by phosphorus forms and physicochemical properties of tropical weathered soils. Plant Soil. 2019, 435, 27–38. [Google Scholar] [CrossRef]
- Kumar, M. Rising levels of soil acidity in Meghalaya: Evidences and Imperatives. Ann. Plant Soil Res. 2021, 23, 297–303. [Google Scholar] [CrossRef]
- Yamaji, N.; Takemoto, Y.; Miyaji, T.; Mitani-Ueno, N.; Yoshida, K.T.; Ma, J.F. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node. Nature 2017, 541, 92–95. [Google Scholar] [CrossRef]
- Roy, S.; Verma, B.C.; Banerjee, A.; Kumar, J.; Ray, U.S.; Mandal, N.P. Genetic diversity for drought and low-phosphorus tolerance in rice (Oryza sativa L.) varieties and donors adapted to rainfed drought-prone ecologies. Sci. Rep. 2021, 11, 13671. [Google Scholar] [CrossRef]
- Tyagi, W.; Rai, M.; Dohling, A. Haplotype analysis for Pup1 locus in rice genotypes of North Eastern and Eastern India to identify suitable donors tolerant to low phosphorus. Sabrao J. Breed. Genet. 2012, 44, 398–405. [Google Scholar]
- Dkhar, F.; Rai, M.; Tyagi, W. Looking beyond PsTOL1: Marker development for two novel rice genes showing differential expression in P deficient conditions. J. Genet. 2014, 93, 573–577. [Google Scholar] [CrossRef]
- Das, S.; Tyagi, W.; Rai, M.; Debnath, A. Identification of potential genotype influencing stress tolerance to Fe toxicity and P deficiency under low land acidic soils condition of North Eastern Rice, “Shasarang”. Int. J. Bio-Resour. Stress Manag. 2017, 8, 838–845. [Google Scholar] [CrossRef]
- Bhutia, K.L.; Nongbri, E.L.; Sharma, T.O.; Rai, M.; Tyagi, W. A 1.84-Mb region on rice chromosome 2 carrying SPL4, SPL5 and MLO8 genes is associated with higher yield under phosphorus-deficient acidic soil. J. Appl. Genet. 2021, 62, 207–222. [Google Scholar] [CrossRef]
- Tyagi, W.; Nongbri, E.N.; Rai, M. Harnessing tolerance to low phosphorus in rice: Recent progress and future perspectives. In Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality; Hossain, M.A., Hassan, L., Ifterkharuddaula, K.M., Kumar, A., Henry, R., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 215–233. [Google Scholar]
- Chithrameenal, K.; Alagarasan, G.; Raveendran, M.; Id, J.R. Genetic enhancement of phosphorus starvation tolerance through marker assisted introgression of OsPSTOL1 gene in rice genotypes harbouring bacterial blight and blast resistance. PLoS ONE 2018, 13, e0204144. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Wang, J.; Zeigler, R.S. The 3000 rice genomes project: New opportunities and challenges for future rice research. Gigascience 2014, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Mansueto, L.; Fuentes, R.R.; Borja, F.N.; Detras, J.; Abrio-Santos, J.M.; Chebotarov, D.; Sanciangco, M.; Palis, K.; Copetti, D.; Poliakov, A.; et al. Rice SNP-Seek database update: New SNPs, Indels, and Queries. Nucleic Acids Res. 2017, 45, D1075–D1081. [Google Scholar] [CrossRef]
- Yano, K.; Yamamoto, E.; Aya, K.; Takeuchi, H.; Lo, P.C.; Hu, L.; Yamasaki, M.; Yoshida, S.; Kitano, H.; Hirano, K.; et al. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat. Genet. 2016, 48, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Zhang, Q.; Wang, C.C.; Liu, Z.X.; Jiang, Y.J.; Zhai, L.Y.; Zheng, T.Q.; Xu, J.L.; Li, Z.K. Genetic dissection of seedling vigour in a diverse panel from the 3,000 rice (Oryza sativa L.) genome project. Sci. Rep. 2019, 9, 4804. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, A.; Sandhu, N.; Bartholome, J.; Cao-Hamadoun, T.V.; Ahmadi, N.; Kumari, N.; Kumar, A. Genome-wide association study for yield and yield related traits under reproductive stage drought in a diverse indica-aus rice panel. Rice 2020, 13, 1–22. [Google Scholar] [CrossRef]
- Pariasca-Tanaka, J.; Baertschi, C.; Wissuwa, M. Identification of loci through genome-wide association studies to improve tolerance to sulfur deficiency in rice. Front. Plant Sci. 2020, 10, 1668. [Google Scholar] [CrossRef]
- Wu, F.; Luo, X.; Wang, L.; Wei, Y.; Li, J.; Xie, H.; Zhang, J.; Xie, G. Genome-wide association study reveals the QTLs for seed storability in world rice core collections. Plants 2021, 10, 812. [Google Scholar] [CrossRef]
- Lin, Y.L.; Wu, D.H.; Wu, C.C.; Huang, Y.F. Explore the genetics of weedy traits using rice 3K database. Bot. Stud. 2021, 62, 1–16. [Google Scholar] [CrossRef]
- Pariasca-Tanaka, J.; Rakotondramanana, M.F.; Tojo Mangaharisoa, S.; Ranaivo, H.N.; Tanaka, R.; Wissuwa, M. Phenotyping of a rice (Oryza sativa L.) association panel identifies loci associated with tolerance to low soil fertility on smallholder farm conditions in Madagascar. PLoS ONE 2022, 17, e0262707. [Google Scholar] [CrossRef]
- Li, Q.; Lu, X.; Wang, C.; Shen, L.; Dai, L.; He, J.; Yang, L.; Li, P.; Hong, Y.; Zhang, Q.; et al. Genome-wide association study and transcriptome analysis reveal new QTL and candidate genes for nitrogen-deficiency tolerance in rice. Crop J. 2022, 10, 942–951. [Google Scholar] [CrossRef]
- Tao, Y.; Niu, Y.; Wang, Y.; Chen, T.; Naveed, S.A.; Zhang, J.; Xu, J.; Li, Z. Genome-wide association mapping of aluminum toxicity tolerance and fine mapping of a candidate gene for Nrat1 in rice. PLoS ONE 2018, 13, e0198589. [Google Scholar] [CrossRef] [PubMed]
- Swamy, B.P.M.; Ahmed, H.U.; Henry, A.; Mauleon, R.; Dixit, S.; Vikram, P.; Tilatto, R.; Verulkar, S.B.; Perraju, P.; Mandal, N.P.; et al. Genetic, physiological, and gene expression analyses reveal that multiple QTL enhance yield of rice mega-variety IR64 under drought. PLoS ONE 2013, 8, e62795. [Google Scholar] [CrossRef] [PubMed]
- Yumnam, J.S.; Rai, M.; Tyagi, W. Allele mining across two low-P tolerant genes PSTOL1 and PupK20-2 reveals novel haplotypes in rice genotypes adapted to acidic soils. Plant Genet. Resour. 2017, 15, 221–229. [Google Scholar] [CrossRef]
- Abdul Halim, N.S.; Abdullah, R.; Karsani, S.A.; Osman, N.; Panhwar, Q.A.; Ishak, C.F. Influence of soil amendments on the growth and yield of rice in acidic soil. Agronomy 2018, 8, 165. [Google Scholar] [CrossRef]
- Evy, S.; Sugeng, P.; Diah, M.; Wahida, A. Research article effects of durian wood waste biochar on acid sulphate soil properties and rice yield in Indonesia. J. Agron. 2019, 18, 71–79. [Google Scholar]
- Bernardo, R. Reinventing quantitative genetics for plant breeding: Something old, something new, something borrowed, something BLUE. Heredity 2020, 125, 375–385. [Google Scholar] [CrossRef]
- Debnath, A.; Rai, M.; Tyagi, W.; Das, S. Genetic analysis of yield contributing traits in lowland rice genotypes under acidic soils. Int. J. Bio-Resour. Stress Manag. 2017, 8, 740–748. [Google Scholar] [CrossRef]
- Swamy, H.K.M.; Anila, M.; Kale, R.R.; Bhadana, V.P.; Anantha, M.S.; Brajendra, P.; Hajira, S.K.; Balachiranjeevi, C.H.; Prasanna, B.L.; Pranathi, K.; et al. Phenotypic and molecular characterization of rice germplasm lines and identification of novel source for low soil phosphorus tolerance in rice. Euphytica 2019, 215, 118. [Google Scholar] [CrossRef]
- Rose, T.J.; Rose, M.T.; Pariasca-Tanaka, J.; Heuer, S.; Wissuwa, M. The frustration with utilization: Why have improvements in internal phosphorus utilization efficiency in crops remained so elusive? Front. Plant Sci. 2011, 2, 73. [Google Scholar] [CrossRef]
- Hayes, P.E.; Adem, G.D.; Pariasca-Tanaka, J.; Wissuwa, M. Leaf phosphorus fractionation in rice to understand internal phosphorus-use efficiency. Ann. Bot. 2022, 129, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Jewel, Z.A.; Ali, J.; Mahender, A.; Hernandez, J.; Pang, Y.; Li, Z. Identification of quantitative trait loci associated with nutrient use efficiency traits, using SNP markers in an early backcross population of rice (Oryza sativa L.). Int. J. Mol. Sci. 2019, 20, 900. [Google Scholar] [CrossRef] [PubMed]
- Bheri, M.; Pandey, G.K. PP2A phosphatases take a giant leap in the post-genomics era. Curr. Genom. 2019, 20, 154–171. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.M.; Wong, M.M.; Jack, R.W.; Kong, R.Y. Structure, evolution and expression of a second subfamily of protein phosphatase 2A catalytic subunit genes in the rice plant (Oryza sativa L.). Planta 2005, 222, 757–768. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pei, L.; Jin, Z.; Zhang, K.; Zhang, J. Overexpression of the protein phosphatase 2A regulatory subunit a gene ZmPP2AA1 improves low phosphate tolerance by remodeling the root system architecture of maize. PLoS ONE 2017, 12, e0176538. [Google Scholar] [CrossRef]
- Chen, H.; Chen, W.; Zhou, J.; He, H.; Chen, L.; Chen, H.; Deng, X.W. Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Sci. 2012, 193, 8–17. [Google Scholar] [CrossRef]
- Sudo, E.; Itouga, M.; Yoshida-Hatanaka, K.; Ono, Y.; Sakakibara, H. Gene expression and sensitivity in response to copper stress in rice leaves. J. Exp. Bot. 2008, 59, 3465–3474. [Google Scholar] [CrossRef]
- Sharma, R.; Tan, F.; Jung, K.H.; Sharma, M.K.; Peng, Z.; Ronald, P.C. Transcriptional dynamics during cell wall removal and regeneration reveals key genes involved in cell wall development in rice. Plant Mol. Biol. 2011, 77, 391–406. [Google Scholar] [CrossRef]
- Fan, F.; Ding, G.; Wen, X. Proteomic analyses provide new insights into the responses of Pinus massoniana seedlings to phosphorus deficiency. Proteomics 2016, 16, 504–515. [Google Scholar] [CrossRef]
- Foroozani, M.; Zahraeifard, S.; Oh, D.H.; Wang, G.; Dassanayake, M.; Smith, A.P. Low-phosphate chromatin dynamics predict a cell wall remodeling network in rice shoots. Plant Physiol. 2020, 182, 1494–1509. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, J.; Zhang, Y.; Geng, H.; Rasheed, A.; Xiao, Y.; Cao, S.; Fu, L.; Yan, J.; Wen, W.; et al. Genome-wide association of stem water soluble carbohydrates in bread wheat. PLoS ONE 2016, 11, e0164293. [Google Scholar] [CrossRef] [PubMed]
- Xin, C.; Chi, J.; Zhao, Y.; He, Y.; Guo, J. Cadmium stress alters cytosine methylation status and expression of a select set of genes in Nicotiana benthamiana. Plant Sci. 2019, 284, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Liu, M.; Ma, D.; Wu, J.; Li, S.; Zhu, Y.; Han, B. Identification of circular RNAs and their targets during tomato fruit ripening. Postharvest Biol. Technol. 2018, 136, 90–98. [Google Scholar] [CrossRef]
- Park, M.R.; Baek, S.H.; De los Reyes, B.G.; Yun, S.J.; Hasenstein, K.H. Transcriptome profiling characterizes phosphate deficiency effects on carbohydrate metabolism in rice leaves. J. Plant Physiol. 2012, 169, 193–205. [Google Scholar] [CrossRef]
- Song, T.; Yang, F.; Das, D.; Chen, M.; Hu, Q.; Tian, Y.; Cheng, C.; Liu, Y.; Zhang, J. Transcriptomic analysis of photosynthesis-related genes regulated by alternate wetting and drying irrigation in flag leaves of rice. Food Energy Secur. 2020, 9, e221. [Google Scholar] [CrossRef]
- Lu, X.; Min, W.; Shi, Y.; Tian, L.; Li, P.; Ma, T.; Zhang, Y.; Luo, C. Exogenous melatonin alleviates alkaline stress by removing reactive oxygen species and promoting antioxidant defence in rice seedlings. Front. Plant Sci. 2022, 13, 849553. [Google Scholar] [CrossRef]
- Jeong, K.; Baten, A.; Waters, D.L.E.; Pantoja, O.; Julia, C.C.; Wissuwa, M.; Heuer, S.; Kretzschmar, T.; Rose, T.J. Phosphorus remobilization from rice flag leaves during grain filling: An RNA-seq study. Plant Biotechnol. J. 2017, 15, 15–26. [Google Scholar] [CrossRef]
- Shankar, A.; Singh, A.; Kanwar, P.; Srivastava, A.K.; Pandey, A.; Suprasanna, P.; Kapoor, S.; Pandey, G.K. Gene expression analysis of rice seedling under potassium deprivation reveals major changes in metabolism and signaling components. PLoS ONE 2013, 8, e70321. [Google Scholar] [CrossRef]
- Nayyeripasand, L.; Garoosi, G.A.; Ahmadikhah, A. Genome-wide association study (GWAS) to identify salt-tolerance QTLs carrying novel candidate genes in rice during early vegetative stage. Rice 2021, 14, 1–21. [Google Scholar] [CrossRef]
- Yang, L.; Lei, L.; Li, P.; Wang, J.; Wang, C.; Yang, F.; Chen, J.; Liu, H.L.; Zheng, H.; Xin, W.; et al. Identification of candidate genes conferring cold tolerance to rice (Oryza sativa L.) at the bud-bursting stage using bulk segregant analysis sequencing and linkage mapping. Front. Plant Sci. 2021, 12, 647239. [Google Scholar] [CrossRef]
- Xie, W.; Liu, S.; Gao, H.; Wu, J.; Liu, D.; Kinoshita, T.; Huang, C.F. PP2C. D phosphatase SAL1 positively regulates aluminum resistance via restriction of aluminum uptake in rice. Plant Physiol. 2023, 192, 1498–1516. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Jin, Y.M.; Wu, T.; Hu, L.; Zhang, Y.; Jiang, W.; Du, X. OsDREB2B, an AP2/ERF transcription factor, negatively regulates plant height by conferring GA metabolism in rice. Front. Plant Sci. 2022, 13, 1007811. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Bahuguna, R.N.; Tiwari, M.; Pal, M.; Chinnusamy, V.; Sreeman, S.; Muthurajan, R.; Krishna Jagadish, S.V. Walking through crossroads–rice responses to heat and biotic stress interactions. Theor. Appl. Genet. 2022, 135, 4065–4081. [Google Scholar] [CrossRef]
- Secco, D.; Jabnoune, M.; Walker, H.; Shou, H.; Wu, P.; Poirier, Y.; Whelan, J. Spatio-temporal transcript profiling of rice roots and shoots in response to phosphate starvation and recovery. Plant Cell 2013, 25, 4285–4304. [Google Scholar] [CrossRef]
- Fu, Y.; Zhong, X.; Pan, J.; Liang, K.; Liu, Y.; Peng, B.; Hu, X.; Huang, N. QTLs identification for nitrogen and phosphorus uptake-related traits using ultra-high density SNP linkage. Plant Sci. 2019, 288, 110209. [Google Scholar] [CrossRef]
- Dong, J.; Zhao, J.; Zhang, S.; Yang, T.; Liu, Q.; Mao, X.; Fu, H.; Yang, W.; Liu, B. Physiological and genome-wide gene expression analyses of cold-induced leaf rolling at the seedling stage in rice (Oryza sativa L.). Crop J. 2019, 7, 431–443. [Google Scholar] [CrossRef]
- Li, L.; Qiu, X.; Li, X.; Wang, S.; Zhang, Q.; Lian, X. Transcriptomic analysis of rice responses to low phosphorus stress. Chin. Sci. Bull. 2010, 55, 251–258. [Google Scholar] [CrossRef]
- Alam, M.N.; Jewel, G.N.; Azim, T.; Seraj, Z.I. Comprehensive analysis and genome-wide association studies of biomass, chlorophyll, seed and salinity tolerance related traits in rice highlight genetic hotspots for crop improvement. bioRxiv 2020. [Google Scholar] [CrossRef]
- Guo, M.; Wang, R.; Wang, J.; Hua, K.; Wang, Y.; Liu, X.; Yao, S. ALT1, a Snf2 family chromatin remodeling ATPase, negatively regulates alkaline tolerance through enhanced defense against oxidative stress in rice. PLoS ONE 2014, 9, e112515. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H.; Xu, J.; Jiang, C.; Yin, Z.; Xiong, H.; Xie, J.; Wang, X.; Zhu, X.; Li, Y.; et al. Loci and natural alleles underlying robust roots and adaptive domestication of upland ecotype rice in aerobic conditions. PLoS Genet. 2018, 14, e1007521. [Google Scholar] [CrossRef]
- Kar, S.; Mai, H.J.; Khalouf, H.; Ben Abdallah, H.; Flachbart, S.; Fink-Straube, C.; Bräutigam, A.; Xiong, G.; Shang, L.; Panda, S.K.; et al. Comparative transcriptomics of lowland rice varieties uncovers novel candidate genes for adaptive iron excess tolerance. Plant Cell Physiol. 2021, 62, 624–640. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Ding, W.; Wu, Y.; Yu, J.; He, X.; Shou, H.; Wu, P. Overexpression of a NAC-domain protein promotes shoot branching in rice. New Phytol. 2007, 176, 288–298. [Google Scholar] [CrossRef]
- Sonsungsan, P.; Chantanakool, P.; Suratanee, A.; Buaboocha, T.; Comai, L.; Chadchawan, S.; Plaimas, K. Identification of key genes in ‘Luang Pratahn’, thai salt-tolerant rice, based on time-course data and weighted co-expression networks. Front. Plant Sci. 2021, 12, 744654. [Google Scholar] [CrossRef]
- Chueasiri, C.; Chunthong, K.; Pitnjam, K.; Chakhonkaen, S.; Sangarwut, N.; Sangsawang, K.; Suksangpanomrung, M.; Michaelson, L.V.; Napier, J.A.; Muangprom, A. Rice ORMDL controls sphingolipid homeostasis affecting fertility resulting from abnormal pollen development. PLoS ONE 2014, 9, e106386. [Google Scholar] [CrossRef]
- Liang, D.; Yu, J.; Song, T.; Zhang, R.; Du, Y.; Yu, M.; Cao, H.; Pan, X.; Qiao, J.; Liu, Y.; et al. A genome-wide alternative splicing landscape specifically associated with durable rice blast resistance. Agronomy 2022, 12, 2414. [Google Scholar] [CrossRef]
- Olatunji, D.; Geelen, D.; Verstraeten, I. Control of endogenous auxin levels in plant root development. Int. J. Mol. Sci. 2017, 18, 2587. [Google Scholar] [CrossRef]
- Chepyshko, H.; Lai, C.P.; Huang, L.M.; Liu, J.H.; Shaw, J.F. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: New insights from bioinformatics analysis. BMC Genom. 2012, 13, 1–19. [Google Scholar] [CrossRef]
- Dolui, A.; Vijayaraj, P. Functional omics identifies serine hydrolases that mobilize storage lipids during rice seed germination. Plant Physiol. 2020, 184, 693–708. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, Z.C.; Wang, M.M.; Zhang, F.; Dingkuhn, M.; Xu, J.L.; Zhou, Y.L.; Li, Z.K. Genome-wide association analysis identifies resistance loci for bacterial blight in a diverse collection of indica rice germplasm. PLoS ONE 2017, 12, e0174598. [Google Scholar] [CrossRef]
- Sung, D.Y.; Kim, T.H.; Komives, E.A.; Mendoza-Cózatl, D.G.; Schroeder, J.I. ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis. Plant J. 2009, 59, 802–813. [Google Scholar] [CrossRef]
- Jiang, W.; Hou, Q.; Yang, Z.; Zhong, C.; Zheng, G.; Yang, Z.; Li, J. Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content. Environ. Pollut. 2014, 188, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Li, Q.; Wang, C.; Wang, M.; Zeng, D.; Zhang, F.; Zhai, W.; Zhou, Y. Identification of quantitative trait loci associated with resistance to Xanthomonas oryzae pv. oryzae pathotypes prevalent in South China. Crop J. 2022, 10, 498–507. [Google Scholar] [CrossRef]
- Mai, N.T.; Nguyen, L.T.; Tran, S.G.; To, H.T. Genome-wide association study reveals useful QTL and genes controlling the fatty acid composition in rice bran oil using Vietnamese rice landraces. Funct. Integr. Genom. 2023, 23, 150. [Google Scholar] [CrossRef]
- Li, M.; Xu, W.; Yang, W.; Kong, Z.; Xue, Y. Genome-wide gene expression profiling reveals conserved and novel molecular functions of the stigma in rice. Plant Physiol. 2007, 144, 1797–1812. [Google Scholar] [CrossRef]
- He, D.; Wang, Q.; Wang, K.; Yang, P. Genome-wide dissection of the microRNA expression profile in rice embryo during early stages of seed germination. PLoS ONE 2015, 10, e0145424. [Google Scholar] [CrossRef]
- Peng, L.; Sun, S.; Yang, B.; Zhao, J.; Li, W.; Huang, Z.; Li, Z.; He, Y.; Wang, Z. Genome-wide association study reveals that the cupin domain protein OsCDP3.10 regulates seed vigour in rice. Plant Biotechnol. J. 2022, 20, 485–498. [Google Scholar] [CrossRef]
- Agarwal, P.; Arora, R.; Ray, S.; Singh, A.K.; Singh, V.P.; Takatsuji, H.; Kapoor, S.; Tyagi, A.K. Genome-wide identification of C2-H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol. Biol. 2007, 65, 467–485. [Google Scholar] [CrossRef]
- Xu, Q.; Zheng, T.Q.; Hu, X.; Cheng, L.R.; Xu, J.L.; Shi, Y.M.; Li, Z.K. Examining two sets of introgression lines in rice (Oryza sativa L.) reveals favorable alleles that improve grain Zn and Fe concentrations. PLoS ONE 2015, 10, e0131846. [Google Scholar] [CrossRef]
- Gupta, P.K. Methods in Environmental Analysis: Water, Soil and Air; Agrobios: Jodhpur, India, 2007; pp. 5–127. [Google Scholar]
- Aluwihare, Y.C.; Ishan, M.; Chamikara, M.D.; Weebadde, C.K.; Sirisena, D.N.; Samarasinghe, W.L.; Sooriyapathirana, S.D. Characterization and selection of phosphorus deficiency tolerant rice genotypes in Sri Lanka. Rice Sci. 2016, 23, 184–195. [Google Scholar] [CrossRef]
- Rose, T.J.; Wissuwa, M. Rethinking internal phosphorus utilization efficiency: A new approach is needed to improve PUE in grain crops. In Advances in Agronomy; Elsevier Inc.: Burlington, ON, Canada, 2012; pp. 185–217. [Google Scholar]
- Dufey, I.; Hakizimana, P.; Draye, X.; Lutts, S.; Bertin, P. QTL mapping for biomass and physiological parameters linked to resistance mechanisms to ferrous iron toxicity in rice. Euphytica 2009, 167, 143–160. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. arXiv 2014, arXiv:1406.5823. [Google Scholar]
- You, F.M.; Jia, G.; Cloutier, S.; Booker, H.M.; Duguid, S.D.; Rashid, K.Y. A method of estimating broad-sense heritability for quantitative traits in the type 2 modified augmented design. J. Plant Breed. Crop Sci. 2016, 8, 257–272. [Google Scholar]
- SRplot-Science and Research Online Plot. Available online: https://bioinformatics.com.cn/en (accessed on 1 May 2023).
- Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J.; Freidank, M.; Cai, J.; Protivinsky, T. R package “corrplot”: Visualization of a Correlation Matrix. Statistician 2017, 56, 316–324. [Google Scholar]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Kang, H.M.; Sui, J.H.; Service, S.K.; Zaitlen, N.A.; Kong, S.; Freimer, N.B.; Sabattti, C.; Eskin, E. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 2010, 42, 348–354. [Google Scholar] [CrossRef]
- Niu, Y.; Chen, T.; Wang, C.; Chen, K.; Shen, C.; Chen, H.; Zhu, S.; Wu, Z.; Zheng, T.; Zhang, F.; et al. Identification and allele mining of new candidate genes underlying rice grain weight and grain shape by genome-wide association study. BMC Genom. 2021, 22, 1–14. [Google Scholar] [CrossRef]
- Lv, Y.; Ma, J.; Wei, H.; Xiao, F.; Wang, Y.; Jahan, N.; Hazman, M.; Qian, Q.; Shang, L.; Guo, L. Combining GWAS, genome-wide domestication and a transcriptomic analysis reveals the loci and natural alleles of salt tolerance in rice (Oryza sativa L.). Front. Plant Sci. 2022, 13, 912637. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z. GAPIT Version 3: Boosting power and accuracy for genomic association and prediction. Genom. Proteom. Bioinform. 2021, 19, 629–640. [Google Scholar] [CrossRef]
- Zhou, H.; Alexander, D.; Lange, K. A quasi-Newton method for accelerating the convergence of iterative optimization algorithms. Stat. Comput. 2009, 21, 261–273. [Google Scholar] [CrossRef]
- Sakai, H.; Lee, S.S.; Tanaka, T.; Numa, H.; Kim, J.; Kawahara, Y.; Wakimoto, H.; Yang, C.C.; Iwamoto, M.; Abe, T.; et al. Rice annotation project database (RAP-DB): An integrative and interactive database for rice genomics. Plant Cell Physiol. 2013, 54, e6. [Google Scholar] [CrossRef]
- Tello-Ruiz, M.K.; Naithani, S.; Gupta, P.; Olson, A.; Wei, S.; Preece, J.; Jiao, Y.; Wang, B.; Chougule, K.; Garg, P.; et al. Gramene 2021: Harnessing the power of comparative genomics and pathways for plant research. Nucleic Acids Res. 2021, 49, D1452–D1463. [Google Scholar] [CrossRef]
- Zhao, H.; Yao, W.; Ouyang, Y.; Yang, W.; Wang, G.; Lian, X.; Xing, Y.; Chen, L.; Xie, W. RiceVarMap: A comprehensive database of rice genomic variations. Nucleic Acids Res. 2015, 43, D1018–D1022. [Google Scholar] [CrossRef]
Trait | QTN | Physical Position | Peak SNP | p Value | No. | Associated Loci | Annotation |
---|---|---|---|---|---|---|---|
GYPP | QTNGYPP2.2 | 31583066–31756679 | 31583481 | 4.18 × 10−6 | 18 | LOC_Os02g51670/ Os02g0752800 | Ethylene-responsive transcription factor/dehydration-responsive element-binding protein 2B |
QTNGYPP5.1 | 16365441–16514559 | 16376571 | 9.79 × 10−7 | 50 | LOC_Os05g28200/ Os05g0349700 | Prenyltransferase/chloroplast synthase | |
QTNGYPP9.1 | 13899180–14143315 | 13899180 | 2.33 × 10−6 | 4 | LOC_Os09g23650/ Os09g0401200 | FAM10 family protein/tetraticopeptide domain-containing thioredoxin | |
QTNGYPP11.1 | 19883002–19959555 | 19948634 | 9.91 × 10−7 | 40 | LOC_Os11g34110/ Os11g0543500 | Heparan-alpha-glucosaminide N-acetyltransferase | |
PY | QTNPY2.1 | 29338187–29528492 | 29402867 | 7.43 × 10−7 | 96 | LOC_Os02g48110/ Os02g0710900 | DnaK family protein/ heat shock protein (Hsp70) |
QTNPY2.2 | 31574786–31681012 | 31629041 | 1.13 × 10−6 | 91 | LOC_Os02g51670/ Os02g0752800 | Ethylene-responsive transcription factor/dehydration-responsive element-binding protein 2B (DREB2B) | |
QTNPY3.1 | 36339939–36362784 | 36339939 | 2.18 × 10−6 | 3 | Loc_Os03g64300/ Os03g0860900 | THION30—plant thionin family protein precursor/ WD40 repeat-like protein | |
QTNPY8.1 | 27334831–27459981 | 27448010 | 2.31 × 10−6 | 3 | LOC_Os08g43400/ Os08g0547500 | Kinesin motor domain-containing protein | |
PUE | QTNPUE6.1 | 6456833–6687984 | 6581539 | 8.55 × 10−8 | 59 | LOC_Os06g12250/Os06g0226950 | Sphingolipid C4-hydroxylase SUR2/Fatty acid hydroxylase |
QTNPU8.1 | 2408901–2421911 | 2408901 | 3.87 × 10−7 | 3 | LOC_Os08g04810/Os08g0143700 | Serine esterase/hydrolase | |
QTNPU8.2 | 3312360–3416391 | 3324300 | 1.88 × 10−9 | 58 | LOC_Os08g06070/Os08g0157100 | ELF7/Paf1 domain | |
QTNPU8.3 | 5958930–5965191 | 5965191 | 4.92 × 10−6 | 4 | LOC_Os08g10260/Os08g0202400 | NBS-LRR/disease resistance protein | |
QTNPUE11.1 | 27491496–27574635 | 27491496 | 1.4 × 10−6 | 4 | LOC_Os11g45540/Os11g0681400 | TKL_IRAK_DUF26-lh.11—DUF26 kinases | |
TN | QTNTN4.1 | 18509344–18532574 | 18509683 | 2.57 × 10−6 | 3 | LOC_Os04g31000/Os04g0379300 | Methyltransferase domain-containing protein |
QTNTN8.1 | 26190355–26773599 | 26773599 | 5.75 × 10−6 | 10 | LOC_Os08g42400/ Os08g0535800 | No apical meristem protein (NAM) |
Trait | Chr. | SNP Position | p Value | Candidate Gene | Annotation |
---|---|---|---|---|---|
GYPP | 3 | 24425242 | 5.83 × 10−6 | Os03g43720 | Transporter family protein |
6 | 30475205 | 9.64 × 10−6 | Os06g50360 | Pseudouridine synthase family protein | |
7 | 28158176 | 3.58 × 10−6 | Os07g47100 | Transporter, monovalent cation: proton antiporter−2 family | |
11 | 25436658 | 9.28 × 10−6 | Os11g42230 | OsFBX430—F-box domain-containing protein | |
PY | 1 | 33040531 | 2.61 × 10−7 | Os01g57110 | SNF2 family N-terminal protein |
4 | 22897241 | 8.88 × 10−6 | Os04g38530 | Aldose 1-epimerase | |
5 | 14854900 | 2.77 × 10−8 | Os05g25560 | Glycosyl hydrolase family 10 protein | |
6 | 10036143 | 7.20 × 10−6 | Os06g17290 | Phosphatidylinositol 3- and 4-kinase protein | |
7 | 15821103 | 3.41 × 10−6 | Os07g27140 | AT hook motif family protein | |
11 | 19958448 | 5.85 × 10−6 | Os11g34110 | Heparan-alpha-glucosaminide Nacetyltransferase | |
12 | 2200441 | 5.33 × 10−6 | Os12g05040 | Heavy-metal-associated protein | |
DM | 11 | 19958448 | 2.63 × 10−6 | Os11g34110 | Heparan-alpha-glucosaminide Nacetyltransferase |
FGPP | 1 | 34407559 | 8.37 × 10−7 | Os01g59490 | FAD-dependent oxidoreductase domain-containing protein |
1 | 34419588 | 4.10 × 10−6 | Os01g59520 | Cupin, RmlC-type | |
1 | 36373428 | 8.65 × 10−6 | Os01g62800 | Methyltransferase | |
7 | 25792255 | 7.45 × 10−6 | Os07g43040 | Heavy metal-associated protein | |
8 | 1311795 | 1.03 × 10−6 | Os08g02996 | Receptor-like kinase | |
8 | 1512058 | 2.99 × 10−6 | Os08g03260 | Zinc finger family | |
8 | 24009532 | 4.31 × 10−6 | Os08g37904 | ZOS8-08—C2H2 zinc finger | |
PUE | 2 | 4536291 | 2.02 × 10−6 | Os02g08420 | cinnamoyl CoA reductase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
James, M.; Tyagi, W.; Magudeeswari, P.; Neeraja, C.N.; Rai, M. Genome-Wide Association-Based Identification of Alleles, Genes and Haplotypes Influencing Yield in Rice (Oryza sativa L.) Under Low-Phosphorus Acidic Lowland Soils. Int. J. Mol. Sci. 2024, 25, 11673. https://doi.org/10.3390/ijms252111673
James M, Tyagi W, Magudeeswari P, Neeraja CN, Rai M. Genome-Wide Association-Based Identification of Alleles, Genes and Haplotypes Influencing Yield in Rice (Oryza sativa L.) Under Low-Phosphorus Acidic Lowland Soils. International Journal of Molecular Sciences. 2024; 25(21):11673. https://doi.org/10.3390/ijms252111673
Chicago/Turabian StyleJames, M., Wricha Tyagi, P. Magudeeswari, C. N. Neeraja, and Mayank Rai. 2024. "Genome-Wide Association-Based Identification of Alleles, Genes and Haplotypes Influencing Yield in Rice (Oryza sativa L.) Under Low-Phosphorus Acidic Lowland Soils" International Journal of Molecular Sciences 25, no. 21: 11673. https://doi.org/10.3390/ijms252111673
APA StyleJames, M., Tyagi, W., Magudeeswari, P., Neeraja, C. N., & Rai, M. (2024). Genome-Wide Association-Based Identification of Alleles, Genes and Haplotypes Influencing Yield in Rice (Oryza sativa L.) Under Low-Phosphorus Acidic Lowland Soils. International Journal of Molecular Sciences, 25(21), 11673. https://doi.org/10.3390/ijms252111673