Serum Lipoprotein Profiling by NMR Spectroscopy Reveals Alterations in HDL-1 and HDL-2 Apo-A2 Subfractions in Alzheimer’s Disease
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics
2.2. Cognitive Impairment and Lipoproteins
3. Discussion
4. Materials and Methods
4.1. Characteristics of Study Participants
4.2. Collection and Processing of Blood Samples
4.3. Nuclear Magnetic Resonance Spectroscopy
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Mattsson-Carlgren, N.; Palmqvist, S.; Blennow, K.; Hansson, O. Increasing the Reproducibility of Fluid Biomarker Studies in Neurodegenerative Studies. Nat. Commun. 2020, 11, 6252. [Google Scholar] [CrossRef] [PubMed]
- Mullane, K.; Williams, M. Alzheimer’s Disease beyond Amyloid: Can the Repetitive Failures of Amyloid-Targeted Therapeutics Inform Future Approaches to Dementia Drug Discovery? Biochem. Pharmacol. 2020, 177, 113945. [Google Scholar] [CrossRef] [PubMed]
- Panza, F.; Lozupone, M.; Logroscino, G.; Imbimbo, B.P. A Critical Appraisal of Amyloid-β-Targeting Therapies for Alzheimer Disease. Nat. Rev. Neurol. 2019, 15, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Räisänen, U.; Bekkers, M.-J.; Boddington, P.; Sarangi, S.; Clarke, A. The Causation of Disease—The Practical and Ethical Consequences of Competing Explanations. Med. Health Care Philos. 2006, 9, 293–306. [Google Scholar] [CrossRef]
- Ray, S.; Britschgi, M.; Herbert, C.; Takeda-uchimura, Y.; Boxer, A.; Blennow, K.; Friedman, L.F.; Galasko, D.R.; Jutel, M.; Karydas, A.; et al. Classification and Prediction of Clinical Alzheimer’s Diagnosis Based on Plasma Signaling Proteins. Nat. Med. 2007, 13, 1359–1362. [Google Scholar] [CrossRef]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The Diagnosis of Dementia Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef]
- Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J.; et al. Dementia Prevention, Intervention, and Care. Lancet 2017, 390, 2673–2734. [Google Scholar] [CrossRef]
- Khalil, M.; Teunissen, C.E.; Otto, M.; Piehl, F.; Sormani, M.P.; Gattringer, T.; Barro, C.; Kappos, L.; Comabella, M.; Fazekas, F.; et al. Neurofilaments as Biomarkers in Neurological Disorders. Nat. Rev. Neurol. 2018, 14, 577–589. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.T.; Herholz, K. Amyloid Imaging for Dementia in Clinical Practice. BMC Med. 2015, 13, 163. [Google Scholar] [CrossRef]
- De Almeida, S.M.; Shumaker, S.D.; LeBlanc, S.K.; Delaney, P.; Marquie-Beck, J.; Ueland, S.; Alexander, T.; Ellis, R.J. Incidence of Post-Dural Puncture Headache in Research Volunteers. Headache 2011, 51, 1503–1510. [Google Scholar] [CrossRef]
- Thambisetty, M.; Lovestone, S. Blood-Based Biomarkers of Alzheimer’s Disease: Challenging but Feasible. Biomark. Med. 2010, 4, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.M.; Adkins, J.N.; Qian, W.-J.; Liu, T.; Shen, Y.; Camp, D.G.; Smith, R.D. Utilizing Human Blood Plasma for Proteomic Biomarker Discovery. J. Proteome Res. 2005, 4, 1073–1085. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, B.; Holmes, E.; Heude, C.; Tolson, R.F.; Harvey, N.; Lodge, S.L.; Chetwynd, A.J.; Cannet, C.; Fang, F.; Pearce, J.T.M.; et al. Quantitative Lipoprotein Subclass and Low Molecular Weight Metabolite Analysis in Human Serum and Plasma by 1H NMR Spectroscopy in a Multilaboratory Trial. Anal. Chem. 2018, 90, 11962–11971. [Google Scholar] [CrossRef] [PubMed]
- Duran, E.K.; Pradhan, A.D. Triglyceride-Rich Lipoprotein Remnants and Cardiovascular Disease. Clin. Chem. 2021, 67, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Grao-Cruces, E.; Claro-Cala, C.M.; Montserrat-de La Paz, S.; Nobrega, C. Lipoprotein Metabolism, Protein Aggregation, and Alzheimer’s Disease: A Literature Review. Int. J. Mol. Sci. 2023, 24, 2944. [Google Scholar] [CrossRef]
- Picard, C.; Nilsson, N.; Labonté, A.; Auld, D.; Rosa-Neto, P.; Alzheimer’s Disease Neuroimaging Initiative; Ashton, N.J.; Zetterberg, H.; Blennow, K.; Breitner, J.C.B.; et al. Apolipoprotein B Is a Novel Marker for Early Tau Pathology in Alzheimer’s Disease. Alzheimers Dement. 2022, 18, 875–887. [Google Scholar] [CrossRef]
- Hamilton, L.K.; Dufresne, M.; Joppé, S.E.; Petryszyn, S.; Aumont, A.; Calon, F.; Barnabé-Heider, F.; Furtos, A.; Parent, M.; Chaurand, P.; et al. Aberrant Lipid Metabolism in the Forebrain Niche Suppresses Adult Neural Stem Cell Proliferation in an Animal Model of Alzheimer’s Disease. Cell Stem Cell 2015, 17, 397–411. [Google Scholar] [CrossRef]
- Atzmon, G.; Gabriely, I.; Greiner, W.; Davidson, D.; Schechter, C.; Barzilai, N. Plasma HDL Levels Highly Correlate with Cognitive Function in Exceptional Longevity. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M712–M715. [Google Scholar] [CrossRef]
- Reed, B.; Villeneuve, S.; Mack, W.; DeCarli, C.; Chui, H.C.; Jagust, W. Associations between Serum Cholesterol Levels and Cerebral Amyloidosis. JAMA Neurol. 2014, 71, 195–200. [Google Scholar] [CrossRef]
- Pedrini, S.; Doecke, J.D.; Hone, E.; Wang, P.; Thota, R.; Bush, A.I.; Rowe, C.C.; Dore, V.; Villemagne, V.L.; Ames, D.; et al. Plasma High-density Lipoprotein Cargo Is Altered in Alzheimer’s Disease and Is Associated with Regional Brain Volume. J. Neurochem. 2022, 163, 53–67. [Google Scholar] [CrossRef]
- White-Al Habeeb, N.M.A.; Higgins, V.; Wolska, A.; Delaney, S.R.; Remaley, A.T.; Beriault, D.R. The Present and Future of Lipid Testing in Cardiovascular Risk Assessment. Clin. Chem. 2023, 69, 456–469. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.; Dyrby, M.; Toubro, S.; Engelsen, S.B.; Nørgaard, L.; Pedersen, H.T.; Dyerberg, J. Quantification of Lipoprotein Subclasses by Proton Nuclear Magnetic Resonance–Based Partial Least-Squares Regression Models. Clin. Chem. 2005, 51, 1457–1461. [Google Scholar] [CrossRef]
- Stringer, K.A.; McKay, R.T.; Karnovsky, A.; Quémerais, B.; Lacy, P. Metabolomics and Its Application to Acute Lung Diseases. Front. Immunol. 2016, 7, 44. [Google Scholar] [CrossRef]
- Nielsen, J.E.; Andreassen, T.; Gotfredsen, C.H.; Olsen, D.A.; Vestergaard, K.; Madsen, J.S.; Kristensen, S.R.; Pedersen, S. Serum Metabolic Signatures for Alzheimer’s Disease Reveal Alterations in Amino Acid Composition and Energy Metabolism—A Validation Study. Metabolomics 2024, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Berezhnoy, G.; Laske, C.; Trautwein, C. Quantitative NMR-Based Lipoprotein Analysis Identifies Elevated HDL-4 and Triglycerides in the Serum of Alzheimer’s Disease Patients. Int. J. Mol. Sci. 2022, 23, 12472. [Google Scholar] [CrossRef] [PubMed]
- Bonaterra-Pastra, A.; Fernández-de-Retana, S.; Rivas-Urbina, A.; Puig, N.; Benítez, S.; Pancorbo, O.; Rodríguez-Luna, D.; Pujadas, F.; Del Mar Freijo, M.; Tur, S.; et al. Comparison of Plasma Lipoprotein Composition and Function in Cerebral Amyloid Angiopathy and Alzheimer’s Disease. Biomedicines 2021, 9, 72. [Google Scholar] [CrossRef]
- Martinez, A.E.; Weissberger, G.; Kuklenyik, Z.; He, X.; Meuret, C.; Parekh, T.; Rees, J.C.; Parks, B.A.; Gardner, M.S.; King, S.M.; et al. The Small HDL Particle Hypothesis of Alzheimer’s Disease. Alzheimer’s Dement. 2023, 19, 391–404. [Google Scholar] [CrossRef]
- Cho, K.-H. The Current Status of Research on High-Density Lipoproteins (HDL): A Paradigm Shift from HDL Quantity to HDL Quality and HDL Functionality. Int. J. Mol. Sci. 2022, 23, 3967. [Google Scholar] [CrossRef]
- Yamauchi, K.; Tozuka, M.; Hidaka, H.; Nakabayashi, T.; Sugano, M.; Kondo, Y.; Nakagawara, A.; Katsuyama, T. Effect of Apolipoprotein AII on the Interaction of Apolipoprotein E with Beta-Amyloid: Some Apo(E-AII) Complexes Inhibit the Internalization of Beta-Amyloid in Cultures of Neuroblastoma Cells. J. Neurosci. Res. 2000, 62, 608–614. [Google Scholar] [CrossRef]
- Boyles, J.K.; Notterpek, L.M.; Anderson, L.J. Accumulation of Apolipoproteins in the Regenerating and Remyelinating Mammalian Peripheral Nerve. Identification of Apolipoprotein D, Apolipoprotein A-IV, Apolipoprotein E, and Apolipoprotein A-I. J. Biol. Chem. 1990, 265, 17805–17815. [Google Scholar] [CrossRef]
- McComb, M.; Krikheli, M.; Uher, T.; Browne, R.W.; Srpova, B.; Oechtering, J.; Maceski, A.M.; Tyblova, M.; Jakimovski, D.; Ramasamy, D.P.; et al. Neuroprotective Associations of Apolipoproteins A-I and A-II with Neurofilament Levels in Early Multiple Sclerosis. J. Clin. Lipidol. 2020, 14, 675–684.e2. [Google Scholar] [CrossRef]
- Kawano, M.; Kawakami, M.; Otsuka, M.; Yashima, H.; Yaginuma, T.; Ueki, A. Marked Decrease of Plasma Apolipoprotein AI and AII in Japanese Patients with Late-Onset Non-Familial Alzheimer’s Disease. Clin. Chim. Acta 1995, 239, 209–211. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Poljak, A.; Crawford, J.; Kochan, N.A.; Wen, W.; Cameron, B.; Lux, O.; Brodaty, H.; Mather, K.; Smythe, G.A.; et al. Plasma Apolipoprotein Levels Are Associated with Cognitive Status and Decline in a Community Cohort of Older Individuals. PLoS ONE 2012, 7, e34078. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.; Crowley, J.; O’Shea, P.; McEvoy, J.W.; Griffin, D.G. Lipid Reference Values in an Irish Population. Ir. J. Med. Sci. 2021, 190, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Nordestgaard, B.G. A Test in Context: Lipid Profile, Fasting Versus Nonfasting. J. Am. Coll. Cardiol. 2017, 70, 1637–1646. [Google Scholar] [CrossRef]
- WHO International Classification of Diseases (ICD). Available online: https://icd.who.int/browse10/2019/en (accessed on 22 March 2020).
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical Diagnosis of Alzheimer’s Disease: Report of the NINCDS-ADRDA Work Group under the Auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939. [Google Scholar] [CrossRef]
- Westgard, S.; Petrides, V.; Schneider, S.; Berman, M.; Herzogenrath, J.; Orzechowski, A. Assessing Precision, Bias and Sigma-Metrics of 53 Measurands of the Alinity Ci System. Clin. Biochem. 2017, 50, 1216–1221. [Google Scholar] [CrossRef]
- Ellegaard Nielsen, J.; Sofie Pedersen, K.; Vestergård, K.; Georgiana Maltesen, R.; Christiansen, G.; Lundbye-Christensen, S.; Moos, T.; Risom Kristensen, S.; Pedersen, S. Novel Blood-Derived Extracellular Vesicle-Based Biomarkers in Alzheimer’s Disease Identified by Proximity Extension Assay. Biomedicines 2020, 8, 199. [Google Scholar] [CrossRef]
- Dona, A.C.; Jiménez, B.; Schäfer, H.; Humpfer, E.; Spraul, M.; Lewis, M.R.; Pearce, J.T.M.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Precision High-Throughput Proton NMR Spectroscopy of Human Urine, Serum, and Plasma for Large-Scale Metabolic Phenotyping. Anal. Chem. 2014, 86, 9887–9894. [Google Scholar] [CrossRef]
Con (n = 25) | AD (n = 25) | p-Value | Reference Interval | |
---|---|---|---|---|
Mean (SD) | Mean (SD) | |||
Demographics | ||||
Age [years] | 66.6 (1.3) | 75.7 (8.2) | 0.00001 | - |
Male/female [n] | 16/9 | 15/10 | - | - |
Ethnicity | Caucasian | Caucasian | - | - |
Biochemical characteristics | ||||
ALAT [U/L] | 26.3 (8.6) | 22.3 (11.6) | 0.17 | 10.0–50.0 |
Albumin [g/L] | 41.0 (1.9) | 41.5 (1.9) | 0.37 | 34–45 |
Cholesterol [mmol/L] | 5.4 (0.9) | 5.5 (1.1) | 0.88 | 4.2–8.5 |
Creatinine [µmol/L] | 79.0 (10.2) | 83.4 (14.5) | 0.22 | 45–105 |
CRP [mg/L] | 1.9 (1.4) | 2.2 (2.9) | 0.57 | <8 |
Glucose [mmol/L] | 6.4 (1.7) | 5.4 (0.9) | 0.01 | 4.2–7.8 |
Haemoglobin [mmol/L] | 8.8 (0.7) | 8.5 (1.0, n = 15) | 0.45 | 7.3–10.5 |
HDL [mmol/L] | 1.5 (0.3) | 1.6 (0.4) | 0.35 | 0.7–1.9 |
LDL [mmol/L] | 3.2 (0.8) | 3.3 (0.9) | 0.71 | 2.2–5.7 |
LDH [U/L] | 170.2 (31.2) | 192.1 (38.7) | 0.03 | 105–255 |
Triglycerides [mmol/L] | 1.5 (0.8) | 1.3 (0.8) | 0.34 | 0.6–3.9 |
Urea [mmol/L] | 5.8 (1.3) | 5.7 (1.5) | 0.77 | 3.1–8.1 |
Neurocognitive test scores | ||||
MMSE | - | 20.0 (4.5) | - | - |
ACE | - | 58.0 (16.5, n = 21) | - | - |
FAQ | - | 11.8 (6.2, n = 21) | - | - |
CSF neurodegenerative markers | ||||
Aβ [ng/L] | - | 682.8 (216.3, n = 9) | - | >500 |
p-tau [ng/L] | - | 81.7 (25.0, n = 9) | - | <61 |
t-tau [ng/L] | - | 520.4 (102.4, n = 9) | - | <450 |
Plasma neurodegenerative markers | ||||
Aβ40 [pg/mL] | 95.1 (10.2) | 108.7 (17.4) | 0.002 | - |
Aβ42 [pg/mL] | 5.3 (1.0) | 5.6 (1.3) | 0.5 | - |
Aβ42/Aβ40 | 0.06 (0.009) | 0.05 (0.009) | 0.06 | - |
GFAP [pg/mL] | 88.6 (32.8) | 247.1 (277.9) | 0.01 | - |
Nf-L [pg/mL] | 12.5 (4.4) | 36.9 (24.5) | 0.04 | - |
p-tau181 [pg/mL] | 1.8 (0.8) | 3.1 (1.3) | 0.00005 | - |
Lipoprotein [g/L] | Con | AD | FC | Unadjusted | Adjusted | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | p-Value | FDR | p-Value | FDR | ||
H1A2 | 0.030 | 0.015 | 0.041 | 0.018 | 0.4 | 0.02 | 0.2 | 0.04 | 1 |
H2A2 | 0.037 | 0.012 | 0.043 | 0.012 | 0.2 | 0.03 | 0.3 | 0.04 | 1 |
IDTG | 0.173 | 0.126 | 0.122 | 0.135 | −0.3 | 0.02 | 0.2 | 0.95 | 1 |
L4TG | 0.021 | 0.009 | 0.030 | 0.013 | 0.4 | 0.01 | 0.2 | 0.2 | 1 |
L5TG | 0.020 | 0.011 | 0.027 | 0.010 | 0.3 | 0.03 | 0.3 | 0.2 | 1 |
L6TG | 0.040 | 0.016 | 0.049 | 0.013 | 0.2 | 0.01 | 0.2 | 0.07 | 1 |
LDTG | 0.179 | 0.043 | 0.226 | 0.081 | 0.3 | 0.02 | 0.2 | 0.3 | 1 |
TPTG | 1.505 | 0.672 | 1.258 | 0.758 | −0.2 | 0.03 | 0.3 | 0.95 | 1 |
V1CH | 0.084 | 0.050 | 0.054 | 0.051 | −0.4 | 0.002 | 0.2 | 0.4 | 1 |
V1FC | 0.036 | 0.024 | 0.022 | 0.026 | −0.4 | 0.006 | 0.2 | 0.5 | 1 |
V1PL | 0.085 | 0.053 | 0.060 | 0.061 | −0.3 | 0.01 | 0.2 | 0.6 | 1 |
V1TG | 0.550 | 0.321 | 0.384 | 0.402 | −0.3 | 0.005 | 0.2 | 0.6 | 1 |
V5CH | 0.014 | 0.007 | 0.010 | 0.006 | −0.3 | 0.05 | 0.3 | 0.3 | 1 |
V5PL | 0.019 | 0.006 | 0.014 | 0.006 | −0.3 | 0.01 | 0.2 | 0.2 | 1 |
VLFC | 0.100 | 0.036 | 0.083 | 0.044 | −0.2 | 0.04 | 0.3 | 0.5 | 1 |
VLPL | 0.231 | 0.087 | 0.196 | 0.112 | −0.1 | 0.04 | 0.3 | 0.8 | 1 |
VLTG | 0.951 | 0.498 | 0.768 | 0.604 | −0.2 | 0.03 | 0.3 | 0.9 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mortensen, J.E.; Andreassen, T.; Olsen, D.A.; Vestergaard, K.; Madsen, J.S.; Kristensen, S.R.; Pedersen, S. Serum Lipoprotein Profiling by NMR Spectroscopy Reveals Alterations in HDL-1 and HDL-2 Apo-A2 Subfractions in Alzheimer’s Disease. Int. J. Mol. Sci. 2024, 25, 11701. https://doi.org/10.3390/ijms252111701
Mortensen JE, Andreassen T, Olsen DA, Vestergaard K, Madsen JS, Kristensen SR, Pedersen S. Serum Lipoprotein Profiling by NMR Spectroscopy Reveals Alterations in HDL-1 and HDL-2 Apo-A2 Subfractions in Alzheimer’s Disease. International Journal of Molecular Sciences. 2024; 25(21):11701. https://doi.org/10.3390/ijms252111701
Chicago/Turabian StyleMortensen, Jonas Ellegaard, Trygve Andreassen, Dorte Aalund Olsen, Karsten Vestergaard, Jonna Skov Madsen, Søren Risom Kristensen, and Shona Pedersen. 2024. "Serum Lipoprotein Profiling by NMR Spectroscopy Reveals Alterations in HDL-1 and HDL-2 Apo-A2 Subfractions in Alzheimer’s Disease" International Journal of Molecular Sciences 25, no. 21: 11701. https://doi.org/10.3390/ijms252111701
APA StyleMortensen, J. E., Andreassen, T., Olsen, D. A., Vestergaard, K., Madsen, J. S., Kristensen, S. R., & Pedersen, S. (2024). Serum Lipoprotein Profiling by NMR Spectroscopy Reveals Alterations in HDL-1 and HDL-2 Apo-A2 Subfractions in Alzheimer’s Disease. International Journal of Molecular Sciences, 25(21), 11701. https://doi.org/10.3390/ijms252111701